Statistics
| Branch: | Tag: | Revision:

amiro-lld / source / DW1000 / v1 / deca_instance_common_v1.c @ 4172c48d

History | View | Annotate | Download (73.043 KB)

1 69a601a5 Cung Sang
/*! ----------------------------------------------------------------------------
2
 *  @file    instance_common.c
3
 *  @brief   DecaWave application level common instance functions
4
 *
5
 * @attention
6
 *
7
 * Copyright 2015 (c) DecaWave Ltd, Dublin, Ireland.
8
 *
9
 * All rights reserved.
10
 *
11
 * @author DecaWave
12
 */
13
14
#include <alld_DW1000.h>
15
16
#if (defined(AMIROLLD_CFG_DW1000) && (AMIROLLD_CFG_DW1000 == 1)) || defined(__DOXYGEN__)
17
18
#include "module.h"
19
#include <string.h>
20
#include <math.h>
21 33f54213 Cung Sang
#include <v1/deca_instance_v1.h>
22
23
24
/*! @brief Software defined configuration settings for RTLS applications */
25
/*! Configuration for DecaRangeRTLS TREK Modes (4 default use cases selected by the switch S1 [2,3] on EVB1000, indexed 0 to 3 )*/
26
instanceConfig_t chConfig[4] ={
27
                               //mode 1 - S1: 2 off, 3 off
28
                               {
29
                                .channelNumber = 2,             // channel
30
                                .preambleCode = 4,              // preambleCode
31
                                .pulseRepFreq = DWT_PRF_16M,    // prf
32
                                .dataRate = DWT_BR_110K,        // datarate
33
                                .preambleLen = DWT_PLEN_1024,   // preambleLength
34
                                .pacSize = DWT_PAC32,           // pacSize
35
                                .nsSFD = 1,                     // non-standard SFD
36
                                .sfdTO = (1025 + 64 - 32)       // SFD timeout
37
                               },
38
                               //mode 2 - S1: 2 on, 3 off
39
                               {
40
                                .channelNumber = 2,            // channel
41
                                .preambleCode = 4,             // preambleCode
42
                                .pulseRepFreq = DWT_PRF_16M,   // prf
43
                                .dataRate = DWT_BR_6M8,        // datarate
44
                                .preambleLen = DWT_PLEN_128,   // preambleLength
45
                                .pacSize = DWT_PAC8,           // pacSize
46
                                .nsSFD = 0,                    // non-standard SFD
47
                                .sfdTO = (129 + 8 - 8)        // SFD timeout
48
                               },
49
                               //mode 3 - S1: 2 off, 3 on
50
                               {
51
                                .channelNumber = 5,             // channel
52
                                .preambleCode = 3,              // preambleCode
53
                                .pulseRepFreq = DWT_PRF_16M,    // prf
54
                                .dataRate = DWT_BR_110K,        // datarate
55
                                .preambleLen = DWT_PLEN_1024,   // preambleLength
56
                                .pacSize = DWT_PAC32,           // pacSize
57
                                .nsSFD = 1,                     // non-standard SFD
58
                                .sfdTO = (1025 + 64 - 32)       // SFD timeout
59
                               },
60
                               //mode 4 - S1: 2 on, 3 on
61
                               {
62
                                .channelNumber = 5,            // channel
63
                                .preambleCode = 3,             // preambleCode
64
                                .pulseRepFreq = DWT_PRF_16M,   // prf
65
                                .dataRate = DWT_BR_6M8,        // datarate
66
                                .preambleLen = DWT_PLEN_128,   // preambleLength
67
                                .pacSize = DWT_PAC8,           // pacSize
68
                                .nsSFD = 0,                    // non-standard SFD
69
                                .sfdTO = (129 + 8 - 8)        // SFD timeout
70
                               }
71
};
72 69a601a5 Cung Sang
73
74 33f54213 Cung Sang
/*! Slot and Superframe Configuration for DecaRangeRTLS TREK Modes (4 default use cases selected by the switch S1 [2,3] on EVB1000, indexed 0 to 3 )*/
75
sfConfig_t sfConfig[4] ={
76
                         //mode 1 - S1: 2 off, 3 off
77
                         {
78
                          .slotPeriod = (28), //slot duration in milliseconds (NOTE: the ranging exchange must be able to complete in this time
79
                          //e.g. tag sends a poll, 4 anchors send responses and tag sends the final + processing time
80
                          .numSlots = (10),        //number of slots in the superframe (8 tag slots and 2 used for anchor to anchor ranging),
81
                          .sfPeriod = (10*28),  //in ms => 280ms frame means 3.57 Hz location rate
82
                          .pollSleepDly = (10*28), //tag period in ms (sleep time + ranging time)
83
                          .replyDly = (25000) //poll to final delay in microseconds (needs to be adjusted according to lengths of ranging frames)
84
                         },
85
#if (DISCOVERY == 1)
86
                         //mode 2 - S1: 2 on, 3 off
87
                         {
88
                          .slotPeriod = (10), //slot duration in milliseconds (NOTE: the ranging exchange must be able to complete in this time
89
                          //e.g. tag sends a poll, 4 anchors send responses and tag sends the final + processing time
90
                          .numSlots = (100),        //number of slots in the superframe (98 tag slots and 2 used for anchor to anchor ranging),
91
                          .sfPeriod = (10*100),  //in ms => 1000 ms frame means 1 Hz location rate
92
                          .pollSleepDly = (10*100), //tag period in ms (sleep time + ranging time)
93
                          .replyDly = (2500) //poll to final delay in microseconds (needs to be adjusted according to lengths of ranging frames)
94
95
                         },
96
#else
97
                         //mode 2 - S1: 2 on, 3 off
98
                         {
99
                          .slotPeriod = (10), //slot duration in milliseconds (NOTE: the ranging exchange must be able to complete in this time
100
                          //e.g. tag sends a poll, 4 anchors send responses and tag sends the final + processing time
101
                          .numSlots = (10),        //number of slots in the superframe (8 tag slots and 2 used for anchor to anchor ranging),
102
                          .sfPeriod = (10*10),  //in ms => 100 ms frame means 10 Hz location rate
103
                          .pollSleepDly = (10*10), //tag period in ms (sleep time + ranging time)
104
                          .replyDly = (2500) //poll to final delay in microseconds (needs to be adjusted according to lengths of ranging frames)
105
                         },
106
#endif
107
                         //mode 3 - S1: 2 off, 3 on
108
                         {
109
                          .slotPeriod = (28), //slot duration in milliseconds (NOTE: the ranging exchange must be able to complete in this time
110
                          //e.g. tag sends a poll, 4 anchors send responses and tag sends the final + processing time
111
                          .numSlots = (10),        //number of slots in the superframe (8 tag slots and 2 used for anchor to anchor ranging),
112
                          .sfPeriod = (10*28),  //in ms => 280ms frame means 3.57 Hz location rate
113
                          .pollSleepDly = (10*28), //tag period in ms (sleep time + ranging time)
114
                          .replyDly = (20000) //poll to final delay in microseconds (needs to be adjusted according to lengths of ranging frames)
115
116
                         },
117
                         //mode 4 - S1: 2 on, 3 on
118
                         {
119
                          .slotPeriod = (10), //slot duration in milliseconds (NOTE: the ranging exchange must be able to complete in this time
120
                          //e.g. tag sends a poll, 4 anchors send responses and tag sends the final + processing time
121
                          .numSlots = (10),        //number of slots in the superframe (8 tag slots and 2 used for anchor to anchor ranging),
122
                          .sfPeriod = (10*10),  //in ms => 100 ms frame means 10 Hz location rate
123
                          .pollSleepDly = (10*10), //tag period in ms (sleep time + ranging time)
124
                          .replyDly = (2500) //poll to final delay in microseconds (needs to be adjusted according to lengths of ranging frames)
125
                         }
126
};
127 69a601a5 Cung Sang
128
129
// -------------------------------------------------------------------------------------------------------------------
130
131
//The table below specifies the default TX spectrum configuration parameters... this has been tuned for DW EVK hardware units
132
//the table is set for smart power - see below in the instance_config function how this is used when not using smart power
133
const tx_struct txSpectrumConfig[8] =
134
{
135
    //Channel 0 ----- this is just a place holder so the next array element is channel 1
136
    {
137
            0x0,   //0
138
            {
139
                    0x0, //0
140
                    0x0 //0
141
            }
142
    },
143
    //Channel 1
144
    {
145
            0xc9,   //PG_DELAY
146
            {
147
                    0x15355575, //16M prf power
148
                    0x07274767 //64M prf power
149
            }
150
151
    },
152
    //Channel 2
153
    {
154
            0xc2,   //PG_DELAY
155
            {
156
                    0x15355575, //16M prf power
157
                    0x07274767 //64M prf power
158
            }
159
    },
160
    //Channel 3
161
    {
162
            0xc5,   //PG_DELAY
163
            {
164
                    0x0f2f4f6f, //16M prf power
165
                    0x2b4b6b8b //64M prf power
166
            }
167
    },
168
    //Channel 4
169
    {
170
            0x95,   //PG_DELAY
171
            {
172
                    0x1f1f3f5f, //16M prf power
173
                    0x3a5a7a9a //64M prf power
174
            }
175
    },
176
    //Channel 5
177
    {
178
            0xc0,   //PG_DELAY
179
            {
180
                    0x0E082848, //16M prf power
181
                    0x25456585 //64M prf power
182
            }
183
    },
184
    //Channel 6 ----- this is just a place holder so the next array element is channel 7
185
    {
186
            0x0,   //0
187
            {
188
                    0x0, //0
189
                    0x0 //0
190
            }
191
    },
192
    //Channel 7
193
    {
194
            0x93,   //PG_DELAY
195
            {
196
                    0x32527292, //16M prf power
197
                    0x5171B1d1 //64M prf power
198
            }
199
    }
200
};
201
202
//these are default antenna delays for EVB1000, these can be used if there is no calibration data in the DW1000,
203
//or instead of the calibration data
204
const uint16_t rfDelays[2] = {
205
        (uint16_t) ((DWT_PRF_16M_RFDLY/ 2.0) * 1e-9 / DWT_TIME_UNITS),//PRF 16
206
        (uint16_t) ((DWT_PRF_64M_RFDLY/ 2.0) * 1e-9 / DWT_TIME_UNITS)
207
};
208
209
//these are default TREK Tag/Anchor antenna delays
210
const uint16_t rfDelaysTREK[2] = {
211
        (uint16_t) ((514.83f/ 2.0) * 1e-9 / DWT_TIME_UNITS),//channel 2
212
        (uint16_t) ((514.65f/ 2.0) * 1e-9 / DWT_TIME_UNITS) //channel 5
213
};
214
215
//int instance_starttxtest(int framePeriod)
216
//{
217
//    //define some test data for the tx buffer
218
//    uint8 msg[127] = "The quick brown fox jumps over the lazy dog. The quick brown fox jumps over the lazy dog. The quick brown fox jumps over the l";
219
220
//    //NOTE: SPI frequency must be < 3MHz
221
