Statistics
| Branch: | Tag: | Revision:

amiro-os / include / amiro / Constants.h @ 25388c2f

History | View | Annotate | Download (8.415 KB)

1 58fe0e0b Thomas Schöpping
#ifndef AMIRO_CONSTANTS_H_
2
#define AMIRO_CONSTANTS_H_
3
4
/*! \brief Constants regarding the AMiRo platform
5
 *
6
 *  This header contains constant variables
7
 *  regarding the AMiRo platform, which means that
8
 *  these values do not change during runtime.
9
 *  Constants are e.g. physical ones like seconds per minute
10
 *  or geometrical ones like the circumference of wheel.
11
 *  All physical constants (therefore all values with a
12
 *  physical unit) are implicitly in µ iff the variable
13
 *  is of type integer, unless it is explicitly named in
14
 *  the variable.
15
 *  All physical constants (therefore all values with a
16
 *  physical unit) are implicitly without prefix (e.g. µ)
17
 *  iff the variable is of type float, unless it is
18
 *  explicitly named in the variable. The SI prefix is
19
 *  used, iff the variable is of type float and therefor
20
 *  in SI units.
21
 */
22
23
#include <math.h>
24
#include <stdint.h>
25
26
/* CAN_* defines start */
27
28
/** \brief Controller Area Network specific defines
29
 *
30
 * These CAN_* defines are used in ControllerAreaNetworkRx.h
31
 * and ControllerAreaNetworkTx.h
32
 */
33
34
/* CAN_* defines end */
35
36
namespace amiro {
37
38
namespace CAN {
39
40 8dbafe16 Thomas Schöpping
  const uint32_t UPDATE_PERIOD        = US2ST(62500);  // 16 Hz
41 58fe0e0b Thomas Schöpping
42
  const uint32_t PERIODIC_TIMER_ID         = 1;
43
  const uint32_t RECEIVED_ID               = 2;
44
45
  const uint32_t BOARD_ID_SHIFT            = 0x00u;
46
  const uint32_t BOARD_ID_MASK             = 0x07u;
47
  const uint32_t DEVICE_ID_SHIFT           = 0x03u;
48
  const uint32_t DEVICE_ID_MASK            = 0xFFu;
49
  const uint32_t INDEX_ID_SHIFT            = 0x03u;
50
  const uint32_t INDEX_ID_MASK             = 0x07u;
51
52
  const uint32_t DI_WHEEL_DRIVE_ID         = 1;
53
  const uint32_t POWER_MANAGEMENT_ID       = 