//    port_set_dw1000_slowrate();  //max SPI before PLLs configured is ~4M
222
223
//    // the value here 0x1000 gives a period of 32.82 µs
224
//    //this is setting 0x1000 as frame period (125MHz clock cycles) (time from Tx en - to next - Tx en)
225
//    dwt_configcontinuousframemode(framePeriod);
226
227
//    dwt_writetxdata(127, (uint8 *)  msg, 0) ;
228
//    dwt_writetxfctrl(127, 0, 0);
229
230
//    //to start the first frame - set TXSTRT
231
//    dwt_starttx(DWT_START_TX_IMMEDIATE);
232
233
//    //measure the power
234
//    //Spectrum Analyser set:
235
//    //FREQ to be channel default e.g. 3.9936 GHz for channel 2
236
//    //SPAN to 1GHz
237
//    //SWEEP TIME 1s
238
//    //RBW and VBW 1MHz
239
//    //measure channel power
240
241
//    return DWT_SUCCESS ;
242
//}
243
244
// -------------------------------------------------------------------------------------------------------------------
245
//      Data Definitions
246
// -------------------------------------------------------------------------------------------------------------------
247
248
instance_data_t instance_data[NUM_INST] ;
249
250
static double inst_tdist[MAX_TAG_LIST_SIZE] ;
251
static double inst_idist[MAX_ANCHOR_LIST_SIZE] ;
252
static double inst_idistraw[MAX_ANCHOR_LIST_SIZE] ;
253
254
// TODO: Instance_data declaration in .c. Not on .h (extern only)
255
instance_data_t instance_data[NUM_INST] ;
256
257
/* TODO: Custom data declarations */
258
typedef struct
259
{
260
    uint32_t      deviceID ;
261
    uint8_t       chan;               // added chan here - used in the reading of acc
262
    uint16_t      rfrxDly;            // rf delay (delay though the RF blocks before the signal comes out of the antenna i.e. "antenna delay")
263
    uint16_t      rftxDly;            // rf delay (delay though the RF blocks before the signal comes out of the antenna i.e. "antenna delay")
264
    uint32_t      antennaDly;         // antenna delay read from OTP 64 PRF value is in high 16 bits and 16M PRF in low 16 bits
265
    uint32_t      antennaCals[4];     // antenna delays for the TREKs (Anchor high 16-bits, Tag low 16-bits)
266
    uint32_t      txPowCfg[12];       // stores the Tx power configuration read from OTP (6 channels consecutively with PRF16 then 64, e.g. Ch 1 PRF16 is index 0 and 64 index 1)
267
    uint32_t      states[3] ;         //MP workaround debug states register
268
    uint8_t       statescount ;
269
    int           prfIndex ;
270
    uint32_t      ldoTune ;           //low 32 bits of LDO tune value
271
} platform_local_data_t ;
272
273
static platform_local_data_t platformLocalData ; // Static local device data
274
275
// -------------------------------------------------------------------------------------------------------------------
276
// Functions
277
// -------------------------------------------------------------------------------------------------------------------
278
279
// -------------------------------------------------------------------------------------------------------------------
280
// convert microseconds to device time
281
uint64_t convertmicrosectodevicetimeu (double microsecu){
282
  uint64_t dt;
283
  long double dtime;
284
285
  dtime = (microsecu / (double) DWT_TIME_UNITS) / 1e6 ;
286
287
  dt =  (uint64_t) (dtime) ;
288
289
  return dt;
290
}
291
292
double convertdevicetimetosec(int32_t dt){
293
  double f = 0;
294
295
  f =  dt * DWT_TIME_UNITS ;  // seconds #define TIME_UNITS          (1.0/499.2e6/128.0) = 15.65e-12
296
297
  return f ;
298
}
299
300
#pragma GCC optimize ("O3")
301
int reportTOF(int idx, uint32_t tofx){
302
  double distance ;
303
  double distance_to_correct;
304
  double tof ;
305
  int32_t tofi ;
306
307
  // check for negative results and accept them making them proper negative integers
308
  tofi = (int32_t) tofx ; // make it signed
309
  if (tofi > 0x7FFFFFFF){  // close up TOF may be negative
310
    tofi -= 0x80000000 ;  //
311
  }
312
313
  // convert to seconds (as floating point)
314
  tof = convertdevicetimetosec(tofi) ;          //this is divided by 4 to get single time of flight
315
  inst_idistraw[idx] = distance = tof * SPEED_OF_LIGHT;
316
317
#if (CORRECT_RANGE_BIAS == 1)
318
  //for the 6.81Mb data rate we assume gating gain of 6dB is used,
319
  //thus a different range bias needs to be applied
320
  //if(inst->configData.dataRate == DWT_BR_6M8)
321
  if(instance_data[0].configData.smartPowerEn){
322
    //1.31 for channel 2 and 1.51 for channel 5
323
    if(instance_data[0].configData.chan == 5){
324
      distance_to_correct = distance/1.51;
325
    }
326
    else{   //channel 2
327
      distance_to_correct = distance/1.31;
328
    }
329
  }
330
  else{
331
    distance_to_correct = distance;
332
  }
333
334
  distance = distance - dwt_getrangebias(instance_data[0].configData.chan, (float) distance_to_correct, instance_data[0].configData.prf);
335
#endif
336
337
  if ((distance < 0) || (distance > 20000.000))    // discard any results less than <0 cm or >20 km
338
    return 0;
339
340
  inst_idist[idx] = distance;
341
342
  instance_data[0].longTermRangeCount++ ;                          // for computing a long term average
343
344
  return 1;
345
}// end of reportTOF
346
347
void setTagDist(int tidx, int aidx){
348
  inst_tdist[tidx] = inst_idist[aidx];
349
}
350
351
double getTagDist(int idx){
352
  return inst_tdist[idx];
353
}
354
355
void clearDistTable(int idx){
356
  inst_idistraw[idx] = 0;
357
  inst_idist[idx] = 0;
358
}
359
360
void instancecleardisttableall(void){
361
  int i;
362
363
  for(i=0; i<MAX_ANCHOR_LIST_SIZE; i++)  {
364
    inst_idistraw[i] = 0xffff;
365
    inst_idist[i] = 0xffff;
366
  }
367
}
368
369
// -------------------------------------------------------------------------------------------------------------------
370
#if NUM_INST != 1
371
#error These functions assume one instance only
372
#else
373
374
375
// -------------------------------------------------------------------------------------------------------------------
376
// Set this instance role as the Tag, Anchor or Listener
377
void instancesetrole(int inst_mode){
378
  // assume instance 0, for this
379
  instance_data[0].mode =  inst_mode;                   // set the role
380
}
381
382
int instancegetrole(void){
383
  return instance_data[0].mode;
384
}
385
386
int instancenewrange(void){
387
  int x = instance_data[0].newRange;
388
  instance_data[0].newRange = TOF_REPORT_NUL;
389
  return x;
390
}
391
392
int instancenewrangeancadd(void){
393
  return instance_data[0].newRangeAncAddress;
394
}
395
396
int instancenewrangetagadd(void){
397
  return instance_data[0].newRangeTagAddress;
398
}
399
400
int instancenewrangetim(void){
401
  return instance_data[0].newRangeTime;
402
}
403
404
// -------------------------------------------------------------------------------------------------------------------
405
// function to clear counts/averages/range values
406
//
407
void instanceclearcounts(void){
408
  int instance = 0 ;
409
  int i= 0 ;
410
411
  instance_data[instance].rxTimeouts = 0 ;
412
413
  dwt_configeventcounters(1); //enable and clear - NOTE: the counters are not preserved when in DEEP SLEEP
414
415
  instance_data[instance].frameSN = 0;
416
417
  instance_data[instance].longTermRangeCount  = 0;
418
419
420
  for(i=0; i<MAX_ANCHOR_LIST_SIZE; i++){
421
    instance_data[instance].tofArray[i] = INVALID_TOF;
422
  }
423
424
  for(i=0; i<MAX_TAG_LIST_SIZE; i++){
425
    instance_data[instance].tof[i] = INVALID_TOF;
426
  }
427
428
} // end instanceclearcounts()
429
430
431
// -------------------------------------------------------------------------------------------------------------------
432
// function to initialise instance structures
433
//
434
// Returns 0 on success and -1 on error
435 33f54213 Cung Sang
int instance_init(DW1000Driver* drv){
436 69a601a5 Cung Sang
  int instance = 0 ;
437
  int i;
438
  int result;
439
440
  instance_data[instance].mode =  ANCHOR;                                // assume listener,
441
  instance_data[instance].testAppState = TA_INIT ;
442
  instance_data[instance].instToSleep = FALSE;
443
444
445
  // Reset the IC (might be needed if not getting here from POWER ON)
446
  // ARM code: Remove soft reset here as using hard reset in the inittestapplication() in the main.c file
447
  //dwt_softreset();
448
449
  //this initialises DW1000 and uses specified configurations from OTP/ROM
450 33f54213 Cung Sang
  result = dwt_initialise(DWT_LOADUCODE, drv) ;    // TODO
451
//  result = dwt_initialise(DWT_LOADUCODE) ;
452 69a601a5 Cung Sang
453
  //this is platform dependent - only program if DW EVK/EVB
454
  dwt_setleds(3) ; //configure the GPIOs which control the leds on EVBs
455
456
  if (DWT_SUCCESS != result){
457
    return (-1) ;   // device initialise has failed
458
  }
459
460
461
  instanceclearcounts() ;
462
463
  instance_data[instance].panID = 0xdeca ;
464
465
  instance_data[instance].wait4ack = 0;
466
  instance_data[instance].stopTimer = 0;
467
  instance_data[instance].instanceTimerEn = 0;
468
469
  instance_clearevents();
470
471
  //dwt_geteui(instance_data[instance].eui64);
472
  memset(instance_data[instance].eui64, 0, ADDR_BYTE_SIZE_L);
473
474
  instance_data[instance].tagSleepCorrection = 0;
475
476
//  dwt_setautorxreenable(0); //disable auto RX re-enable
477
  dwt_setdblrxbuffmode(0); //disable double RX buffer
478
479
  // if using auto CRC check (DWT_INT_RFCG and DWT_INT_RFCE) are used instead of DWT_INT_RDFR flag
480
  // other errors which need to be checked (as they disable receiver) are
481
  //dwt_setinterrupt(DWT_INT_TFRS | DWT_INT_RFCG | (DWT_INT_SFDT | DWT_INT_RFTO /*| DWT_INT_RXPTO*/), 1);
482
  dwt_setinterrupt(DWT_INT_TFRS | DWT_INT_RFCG | (DWT_INT_ARFE | DWT_INT_RFSL | DWT_INT_SFDT | DWT_INT_RPHE | DWT_INT_RFCE | DWT_INT_RFTO | DWT_INT_RXPTO), 1);
483
484
  dwt_setcallbacks(instance_txcallback, instance_rxcallback, instance_rxtimeoutcallback,instance_rxerrorcallback );
485
486
  instance_data[instance].monitor = 0;
487
488
  instance_data[instance].lateTX = 0;
489
  instance_data[instance].lateRX = 0;
490
491
  instance_data[instance].responseTO = -1; //initialise
492
  for(i=0; i<256; i++)  {
493
    instance_data[instance].rxResps[i] = -10;
494
  }
495
496
  instance_data[instance].delayedReplyTime = 0;
497
498
  return 0 ;
499
}
500
501
// -------------------------------------------------------------------------------------------------------------------
502
//
503
// Return the Device ID register value, enables higher level validation of physical device presence
504
//
505
506
uint32_t instancereaddeviceid(void){
507
  return dwt_readdevid() ;
508
}
509
510
511
// -------------------------------------------------------------------------------------------------------------------
512
//
513
// function to allow application configuration be passed into instance and affect underlying device operation
514
//
515 4172c48d Cung Sang
void instance_config(instanceConfig_t *config, sfConfig_t *sfConfig, DW1000Driver* drv){
516 69a601a5 Cung Sang
  int instance = 0 ;
517
  uint32_t power = 0;
518
  uint8_t otprev ;
519
520
  instance_data[instance].configData.chan = config->channelNumber ;
521
  instance_data[instance].configData.rxCode =  config->preambleCode ;
522
  instance_data[instance].configData.txCode = config->preambleCode ;
523
  instance_data[instance].configData.prf = config->pulseRepFreq ;
524
  instance_data[instance].configData.dataRate = config->dataRate ;
525
  instance_data[instance].configData.txPreambLength = config->preambleLen ;
526
  instance_data[instance].configData.rxPAC = config->pacSize ;
527
  instance_data[instance].configData.nsSFD = config->nsSFD ;
528
  instance_data[instance].configData.phrMode = DWT_PHRMODE_STD ;
529
  instance_data[instance].configData.sfdTO = config->sfdTO;
530
531
  //the DW1000 will automatically use gating gain for frames < 1ms duration (i.e. 6.81Mbps data rate)
532
  //smartPowerEn should be set based on the frame length, but we can also use dtaa rate.
533
  if(instance_data[instance].configData.dataRate == DWT_BR_6M8)  {
534
    instance_data[instance].configData.smartPowerEn = 1;
535
  }
536
  else{
537
    instance_data[instance].configData.smartPowerEn = 0;
538
  }
539
540
  //configure the channel parameters
541
  dwt_configure(&instance_data[instance].configData) ;
542
543
  instance_data[instance].configTX.PGdly = txSpectrumConfig[config->channelNumber].PGdelay ;    //Default
544
545
  //firstly check if there are calibrated TX power value in the DW1000 OTP
546
  power = dwt_getotptxpower(config->pulseRepFreq, instance_data[instance].configData.chan);
547
548
  if((power == 0x0) || (power == 0xFFFFFFFF)) {    //if there are no calibrated values... need to use defaults
549
    power = txSpectrumConfig[config->channelNumber].txPwr[config->pulseRepFreq- DWT_PRF_16M];
550
  }
551
552
  //Configure TX power
553
  instance_data[instance].configTX.power = power;
554
555
  //configure the tx spectrum parameters (power and PG delay)
556
  dwt_configuretxrf(&instance_data[instance].configTX);
557
558
  otprev = dwt_otprevision() ;  // this revision tells us how OTP is programmed.
559
560
  if ((2 == otprev) || (3 == otprev))  {  // board is calibrated with TREK1000 with antenna delays set for each use case)
561
    uint8_t mode = (instance_data[instance].mode == ANCHOR ? 1 : 0);
562
    uint8_t chanindex = 0;
563
564
    instance_data[instance].txAntennaDelay
565
    = dwt_getTREKOTPantennadelay(mode,
566
                                 instance_data[instance].configData.chan,
567
                                 instance_data[instance].configData.dataRate) ;
568
569
    // if nothing was actually programmed then set a reasonable value anyway
570
    if ((instance_data[instance].txAntennaDelay == 0)
571
        || (instance_data[instance].txAntennaDelay == 0xffff)){
572
      if(instance_data[instance].configData.chan == 5){
573
        chanindex = 1;
574
      }
575
576
      instance_data[instance].txAntennaDelay = rfDelaysTREK[chanindex];
577
    }
578
579
  }
580
  else {  // assume it is older EVK1000 programming.
581
    //get the antenna delay that was read from the OTP calibration area
582
    instance_data[instance].txAntennaDelay = dwt_readantennadelay(config->pulseRepFreq) >> 1;
583
584
    // if nothing was actually programmed then set a reasonable value anyway
585
    if ((instance_data[instance].txAntennaDelay == 0)
586
        || (instance_data[instance].txAntennaDelay == 0xffff)){
587
      instance_data[instance].txAntennaDelay = rfDelays[config->pulseRepFreq - DWT_PRF_16M];
588
    }
589
  }
590
591
  // -------------------------------------------------------------------------------------------------------------------
592
  // set the antenna delay, we assume that the RX is the same as TX.
593
  dwt_setrxantennadelay(instance_data[instance].txAntennaDelay);
594
  dwt_settxantennadelay(instance_data[instance].txAntennaDelay);
595
596
  instance_data[instance].rxAntennaDelay = instance_data[instance].txAntennaDelay;
597
598
  if(config->preambleLen == DWT_PLEN_64)  {  //if preamble length is 64
599
    //reduce SPI to < 3MHz
600 4172c48d Cung Sang
    setHighSpeed_SPI(FALSE, drv);
601 69a601a5 Cung Sang
    dwt_loadopsettabfromotp(0);
602
    //increase SPI to max
603 4172c48d Cung Sang
    setHighSpeed_SPI(TRUE, drv);
604 69a601a5 Cung Sang
  }
605
606
  instancesettagsleepdelay(sfConfig->pollSleepDly); //set the Tag sleep time
607
  instance_data[instance].sframePeriod = sfConfig->sfPeriod;
608
  instance_data[instance].slotPeriod = sfConfig->slotPeriod;
609
  instance_data[instance].tagSleepRnd = sfConfig->slotPeriod;
610
  instance_data[instance].numSlots = sfConfig->numSlots;
611
612
  //last two slots are used for anchor to anchor ranging
613
  instance_data[instance].a0SlotTime = (instance_data[instance].numSlots-2) * instance_data[instance].slotPeriod;
614
615
  //set the default response delays
616
  instancesetreplydelay(sfConfig->replyDly);
617
618
}
619
620
// -------------------------------------------------------------------------------------------------------------------
621
// function to set the tag sleep time (in ms)
622
//
623
void instancesettagsleepdelay(int sleepdelay) {  //sleep in ms
624
  int instance = 0 ;
625
  instance_data[instance].tagSleepTime_ms = sleepdelay; //subtract the micro system delays (time it takes to switch states etc.)
626
}
627
628
629
int instancegetrnum(void) {  //get ranging number
630
  return instance_data[0].rangeNum;
631
}
632
633
int instancegetrnuma(int idx){  //get ranging number
634
  return instance_data[0].rangeNumA[idx];
635
}
636
637
int instancegetrnumanc(int idx){  //get ranging number
638
  return instance_data[0].rangeNumAAnc[idx];
639
}
640
641
int instancegetlcount(void) {  //get count of ranges used for calculation of lt avg
642
  int x = instance_data[0].longTermRangeCount;
643
644
  return (x);
645
}
646
647
double instancegetidist(int idx) {  //get instantaneous range
648
  double x ;
649
650
  idx &= (MAX_ANCHOR_LIST_SIZE - 1);
651
652
  x = inst_idist[idx];
653
654
  return (x);
655
}
656
657
double instancegetidistraw(int idx) { //get instantaneous range (uncorrected)
658
  double x ;
659
660
  idx &= (MAX_ANCHOR_LIST_SIZE - 1);
661
662
  x = inst_idistraw[idx];
663
664
  return (x);
665
}
666
667
int instancegetidist_mm(int idx) {  //get instantaneous range
668
  int x ;
669
670
  idx &= (MAX_ANCHOR_LIST_SIZE - 1);
671
672
  x = (int)(inst_idist[idx]*1000);
673
674
  return (x);
675
}
676
677
int instancegetidistraw_mm(int idx) {  //get instantaneous range (uncorrected)
678
  int x ;
679
680
  idx &= (MAX_ANCHOR_LIST_SIZE - 1);
681
682
  x = (int)(inst_idistraw[idx]*1000);
683
684
  return (x);
685
}
686
687
void instance_backtoanchor(instance_data_t *inst){
688
  //stay in RX and behave as anchor
689
  inst->testAppState = TA_RXE_WAIT ;
690
  inst->mode = ANCHOR ;
691
  dwt_setrxtimeout(0);
692
  dwt_setpreambledetecttimeout(0);
693
  dwt_setrxaftertxdelay(0);
694
}
695
696
697
#pragma GCC optimize ("O3")
698
void inst_processrxtimeout(instance_data_t *inst){
699
700
  //inst->responseTimeouts ++ ;
701
  inst->rxTimeouts ++ ;
702
  inst->done = INST_NOT_DONE_YET;
703
704
  if(inst->mode == ANCHOR) { //we did not receive the final - wait for next poll
705
    //only enable receiver when not using double buffering
706
    inst->testAppState = TA_RXE_WAIT ;              // wait for next frame
707
    dwt_setrxtimeout(0);
708
  }
709
710
  else if(inst->mode == TAG) {
711
    //if tag times out - no response (check if we are to send a final)
712
    //send the final only if it has received response from anchor 0
713
    if((inst->previousState == TA_TXPOLL_WAIT_SEND) && ((inst->rxResponseMask & 0x1) == 0)) {
714
      inst->instToSleep = TRUE ; //set sleep to TRUE so that tag will go to DEEP SLEEP before next ranging attempt
715
      inst->testAppState = TA_TXE_WAIT ;
716
      inst->nextState = TA_TXPOLL_WAIT_SEND ;
717
    }
718
    else if (inst->previousState == TA_TXFINAL_WAIT_SEND) {  //got here from main (error sending final - handle as timeout)
719
      dwt_forcetrxoff();        //this will clear all events
720
      inst->instToSleep = TRUE ;
721
      // initiate the re-transmission of the poll that was not responded to
722
      inst->testAppState = TA_TXE_WAIT ;
723
      inst->nextState = TA_TXPOLL_WAIT_SEND ;
724
    }
725
    else {  //send the final
726
      // initiate the re-transmission of the poll that was not responded to
727
      inst->testAppState = TA_TXE_WAIT ;
728
      inst->nextState = TA_TXFINAL_WAIT_SEND ;
729
    }
730
731
  }
732
  else {  //ANCHOR_RNG
733
    //no Response form the other anchor
734
    if(
735
        ((inst->previousState == TA_TXPOLL_WAIT_SEND)
736
            && ((A1_ANCHOR_ADDR == inst->instanceAddress16) && ((inst->rxResponseMaskAnc & 0x4) == 0)))
737
            ||
738
            ((inst->previousState == TA_TXPOLL_WAIT_SEND)
739
                && ((GATEWAY_ANCHOR_ADDR == inst->instanceAddress16) && ((inst->rxResponseMaskAnc & 0x2) == 0)))
740
    )  {
741
      instance_backtoanchor(inst);
742
    }
743
    else if (inst->previousState == TA_TXFINAL_WAIT_SEND) {  //got here from main (error ending final - handle as timeout)
744
      instance_backtoanchor(inst);
745
    }
746
    else {  //send the final
747
      // initiate the re-transmission of the poll that was not responded to
748
      inst->testAppState = TA_TXE_WAIT ;
749
      inst->nextState = TA_TXFINAL_WAIT_SEND ;
750
    }
751
  }
752
753
  //timeout - disable the radio (if using SW timeout the rx will not be off)
754
  //dwt_forcetrxoff() ;
755
}
756
757
//
758
// NB: This function is called from the (TX) interrupt handler
759
//
760
#pragma GCC optimize ("O3")
761
void instance_txcallback(const dwt_cb_data_t *txd){
762
763
  (void) txd;
764
  int instance = 0;
765
  uint8_t txTimeStamp[5] = {0, 0, 0, 0, 0};
766
//  uint8 txevent = txd->event;
767
  event_data_t dw_event;
768
769
  dw_event.uTimeStamp = portGetTickCnt();
770
771
//  chprintf((BaseSequentialStream *)&SD2, " TX callback! \r\n");
772
773
//  if(txevent == DWT_SIG_TX_DONE) {
774
    //uint32_t txtimestamp = 0;
775
776
    //NOTE - we can only get TX good (done) while here
777
    //dwt_readtxtimestamp((uint8*) &instance_data[instance].txu.txTimeStamp);
778
779
    dwt_readtxtimestamp(txTimeStamp) ;
780
    dw_event.timeStamp32l = (uint32_t)txTimeStamp[0] + ((uint32_t)txTimeStamp[1] << 8) + ((uint32_t)txTimeStamp[2] << 16) + ((uint32_t)txTimeStamp[3] << 24);
781
    dw_event.timeStamp = txTimeStamp[4];
782
    dw_event.timeStamp <<= 32;
783
    dw_event.timeStamp += dw_event.timeStamp32l;
784
    dw_event.timeStamp32h = ((uint32_t)txTimeStamp[4] << 24) + (dw_event.timeStamp32l >> 8);
785
786
    instance_data[instance].stopTimer = 0;
787
788
    dw_event.rxLength = instance_data[instance].psduLength;
789
    dw_event.type =  0;
790
    dw_event.type_pend =  0;
791
    dw_event.type_save = DWT_SIG_TX_DONE;
792
793
    memcpy((uint8_t *)&dw_event.msgu.frame[0], (uint8_t *)&instance_data[instance].msg_f, instance_data[instance].psduLength);
794
795
    instance_putevent(dw_event, DWT_SIG_TX_DONE);
796
797
    instance_data[instance].txMsgCount++;
798
//  }
799
//  else if(txevent == DWT_SIG_TX_AA_DONE)  {
800
//    //auto ACK confirmation
801
//    dw_event.rxLength = 0;
802
//    dw_event.type =  0;
803
//    dw_event.type_save = DWT_SIG_TX_AA_DONE;
804
//
805
//    instance_putevent(dw_event, DWT_SIG_TX_AA_DONE);
806
//
807
//    //printf("TX AA time %f ecount %d\n",convertdevicetimetosecu(instance_data[instance].txu.txTimeStamp), instance_data[instance].dweventCnt);
808
//  }
809
810
  instance_data[instance].monitor = 0;
811
}
812
813
/**
814
 * @brief function to re-enable the receiver and also adjust the timeout before sending the final message
815
 * if it is time so send the final message, the callback will notify the application, else the receiver is
816
 * automatically re-enabled
817
 *
818
 * this function is only used for tag when ranging to other anchors
819
 */
820
uint8_t tagrxreenable(uint16_t sourceAddress){
821
  uint8_t type_pend = DWT_SIG_DW_IDLE;
822
  uint8_t anc = sourceAddress & 0x3;
823
  int instance = 0;
824
825
  switch(anc){
826
  //if we got Response from anchor 3 - this is the last expected response - send the final
827
  case 3:
828
    type_pend = DWT_SIG_DW_IDLE;
829
    break;
830
831
    //if we got Response from anchor 0, 1, or 2 - go back to wait for next anchor's response
832
  case 0:
833
  case 1:
834
  case 2:
835
  default:
836
    if(instance_data[instance].responseTO > 0) {  //can get here as result of error frame so need to check
837
      dwt_setrxtimeout((uint16_t)instance_data[instance].fwtoTime_sy * instance_data[instance].responseTO); //reconfigure the timeout
838
      dwt_rxenable(DWT_START_RX_IMMEDIATE) ;
839
      type_pend = DWT_SIG_RX_PENDING ;
840
    }
841
    else //last response was not received (got error/frame was corrupt)
842
    {
843
      type_pend = DWT_SIG_DW_IDLE; //report timeout - send the final
844
    }
845
    break;
846
  }
847
848
  return type_pend;
849
}
850
851
/**
852
 * @brief function to re-enable the receiver and also adjust the timeout before sending the final message
853
 * if it is time so send the final message, the callback will notify the application, else the receiver is
854
 * automatically re-enabled
855
 *
856
 * this function is only used for anchors (having a role of ANCHOR_RNG) when ranging to other anchors
857
 */
858
uint8_t ancsendfinalorrxreenable(uint16_t sourceAddress){
859
  uint8_t type_pend = DWT_SIG_DW_IDLE;
860
  uint8_t anc = sourceAddress & 0x3;
861
  int instance = 0;
862
863
  if(instance_data[instance].instanceAddress16 == GATEWAY_ANCHOR_ADDR) {
864
    switch(anc) {
865
    //if we got Response from anchor 1 - go back to wait for next anchor's response
866
    case 1:
867
      dwt_setrxtimeout((uint16_t)instance_data[instance].fwtoTime_sy); //reconfigure the timeout
868
      dwt_rxenable(DWT_START_RX_IMMEDIATE) ;
869
      type_pend = DWT_SIG_RX_PENDING ;
870
      break;
871
872
      //if we got Response from anchor 2 - this is the last expected response - send the final
873
    case 2:
874
    default:
875
      type_pend = DWT_SIG_DW_IDLE;
876
      break;
877
    }
878
  }
879
880
  if(instance_data[instance].instanceAddress16 == A1_ANCHOR_ADDR){
881
    switch(anc)
882
    {
883
    //if we got Response from anchor 2 - this is the last expected response - send the final
884
    case 2:
885
    default:
886
      type_pend = DWT_SIG_DW_IDLE;
887
      break;
888
    }
889
  }
890
  return type_pend;
891
}
892
893
/**
894
 * @brief this function either enables the receiver (delayed)
895
 *
896
 **/
897
void ancenablerx(void){
898
  int instance = 0;
899
  //subtract preamble length
900
  dwt_setdelayedtrxtime(instance_data[instance].delayedReplyTime - instance_data[instance].fixedReplyDelayAncP) ;
901
  if(dwt_rxenable(DWT_START_RX_DELAYED)) {  //delayed rx
902
    //if the delayed RX failed - time has passed - do immediate enable
903
    //led_on(LED_PC9);
904
    dwt_setrxtimeout((uint16_t)instance_data[instance].fwtoTimeAnc_sy*2); //reconfigure the timeout before enable
905
    //longer timeout as we cannot do delayed receive... so receiver needs to stay on for longer
906
    dwt_rxenable(DWT_START_RX_IMMEDIATE);
907
    dwt_setrxtimeout((uint16_t)instance_data[instance].fwtoTimeAnc_sy); //restore the timeout for next RX enable
908
    instance_data[instance].lateRX++;
909
    //led_off(LED_PC9);
910
  }
911
912
}
913
914
/**
915
 * @brief this function either re-enables the receiver (delayed or immediate) or transmits the response frame
916
 *
917
 * @param the sourceAddress is the address of the sender of the current received frame
918
 * @param ancToAncTWR == 1 means that the anchor is ranging to another anchor, if == 0 then ranging to a tag
919
 *
920
 */
921
#pragma GCC optimize ("O0")
922
uint8_t anctxorrxreenable(uint16_t sourceAddress, int ancToAncTWR){
923
  uint8_t type_pend = DWT_SIG_DW_IDLE;
924
  int sendResp = 0;
925
  int instance = 0;
926
927
  if(instance_data[instance].responseTO == 0) {  //go back to RX without TO - ranging has finished. (wait for Final but no TO)
928
    dwt_setrxtimeout(0); //reconfigure the timeout
929
    dwt_setpreambledetecttimeout(0);
930
  }
931
932
  if((ancToAncTWR & 1) == 1)  {
933
    if(instance_data[instance].responseTO == 1) {  //if one response left to receive (send a response now)
934
      sendResp = 1;
935
    }
936
    //if A0 or A3 go back to RX as they do not send any responses when Anchor to Anchor ranging
937
    if((instance_data[instance].gatewayAnchor)
938
        || (instance_data[instance].shortAdd_idx == 3)) { //if this is anchor ID 3 do not reply to anchor poll
939
      dwt_setrxtimeout(0);
940
      dwt_rxenable(DWT_START_RX_IMMEDIATE);
941
      return DWT_SIG_RX_PENDING ;
942
    }
943
  }
944
945
  //configure delayed reply time (this is incremented for each received frame) it is timed from Poll rx time
946
  instance_data[instance].delayedReplyTime += (instance_data[instance].fixedReplyDelayAnc >> 8);
947
948
  //this checks if to send a frame
949
  if((((ancToAncTWR & 1) == 0) && ((instance_data[instance].responseTO + instance_data[instance].shortAdd_idx) == NUM_EXPECTED_RESPONSES)) //it's our turn to tx
950
      || (sendResp == 1)) {
951
    //led_on(LED_PC9);
952
    //response is expected
953
    instance_data[instance].wait4ack = DWT_RESPONSE_EXPECTED; //re has/will be re-enabled
954
955
    dwt_setdelayedtrxtime(instance_data[instance].delayedReplyTime) ;
956
    if(dwt_starttx(DWT_START_TX_DELAYED | DWT_RESPONSE_EXPECTED)) {
957
      //if TX has failed - we need to re-enable RX for the next response or final reception...
958
      dwt_setrxaftertxdelay(0);
959
      instance_data[instance].wait4ack = 0; //clear the flag as the TX has failed the TRX is off
960
      instance_data[instance].lateTX++;
961
      instance_data[instance].delayedReplyTime += 2*(instance_data[instance].fixedReplyDelayAnc >> 8); //to take into account W4R
962
      ancenablerx();
963
      type_pend = DWT_SIG_RX_PENDING ;
964
    }
965
    else {
966
      instance_data[instance].delayedReplyTime += (instance_data[instance].fixedReplyDelayAnc >> 8); //to take into account W4R
967
      type_pend = DWT_SIG_TX_PENDING ; // exit this interrupt and notify the application/instance that TX is in progress.
968
      instance_data[instance].timeofTx = portGetTickCnt();
969
      instance_data[instance].monitor = 1;
970
    }
971
    //led_off(LED_PC9);
972
  }
973
  else {  //stay in receive
974
    if(sourceAddress == 0) { //we got here after RX error, as we don't need to TX, we just enable RX
975
      dwt_setrxtimeout(0);
976
      dwt_rxenable(DWT_START_RX_IMMEDIATE);
977
    }
978
    else{
979
      //led_on(LED_PC9);
980
      ancenablerx();
981
      //led_off(LED_PC9);
982
    }
983
984
    type_pend = DWT_SIG_RX_PENDING ;
985
  }
986
  //if time to send a response
987
988
  return type_pend;
989
}
990
991
/**
992
 * @brief this function handles frame error event, it will either signal TO or re-enable the receiver
993
 */
994
void handle_error_unknownframe(event_data_t dw_event){
995
  int instance = 0;
996
  //re-enable the receiver (after error frames as we are not using auto re-enable
997
  //for ranging application rx error frame is same as TO - as we are not going to get the expected frame
998
  if(instance_data[instance].mode == ANCHOR){
999
    //if we are participating in the ranging (i.e. Poll was received)
1000
    //and we get an rx error (in one of the responses)
1001
    //need to consider this as a timeout as we could be sending our response next and
1002
    //the applications needs to know to change the state
1003
    //
1004
    if(instance_data[instance].responseTO > 0){
1005
      instance_data[instance].responseTO--;
1006
1007
      //send a response or re-enable rx
1008
      dw_event.type_pend = anctxorrxreenable(0, 0);
1009
      dw_event.type = 0;
1010
      dw_event.type_save = 0x40 | DWT_SIG_RX_TIMEOUT;
1011
      dw_event.rxLength = 0;
1012
1013
      instance_putevent(dw_event, DWT_SIG_RX_TIMEOUT);
1014
    }
1015
    else{
1016
      dwt_setrxtimeout(0); //reconfigure the timeout
1017
      dwt_rxenable(DWT_START_RX_IMMEDIATE) ;
1018
    }
1019
  }
1020
  else if(instance_data[instance].mode == LISTENER){
1021
    dwt_rxenable(DWT_START_RX_IMMEDIATE) ;
1022
  }
1023
  else{
1024
    instance_data[instance].responseTO--; //got something (need to reduce timeout (for remaining responses))
1025
1026
    dw_event.type_pend = tagrxreenable(0); //check if receiver will be re-enabled or it's time to send the final
1027
    dw_event.type = 0;
1028
    dw_event.type_save = 0x40 | DWT_SIG_RX_TIMEOUT;
1029
    dw_event.rxLength = 0;
1030
1031
    instance_putevent(dw_event, DWT_SIG_RX_TIMEOUT);
1032
  }
1033
}
1034
1035
1036
/**
1037
 * @brief this function prepares and writes the anchor to anchor response frame into the TX buffer
1038
 * it is called after anchor receives a Poll from an anchor
1039
 */
1040
void ancprepareresponse2(uint16_t sourceAddress, uint8_t srcAddr_index, uint8_t fcode_index, uint8_t *frame){
1041
  uint16_t frameLength = 0;
1042
  uint8_t tof_idx = (sourceAddress) & 0x3 ;
1043
  int instance = 0;
1044
1045
  instance_data[instance].psduLength = frameLength = ANCH_RESPONSE_MSG_LEN + FRAME_CRTL_AND_ADDRESS_S + FRAME_CRC;
1046
  //set the destination address (copy source as this is a reply)
1047
  memcpy(&instance_data[instance].msg_f.destAddr[0], &frame[srcAddr_index], ADDR_BYTE_SIZE_S); //remember who to send the reply to (set destination address)
1048
  instance_data[instance].msg_f.sourceAddr[0] = instance_data[instance].eui64[0];
1049
  instance_data[instance].msg_f.sourceAddr[1] = instance_data[instance].eui64[1];
1050
  // Write calculated TOF into response message (get the previous ToF+range number from that anchor)
1051
  memcpy(&(instance_data[instance].msg_f.messageData[TOFR]), &instance_data[instance].tofAnc[tof_idx], 4);
1052
  instance_data[instance].msg_f.messageData[TOFRN] = instance_data[instance].rangeNumAAnc[tof_idx]; //get the previous range number
1053
1054
  instance_data[instance].rangeNumAAnc[tof_idx] = 0; //clear the entry
1055
  instance_data[instance].rangeNumAnc = frame[POLL_RNUM + fcode_index] ;
1056
  instance_data[instance].msg_f.seqNum = instance_data[instance].frameSN++;
1057
1058
  //set the delayed rx on time (the final message will be sent after this delay)
1059
  dwt_setrxaftertxdelay(instance_data[instance].ancRespRxDelay);  //units are 1.0256us - wait for wait4respTIM before RX on (delay RX)
1060
1061
  instance_data[instance].tagSleepCorrection = 0;
1062
  instance_data[instance].msg_f.messageData[RES_TAG_SLP0] = 0 ;
1063
  instance_data[instance].msg_f.messageData[RES_TAG_SLP1] = 0 ;
1064
1065
  instance_data[instance].msg_f.messageData[FCODE] = RTLS_DEMO_MSG_ANCH_RESP2; //message function code (specifies if message is a poll, response or other...)
1066
1067
  //write the TX data
1068
  dwt_writetxfctrl(frameLength, 0, 1);
1069
  dwt_writetxdata(frameLength, (uint8_t *)  &instance_data[instance].msg_f, 0) ;        // write the frame data
1070
1071
}
1072
1073
/**
1074
 * @brief this function prepares and writes the anchor to tag response frame into the TX buffer
1075
 * it is called after anchor receives a Poll from a tag
1076
 */
1077
void ancprepareresponse(uint16_t sourceAddress, uint8_t srcAddr_index, uint8_t fcode_index, uint8_t *frame, uint32_t uTimeStamp){
1078
  uint16_t frameLength = 0;
1079
  uint8_t tof_idx = (sourceAddress) & 0x7 ;
1080
  int instance = 0;
1081
1082
  instance_data[instance].psduLength = frameLength = ANCH_RESPONSE_MSG_LEN + FRAME_CRTL_AND_ADDRESS_S + FRAME_CRC;
1083
  memcpy(&instance_data[instance].msg_f.destAddr[0], &frame[srcAddr_index], ADDR_BYTE_SIZE_S); //remember who to send the reply to (set destination address)
1084
  instance_data[instance].msg_f.sourceAddr[0] = instance_data[instance].eui64[0];
1085
  instance_data[instance].msg_f.sourceAddr[1] = instance_data[instance].eui64[1];
1086
  // Write calculated TOF into response message (get the previous ToF+range number from that tag)
1087
  memcpy(&(instance_data[instance].msg_f.messageData[TOFR]), &instance_data[instance].tof[tof_idx], 4);
1088
  instance_data[instance].msg_f.messageData[TOFRN] = instance_data[instance].rangeNumA[tof_idx]; //get the previous range number
1089
1090
  instance_data[instance].rangeNumA[tof_idx] = 0; //clear after copy above...
1091
  instance_data[instance].rangeNum = frame[POLL_RNUM+fcode_index] ;
1092
  instance_data[instance].msg_f.seqNum = instance_data[instance].frameSN++;
1093
1094
  //we have our range - update the own mask entry...
1095
  if(instance_data[instance].tof[tof_idx] != INVALID_TOF) { //check the last ToF entry is valid and copy into the current array
1096
    instance_data[instance].rxResponseMask = (0x1 << instance_data[instance].shortAdd_idx);
1097
    instance_data[instance].tofArray[instance_data[instance].shortAdd_idx] = instance_data[instance].tof[tof_idx];
1098
  }
1099
  else        {  //reset response mask
1100
    instance_data[instance].tofArray[instance_data[instance].shortAdd_idx] = INVALID_TOF ;
1101
    instance_data[instance].rxResponseMask = 0;        //reset the mask of received responses when rx poll
1102
  }
1103
  //set the delayed rx on time (the final message will be sent after this delay)
1104
  dwt_setrxaftertxdelay(instance_data[instance].ancRespRxDelay);  //units are 1.0256us - wait for wait4respTIM before RX on (delay RX)
1105
1106
  //if this is gateway anchor - calculate the slot period correction
1107
  if(instance_data[instance].gatewayAnchor)  {
1108
    int error = 0;
1109
    int currentSlotTime = 0;
1110
    int expectedSlotTime = 0;
1111
    //find the time in the current superframe
1112
    currentSlotTime = uTimeStamp % instance_data[instance].sframePeriod;
1113
1114
    //this is the slot time the poll should be received in (Mask 0x07 for the 8 MAX tags we support in TREK)
1115
    expectedSlotTime = (sourceAddress&0xFF) * instance_data[instance].slotPeriod; //
1116
1117
    //error = expectedSlotTime - currentSlotTime
1118
    error = expectedSlotTime - currentSlotTime;
1119
1120
    if(error < (-(instance_data[instance].sframePeriod>>1))) { //if error is more negative than 0.5 period, add whole period to give up to 1.5 period sleep
1121
      instance_data[instance].tagSleepCorrection = (instance_data[instance].sframePeriod + error);
1122
    }
1123
    else { //the minimum Sleep time will be 0.5 period
1124
      instance_data[instance].tagSleepCorrection = error;
1125
    }
1126
    instance_data[instance].msg_f.messageData[RES_TAG_SLP0] = instance_data[instance].tagSleepCorrection & 0xFF ;
1127
    instance_data[instance].msg_f.messageData[RES_TAG_SLP1] = (instance_data[instance].tagSleepCorrection >> 8) & 0xFF;
1128
  }
1129
  else {
1130
    instance_data[instance].tagSleepCorrection = 0;
1131
    instance_data[instance].msg_f.messageData[RES_TAG_SLP0] = 0 ;
1132
    instance_data[instance].msg_f.messageData[RES_TAG_SLP1] = 0 ;
1133
  }
1134
  instance_data[instance].msg_f.messageData[FCODE] = RTLS_DEMO_MSG_ANCH_RESP; //message function code (specifies if message is a poll, response or other...)
1135
1136
  //write the TX data
1137
  dwt_writetxfctrl(frameLength, 0, 1);
1138
  dwt_writetxdata(frameLength, (uint8_t *)  &instance_data[instance].msg_f, 0) ;        // write the frame data
1139
}
1140
1141
/**
1142
 * @brief this is the receive event callback handler, the received event is processed and the instance either
1143
 * responds by sending a response frame or re-enables the receiver to await the next frame
1144
 * once the immediate action is taken care of the event is queued up for application to process
1145
 */
1146
#pragma GCC optimize ("O3")
1147
void instance_rxcallback(const dwt_cb_data_t *rxd){
1148
  int instance = 0;
1149
  uint8_t rxTimeStamp[5]  = {0, 0, 0, 0, 0};
1150
1151
  uint8_t rxd_event = 0;
1152
  uint8_t fcode_index  = 0;
1153
  uint8_t srcAddr_index = 0;
1154
  event_data_t dw_event;
1155
1156
  //microcontroller time at which we received the frame
1157
  dw_event.uTimeStamp = portGetTickCnt();
1158
1159
  //if we got a frame with a good CRC - RX OK
1160
  //  if(rxd->event == DWT_SIG_RX_OKAY) { // Timeout and error are handle separately in the driver itself
1161
  dw_event.rxLength = rxd->datalength;
1162
1163
  //need to process the frame control bytes to figure out what type of frame we have received
1164
  if(((rxd->fctrl[0] == 0x41) || (rxd->fctrl[0] == 0x61))
1165
      &&
1166
      ((rxd->fctrl[1] & 0xCC) == 0x88)) {  //short address
1167
    fcode_index = FRAME_CRTL_AND_ADDRESS_S; //function code is in first byte after source address
1168
    srcAddr_index = FRAME_CTRLP + ADDR_BYTE_SIZE_S;
1169
    rxd_event = DWT_SIG_RX_OKAY;
1170
  }
1171
  else {
1172
    rxd_event = SIG_RX_UNKNOWN; //not supported - all TREK1000 frames are short addressed
1173
  }
1174
1175
  //read RX timestamp
1176
  dwt_readrxtimestamp(rxTimeStamp) ;
1177
  dwt_readrxdata((uint8_t *)&dw_event.msgu.frame[0], rxd->datalength, 0);  // Read Data Frame
1178
  dw_event.timeStamp32l =  (uint32_t)rxTimeStamp[0] + ((uint32_t)rxTimeStamp[1] << 8) + ((uint32_t)rxTimeStamp[2] << 16) + ((uint32_t)rxTimeStamp[3] << 24);
1179
  dw_event.timeStamp = rxTimeStamp[4];
1180
  dw_event.timeStamp <<= 32;
1181
  dw_event.timeStamp += dw_event.timeStamp32l;
1182
  dw_event.timeStamp32h = ((uint32_t)rxTimeStamp[4] << 24) + (dw_event.timeStamp32l >> 8);
1183
1184
  dw_event.type = 0; //type will be added as part of adding to event queue
1185
  dw_event.type_save = rxd_event;
1186
  dw_event.type_pend = DWT_SIG_DW_IDLE;
1187
1188
  //if Listener then just report the received frame to the instance (application)
1189
  if(rxd_event == DWT_SIG_RX_OKAY) { //Process good/known frame types
1190
    uint16_t sourceAddress = (((uint16_t)dw_event.msgu.frame[srcAddr_index+1]) << 8) + dw_event.msgu.frame[srcAddr_index];
1191
1192
    if(instance_data[instance].mode != LISTENER)      {
1193
      if(instance_data[instance].mode == TAG) //if tag got a good frame - this is probably a response, but could also be some other non-ranging frame
1194
        //(although due to frame filtering this is limited as non-addressed frames are filtered out)
1195
      {
1196
        instance_data[instance].responseTO--; //got 1 more response or other RX frame - need to reduce timeout (for next response)
1197
      }
1198
1199
      //check if this is a TWR message (and also which one)
1200
      switch(dw_event.msgu.frame[fcode_index]){
1201
      //poll message from an anchor
1202
      case RTLS_DEMO_MSG_ANCH_POLL:{
1203
        //the anchor to anchor ranging poll frames are ignored by A0 and A3
1204
        if(instance_data[instance].gatewayAnchor || (instance_data[instance].instanceAddress16 > A2_ANCHOR_ADDR)){
1205
          //ignore poll from anchor 1 if gateway or anchor 3
1206
          //anchors 2 and 3 will never send polls
1207
          dw_event.type_pend = DWT_SIG_DW_IDLE ;
1208
          break;
1209
        }
1210
1211
        if(instance_data[instance].mode == TAG)  {  //tag should ignore any other Polls from anchors
1212
          instance_data[instance].responseTO++; //as will be decremented in the function and was also decremented above
1213
          handle_error_unknownframe(dw_event);
1214
          instance_data[instance].stopTimer = 1;
1215
          instance_data[instance].rxMsgCount++;
1216
          return;
1217
        }
1218
1219
        //update the response index and number of responses received tables
1220
        instance_data[instance].rxRespsIdx = (uint8_t) ((dw_event.msgu.frame[POLL_RNUM+fcode_index] & 0xf)
1221
            + (((sourceAddress&0x3) + 8) << 4));
1222
        instance_data[instance].rxResps[instance_data[instance].rxRespsIdx] = 0;
1223
        //debug LED on
1224
        //                                                led_on(LED_PC9);
1225
1226
        //prepare the response and write it to the tx buffer
1227
        ancprepareresponse2(sourceAddress, srcAddr_index, fcode_index, &dw_event.msgu.frame[0]);
1228
1229
        //A2 does not need timeout if ranging to A1
1230
        if(sourceAddress != A1_ANCHOR_ADDR){
1231
          dwt_setrxtimeout((uint16_t)instance_data[instance].fwtoTimeAnc_sy); //reconfigure the timeout for response
1232
        }
1233
1234
        //set the bast reply time (the actual will be Poll rx time + instance_data[0].fixedReplyDelayAnc)
1235
        instance_data[instance].delayedReplyTime = dw_event.timeStamp32h ;
1236
        instance_data[instance].responseTO = (instance_data[instance].instanceAddress16 - sourceAddress) & 0x3; //set number of expected responses
1237
1238
        dw_event.type_pend = anctxorrxreenable(instance_data[instance].instanceAddress16, 2+1);
1239
1240
        instance_data[instance].tofAnc[sourceAddress & 0x3] = INVALID_TOF; //clear ToF ..
1241
        //debug LED off
1242
        //                                                led_off(LED_PC9);
1243
        break;
1244
      }
1245
1246
      case RTLS_DEMO_MSG_TAG_POLL:{
1247
        if(instance_data[instance].mode == TAG) {  //tag should ignore any other Polls from tags
1248
          instance_data[instance].responseTO++; //as will be decremented in the function and was also decremented above
1249
          handle_error_unknownframe(dw_event);
1250
          instance_data[instance].stopTimer = 1;
1251
          instance_data[instance].rxMsgCount++;
1252
          return;
1253
        }
1254
        instance_data[instance].rxRespsIdx = (int8_t) ((dw_event.msgu.frame[POLL_RNUM+fcode_index] & 0xf)
1255
            + ((sourceAddress&0x7) << 4));
1256
        instance_data[instance].rxResps[instance_data[instance].rxRespsIdx] = 0;
1257
1258
        //prepare the response and write it to the tx buffer
1259
        ancprepareresponse(sourceAddress, srcAddr_index, fcode_index, &dw_event.msgu.frame[0], dw_event.uTimeStamp);
1260
1261
        dwt_setrxtimeout((uint16_t)instance_data[instance].fwtoTimeAnc_sy); //reconfigure the timeout for response
1262
1263
        instance_data[0].delayedReplyTime = dw_event.timeStamp32h /*+ (instance_data[0].fixedReplyDelayAnc >> 8)*/ ;
1264
        instance_data[instance].responseTO = NUM_EXPECTED_RESPONSES; //set number of expected responses to 3 (from other anchors)
1265
1266
        dw_event.type_pend = anctxorrxreenable(instance_data[instance].instanceAddress16, 2+0);
1267
1268
        instance_data[instance].tof[sourceAddress & 0x7] = INVALID_TOF; //clear ToF ..
1269
      }
1270
      break;
1271
1272
      //we got a response from a "responder" (anchor)
1273
      case RTLS_DEMO_MSG_ANCH_RESP:
1274
      case RTLS_DEMO_MSG_ANCH_RESP2:{
1275
1276
        //we are a tag
1277
        if(instance_data[instance].mode == TAG){
1278
          uint8_t index ;
1279
          instance_data[instance].rxResps[instance_data[instance].rangeNum]++;
1280
          dw_event.type_pend = tagrxreenable(sourceAddress); //responseTO decremented above...
1281
          index = RRXT0 + 5*(sourceAddress & 0x3);
1282
1283
          instance_data[instance].rxResponseMask |= (0x1 << (sourceAddress & 0x3)); //add anchor ID to the mask
1284
          // Write Response RX time field of Final message
1285
          memcpy(&(instance_data[instance].msg_f.messageData[index]), rxTimeStamp, 5);
1286
1287
        }
1288
        else if (instance_data[instance].mode == ANCHOR_RNG) {  //A0 and A1 only when ranging to other anchors
1289
          uint8_t index ;
1290
          instance_data[instance].rxResps[instance_data[instance].rangeNumAnc]++;
1291
          dw_event.type_pend = ancsendfinalorrxreenable(sourceAddress);
1292
          index = RRXT0 + 5*(sourceAddress & 0x3);
1293
1294
          instance_data[instance].rxResponseMaskAnc |= (0x1 << (sourceAddress & 0x3)); //add anchor ID to the mask
1295
          // Write Response RX time field of Final message
1296
          memcpy(&(instance_data[instance].msg_f.messageData[index]), rxTimeStamp, 5);
1297
        }
1298
        else { //normal anchor mode
1299
          //got a response... (check if we got a Poll with the same range number as in this response)
1300
          if(RTLS_DEMO_MSG_ANCH_RESP == dw_event.msgu.frame[fcode_index]){
1301
            if((instance_data[instance].rxResps[instance_data[instance].rxRespsIdx] >= 0) //we got the poll else ignore this response
1302
                && (instance_data[instance].responseTO > 0)        ) {  //if responseTO == 0 we have already received all of the responses - meaning should not be here => error
1303
              instance_data[instance].rxResps[instance_data[instance].rxRespsIdx]++; //increment the number of responses received
1304
              instance_data[instance].responseTO--;
1305
1306
              //send a response or re-enable rx
1307
              dw_event.type_pend = anctxorrxreenable(sourceAddress, 4+0);
1308
            }
1309
            else {  //like a timeout (error) ...
1310
1311
              //send a response or re-enable rx
1312
              dwt_setrxtimeout(0); //reconfigure the timeout
1313
              dwt_rxenable(DWT_START_RX_IMMEDIATE) ;
1314
              dw_event.type_pend = DWT_SIG_RX_PENDING ;
1315
            }
1316
          }
1317
          else {  //in anchor mode and got RTLS_DEMO_MSG_ANCH_RESP2
1318
            if((instance_data[instance].gatewayAnchor) &&
1319
                (instance_data[instance].rxResps[instance_data[instance].rangeNumAnc]) == 2){ //got two responses A1 and A2 this is third (A2's to A1)
1320
              instance_data[instance].rxResps[instance_data[instance].rangeNumAnc]++;
1321
              instance_data[instance].rxResponseMaskAnc |= 0x8 ;
1322
1323
              dw_event.type_pend = anctxorrxreenable(sourceAddress, 4+1); //re-enable the RX
1324
            }
1325
            //A2 got A1's response to A0 - send A2 response (but only if we got the Poll from A0)
1326
            else if((instance_data[instance].instanceAddress16 == A2_ANCHOR_ADDR) &&
1327
                (instance_data[instance].rxResps[instance_data[instance].rxRespsIdx] >= 0) ){
1328
              instance_data[instance].rxResps[instance_data[instance].rxRespsIdx]++;
1329
              instance_data[instance].responseTO--;
1330
1331
              dwt_setrxtimeout(0);
1332
              dwt_setrxaftertxdelay(0); //clear rx on delay as Final will come sooner than if we were waiting for next Response
1333
              dw_event.type_pend = anctxorrxreenable(sourceAddress, 1);
1334
            }
1335
            else {  // if other anchor A1, A2, A3 .. ignore these responses when in ANCHOR mode
1336
              dwt_setrxtimeout(0); //reconfigure the timeout
1337
              dwt_rxenable(DWT_START_RX_IMMEDIATE) ;
1338
              dw_event.type_pend = DWT_SIG_RX_PENDING ;
1339
            }
1340
          }
1341
        }
1342
1343
      }
1344
      break;
1345
1346
      case RTLS_DEMO_MSG_TAG_FINAL:
1347
      case RTLS_DEMO_MSG_ANCH_FINAL:
1348
        if(instance_data[instance].mode == TAG) {  //tag should ignore any other Final from anchors
1349
          instance_data[instance].responseTO++; //as will be decremented in the function and was also decremented above
1350
          handle_error_unknownframe(dw_event);
1351
          instance_data[instance].stopTimer = 1;
1352
          instance_data[instance].rxMsgCount++;
1353
          return;
1354
        }
1355
      break;  // TODO: fallthourgh for anchor
1356
//        __attribute__ ((fallthrough));
1357
1358
        //if anchor fall into case below and process the frame
1359
      default: {  //process rx frame
1360
        dw_event.type_pend = DWT_SIG_DW_IDLE;
1361
      }
1362
      break;
1363
1364
      }
1365
    }//end of if not Listener mode
1366
    instance_data[instance].stopTimer = 1;
1367
1368
    instance_putevent(dw_event, rxd_event);
1369
1370
    instance_data[instance].rxMsgCount++;
1371
  }
1372
  else { //if (rxd_event == SIG_RX_UNKNOWN) //need to re-enable the rx (got unknown frame type)
1373
    handle_error_unknownframe(dw_event);
1374
  }
1375
  //  }
1376
}
1377
1378
1379
/*TODO: Callback funtion for RX timeout (available from newer driver version) */
1380
#pragma GCC optimize ("O3")
1381
void instance_rxtimeoutcallback(const dwt_cb_data_t *rxd){
1382
1383
    (void) rxd;
1384
    event_data_t dw_event;
1385
1386
    int instance = 0;
1387
1388
    dw_event.type_pend = DWT_SIG_DW_IDLE;
1389
1390
    if(instance_data[instance].mode == ANCHOR) {
1391
        //check if anchor has received all of the responses from other anchors (it could have received only 1 or 2)
1392
        //it's timed out (re-enable rx or tx response)
1393
        if(instance_data[instance].responseTO > 0) {
1394
            instance_data[instance].responseTO--;
1395
            //send a response or re-enable rx
1396
            dw_event.type_pend = anctxorrxreenable(instance_data[instance].instanceAddress16, 6+0);
1397
//          Print_On_Uart("Re-enable RX in rxtimeout callback\r\n");
1398
        }
1399
    }
1400
    dw_event.type = 0;
1401
    dw_event.type_save = DWT_SIG_RX_TIMEOUT;
1402
    dw_event.rxLength = 0;
1403
    dw_event.timeStamp = 0;
1404
    dw_event.timeStamp32l = 0;
1405
    dw_event.timeStamp32h = 0;
1406
1407
    instance_putevent(dw_event, DWT_SIG_RX_TIMEOUT);
1408
//  printf("RX timeout while in %d\n", instance_data[instance].testAppState);
1409
1410
}
1411
1412
1413
/*TODO: Callback funtion for RX error (available from newer driver version) */
1414
#pragma GCC optimize ("O3")
1415
void instance_rxerrorcallback(const dwt_cb_data_t *rxd) {
1416
1417
    (void) rxd;
1418
    event_data_t dw_event;
1419
1420
    dw_event.uTimeStamp = portGetTickCnt();
1421
1422
    handle_error_unknownframe(dw_event);
1423
}
1424
1425
1426
1427
#pragma GCC optimize ("O3")
1428
int instance_peekevent(void){
1429
  int instance = 0;
1430
  return instance_data[instance].dwevent[instance_data[instance].dweventPeek].type; //return the type of event that is in front of the queue
1431
}
1432
1433
#pragma GCC optimize ("O3")
1434
void instance_saveevent(event_data_t newevent, uint8_t etype){
1435
  int instance = 0;
1436
1437
  instance_data[instance].saved_dwevent = newevent;
1438
  instance_data[instance].saved_dwevent.type = etype;
1439
}
1440
1441
#pragma GCC optimize ("O3")
1442
event_data_t instance_getsavedevent(void){
1443
  int instance = 0;
1444
1445
  return instance_data[instance].saved_dwevent;
1446
}
1447
1448
#pragma GCC optimize ("O3")
1449
void instance_putevent(event_data_t newevent, uint8_t etype){
1450
  int instance = 0;
1451
  //newevent.eventtime = portGetTickCnt();
1452
  newevent.gotit = 0 ; //newevent.eventtimeclr = 0;
1453
1454
  //copy event
1455
  instance_data[instance].dwevent[instance_data[instance].dweventIdxIn] = newevent;
1456
1457
  //set type - this makes it a new event (making sure the event data is copied before event is set as new)
1458
  //to make sure that the get event function does not get an incomplete event
1459
  instance_data[instance].dwevent[instance_data[instance].dweventIdxIn].type = etype;
1460
1461
  instance_data[instance].dweventIdxIn++;
1462
1463
  if(MAX_EVENT_NUMBER == instance_data[instance].dweventIdxIn)
1464
  {
1465
    instance_data[instance].dweventIdxIn = 0;
1466
  }
1467
  //eventIncount++;
1468
1469
  //printf("put %d - in %d out %d @ %d\n", newevent.type, instance_data[instance].dweventCntIn, instance_data[instance].dweventCntOut, ptime);
1470
}
1471
1472
event_data_t dw_event_g;
1473
1474
#pragma GCC optimize ("O3")
1475
event_data_t* instance_getevent(int x){
1476
  int instance = 0;
1477
  int indexOut = instance_data[instance].dweventIdxOut;
1478
1479
  //dw_event_g = instance_data[instance].dwevent[instance_data[instance].dweventCntOut]; //this holds any TX/RX events
1480
1481
  //memcpy(&dw_event_g, &instance_data[instance].dwevent[instance_data[instance].dweventCntOut], sizeof(event_data_t));
1482
1483
  if(instance_data[instance].dwevent[indexOut].type == 0) {  //exit with "no event"
1484
    dw_event_g.type = 0;
1485
    dw_event_g.type_save = 0;
1486
    return &dw_event_g;
1487
  }
1488
1489
  //copy the event
1490
  dw_event_g.type_save = instance_data[instance].dwevent[indexOut].type_save ;
1491
  dw_event_g.type_pend = instance_data[instance].dwevent[indexOut].type_pend ;
1492
  dw_event_g.rxLength = instance_data[instance].dwevent[indexOut].rxLength ;
1493
  dw_event_g.timeStamp = instance_data[instance].dwevent[indexOut].timeStamp ;
1494
  dw_event_g.timeStamp32l = instance_data[instance].dwevent[indexOut].timeStamp32l ;
1495
  dw_event_g.timeStamp32h = instance_data[instance].dwevent[indexOut].timeStamp32h ;
1496
  dw_event_g.uTimeStamp = instance_data[instance].dwevent[indexOut].uTimeStamp ;
1497
  //dw_event_g.eventtime = instance_data[instance].dwevent[indexOut].eventtime ;
1498
  //dw_event_g.eventtimeclr = instance_data[instance].dwevent[indexOut].eventtimeclr ;
1499
  //dw_event_g.gotit = instance_data[instance].dwevent[indexOut].gotit ;
1500
1501
  memcpy(&dw_event_g.msgu, &instance_data[instance].dwevent[indexOut].msgu, sizeof(instance_data[instance].dwevent[indexOut].msgu));
1502
1503
  dw_event_g.type = instance_data[instance].dwevent[indexOut].type ;
1504
1505
1506
  instance_data[instance].dwevent[indexOut].gotit = x;
1507
1508
  //instance_data[instance].dwevent[indexOut].eventtimeclr = portGetTickCnt();
1509
1510
  instance_data[instance].dwevent[indexOut].type = 0; //clear the event
1511
1512
  instance_data[instance].dweventIdxOut++;
1513
  if(MAX_EVENT_NUMBER == instance_data[instance].dweventIdxOut){   //wrap the counter
1514
    instance_data[instance].dweventIdxOut = 0;
1515
  }
1516
  instance_data[instance].dweventPeek = instance_data[instance].dweventIdxOut; //set the new peek value
1517
1518
  //if(dw_event.type) printf("get %d - in %d out %d @ %d\n", dw_event.type, instance_data[instance].dweventCntIn, instance_data[instance].dweventCntOut, ptime);
1519
1520
  //eventOutcount++;
1521
1522
1523
  return &dw_event_g;
1524
}
1525
1526
void instance_clearevents(void){
1527
  int i = 0;
1528
  int instance = 0;
1529
1530
  for(i=0; i<MAX_EVENT_NUMBER; i++) {
1531
    memset(&instance_data[instance].dwevent[i], 0, sizeof(event_data_t));
1532
  }
1533
1534
  instance_data[instance].dweventIdxIn = 0;
1535
  instance_data[instance].dweventIdxOut = 0;
1536
  instance_data[instance].dweventPeek = 0;
1537
1538
  //eventOutcount = 0;
1539
  //eventIncount = 0;
1540
}
1541
1542
// -------------------------------------------------------------------------------------------------------------------
1543
#pragma GCC optimize ("O3")
1544
int instance_run(void){
1545
  int instance = 0 ;
1546
  int done = INST_NOT_DONE_YET;
1547
  int message = instance_peekevent(); //get any of the received events from ISR
1548
1549
1550
  while(done == INST_NOT_DONE_YET){
1551
    //int state = instance_data[instance].testAppState;
1552
    done = testapprun(&instance_data[instance], message) ;                                               // run the communications application
1553
1554
    //we've processed message
1555
    message = 0;
1556
  }
1557
1558
1559
1560
  if(done == INST_DONE_WAIT_FOR_NEXT_EVENT_TO) { //we are in RX and need to timeout (Tag needs to send another poll if no Rx frame)
1561
    if(instance_data[instance].mode == TAG) { //Tag (is either in RX or sleeping)
1562
      int32_t nextPeriod ;
1563
1564
      // next period will be a positive number because correction is -0.5 to +1.5 periods, (and tagSleepTime_ms is the period)
1565
      nextPeriod = instance_data[instance].tagSleepRnd + instance_data[instance].tagSleepTime_ms + instance_data[instance].tagSleepCorrection;
1566
1567
      instance_data[instance].nextSleepPeriod = (uint32_t) nextPeriod ; //set timeout time, CAST the positive period to UINT for correct wrapping.
1568
      instance_data[instance].tagSleepCorrection2 = instance_data[instance].tagSleepCorrection;
1569
      instance_data[instance].tagSleepCorrection = 0; //clear the correction
1570
      instance_data[instance].instanceTimerEn = 1; //start timer
1571
    }
1572
    instance_data[instance].stopTimer = 0 ; //clear the flag - timer can run if instancetimer_en set (set above)
1573
    instance_data[instance].done = INST_NOT_DONE_YET;
1574
  }
1575
1576
  //check if timer has expired
1577
  if((instance_data[instance].instanceTimerEn == 1) && (instance_data[instance].stopTimer == 0))  {
1578
    if(instance_data[instance].mode == TAG)    {
1579
      if((portGetTickCnt() - instance_data[instance].instanceWakeTime) > instance_data[instance].nextSleepPeriod)      {
1580
        event_data_t dw_event;
1581
        instance_data[instance].instanceTimerEn = 0;
1582
        dw_event.rxLength = 0;
1583
        dw_event.type = 0;
1584
        dw_event.type_save = 0x80 | DWT_SIG_RX_TIMEOUT;
1585
        //printf("PC timeout DWT_SIG_RX_TIMEOUT\n");
1586
        instance_putevent(dw_event, DWT_SIG_RX_TIMEOUT);
1587
      }
1588
    }
1589
#if (ANCTOANCTWR == 1) //allow anchor to anchor ranging
1590
    else if(instance_data[instance].mode == ANCHOR)    {
1591
      uint32_t slotTime = portGetTickCnt() % instance_data[instance].sframePeriod;
1592
1593
      if(instance_data[instance].gatewayAnchor) {
1594
        //if we are in the last slot - then A0 ranges to A1 and A2
1595
        if( slotTime >= instance_data[instance].a0SlotTime)        {
1596
          port_DisableEXT_IRQ(); //enable ScenSor IRQ before starting
1597
          //anchor0 sends poll to anchor1
1598
          instance_data[instance].mode = ANCHOR_RNG; //change to ranging initiator
1599
          dwt_forcetrxoff(); //disable DW1000
1600
          instance_clearevents(); //clear any events
1601
          //change state to send a Poll
1602
          instance_data[instance].testAppState = TA_TXPOLL_WAIT_SEND ;
1603
          instance_data[instance].msg_f.destAddr[0] = 0x1 ;
1604
          instance_data[instance].msg_f.destAddr[1] = (GATEWAY_ANCHOR_ADDR >> 8);
1605
          instance_data[instance].instanceTimerEn = 0;
1606
          instance_data[instance].rangeNumAnc++;
1607
          port_EnableEXT_IRQ(); //enable ScenSor IRQ before starting
1608
        }
1609
      }
1610
      else if (instance_data[instance].instanceAddress16 == A1_ANCHOR_ADDR) { //A1 ranges to A2 in the 2nd half of last slot
1611
        if(portGetTickCnt() >= instance_data[instance].a1SlotTime) {
1612
          port_DisableEXT_IRQ(); //enable ScenSor IRQ before starting
1613
          //anchor1 sends poll to anchor2
1614
          instance_data[instance].mode = ANCHOR_RNG; //change to ranging initiator
1615
          dwt_forcetrxoff(); //disable DW1000
1616
          instance_clearevents(); //clear any events
1617
          //change state to send a Poll
1618
          instance_data[instance].testAppState = TA_TXPOLL_WAIT_SEND ;
1619
          instance_data[instance].msg_f.destAddr[0] = 0x2 ;
1620
          instance_data[instance].msg_f.destAddr[1] = (GATEWAY_ANCHOR_ADDR >> 8);
1621
1622
          instance_data[instance].instanceTimerEn = 0;
1623
          //instance_data[instance].a1SlotTime = 0;
1624
          port_EnableEXT_IRQ(); //enable ScenSor IRQ before starting
1625
        }
1626
      }
1627
    }
1628
#endif
1629
  }
1630
1631
#if (ANCTOANCTWR == 1) //allow anchor to anchor ranging
1632
  else if (instance_data[instance].instanceTimerEn == 0){
1633
    if((instance_data[instance].mode == ANCHOR) && (instance_data[instance].gatewayAnchor)){
1634
      uint32_t slotTime = portGetTickCnt() % instance_data[instance].sframePeriod;
1635
      //enable the timer in 1st slot
1636
      if(slotTime < instance_data[instance].slotPeriod){
1637
        instance_data[instance].instanceTimerEn = 1;
1638
      }
1639
    }
1640
  }
1641
#endif
1642
  return 0 ;
1643
}
1644
1645
1646
void instance_close(void){
1647
  //wake up device from low power mode
1648
  //NOTE - in the ARM  code just drop chip select for 200us
1649 4172c48d Cung Sang
  clear_SPI_chip_select();  //CS low
1650 69a601a5 Cung Sang
  Sleep(1);   //200 us to wake up then waits 5ms for DW1000 XTAL to stabilise
1651 4172c48d Cung Sang
  set_SPI_chip_select();  //CS high
1652 69a601a5 Cung Sang
  Sleep(5);
1653
  dwt_entersleepaftertx(0); // clear the "enter deep sleep after tx" bit
1654
  dwt_setinterrupt(0xFFFFFFFF, 0); //don't allow any interrupts
1655
1656
}
1657
1658
1659
void instance_notify_DW1000_inIDLE(int idle){
1660
  instance_data[0].dwIDLE = idle;
1661
}
1662
1663
void instanceconfigtxpower(uint32_t txpower){
1664
  instance_data[0].txPower = txpower ;
1665
1666
  instance_data[0].txPowerChanged = 1;
1667
1668
}
1669
1670
void instancesettxpower(void){
1671
  if(instance_data[0].txPowerChanged == 1){
1672
    //Configure TX power
1673
    dwt_write32bitreg(0x1E, instance_data[0].txPower);
1674
1675
    instance_data[0].txPowerChanged = 0;
1676
  }
1677
}
1678
1679
void instanceconfigantennadelays(uint16_t tx, uint16_t rx){
1680
  instance_data[0].txAntennaDelay = tx ;
1681
  instance_data[0].rxAntennaDelay = rx ;
1682
1683
  instance_data[0].antennaDelayChanged = 1;
1684
}
1685
1686
void instancesetantennadelays(void){
1687
  if(instance_data[0].antennaDelayChanged == 1){
1688
    dwt_setrxantennadelay(instance_data[0].rxAntennaDelay);
1689
    dwt_settxantennadelay(instance_data[0].txAntennaDelay);
1690
1691
    instance_data[0].antennaDelayChanged = 0;
1692
  }
1693
}
1694
1695
1696
uint16_t instancetxantdly(void){
1697
  return instance_data[0].txAntennaDelay;
1698
}
1699
1700
uint16_t instancerxantdly(void){
1701
  return instance_data[0].rxAntennaDelay;
1702
}
1703
1704
uint8_t instancevalidranges(void){
1705
  uint8_t x = instance_data[0].rxResponseMaskReport;
1706
  instance_data[0].rxResponseMaskReport = 0; //reset mask as we have printed out the ToFs
1707
  return x;
1708
}
1709
#endif
1710
1711
1712
/*! TODO: the following Functions are added for user application (previously on the API )*/
1713
1714
/*! ------------------------------------------------------------------------------------------------------------------
1715
 * @fn dwt_getotptxpower()
1716
 *
1717
 * @brief This API function returns the tx power value read from OTP memory as part of initialisation
1718
 *
1719
 * input parameters
1720
 * @param prf   -   this is the PRF e.g. DWT_PRF_16M or DWT_PRF_64M
1721
 * @param chan  -   this is the channel e.g. 1 to 7
1722
 *
1723
 * output parameters
1724
 *
1725
 * returns tx power value for a given PRF and channel
1726
 */
1727
uint32_t dwt_getotptxpower(uint8_t prf, uint8_t chan){
1728
    return platformLocalData.txPowCfg[(prf - DWT_PRF_16M) + (chan_idx[chan] * 2)];
1729
}
1730
1731
/*! ------------------------------------------------------------------------------------------------------------------
1732
 * @fn dwt_getTREKOTPantennadelay()
1733
 *
1734
 * @brief This API function returns the antenna delay read from the OTP memory as part of device initialisation
1735
 * Note: the antenna delay will only be read if dwt_initialise is called with DWT_LOADANTDLY bit set in the config parameter
1736
 * The values of antenna delay are only valid for TREK use case modes.
1737
 *
1738
 * input parameters:
1739
 * @param anchor   - this is the mode (Tag or Anchor) if Tag set to 0, if Anchor set to 1
1740
 * @param chan   - this is the channel (1, 2, 3, 4, 5, 7)
1741
 * @param datarate   - this is the datarate DWT_BR_6M8, DWT_BR_110K or DWT_BR_850K
1742
 *
1743
 */
1744
uint16_t dwt_getTREKOTPantennadelay(uint8_t anchor, uint8_t chan, uint8_t datarate){
1745
    uint32_t dly = 0;
1746
1747
    // 32-bit antenna delay value previously read from OTP, high 16 bits is value for Anchor mode, low 16-bits for Tag mode
1748
    switch(chan){
1749
        case 2:
1750
            if(datarate == DWT_BR_6M8)
1751
                dly = platformLocalData.antennaCals[0];
1752
            else if(datarate == DWT_BR_110K)
1753
                dly = platformLocalData.antennaCals[1];
1754
            break;
1755
        case 5:
1756
            if(datarate == DWT_BR_6M8)
1757
                dly = platformLocalData.antennaCals[2];
1758
            else if(datarate == DWT_BR_110K)
1759
                dly = platformLocalData.antennaCals[3];
1760
            break;
1761
        default:
1762
            dly = 0;
1763
            break;
1764
    }
1765
1766
    return (dly >> (16*(anchor & 0x1))) & 0xFFFF;
1767
}
1768
1769
/*! ------------------------------------------------------------------------------------------------------------------
1770
 * @fn dwt_readantennadelay()
1771
 *
1772
 * @brief This API function returns the antenna delay read from the OTP memory as part of device initialisation
1773
 * Note: the antenna delay will only be read if dwt_initialise is called with DWT_LOADANTDLY bit set in the config parameter
1774
 *
1775
 * input parameters:
1776
 * @param prf   -   this is the PRF e.g. DWT_PRF_16M or DWT_PRF_64M
1777
 *
1778
 */
1779
uint16_t dwt_readantennadelay(uint8_t prf){
1780
    // 32-bit antenna delay value previously read from OTP, high 16 bits is value for 64 MHz PRF, low 16-bits for 16 MHz PRF
1781
    return (platformLocalData.antennaDly >> (16*(prf-DWT_PRF_16M))) & 0xFFFF;
1782
}
1783
1784
1785
/* ==========================================================
1786

1787
Notes:
1788

1789
Previously code handled multiple instances in a single console application
1790

1791
Now have changed it to do a single instance only. With minimal code changes...(i.e. kept [instance] index but it is always 0.
1792

1793
Windows application should call instance_init() once and then in the "main loop" call instance_run().
1794

1795
*/
1796
1797
#endif /* defined(AMIROLLD_CFG_DW1000) && (AMIROLLD_CFG_DW1000 == 1) */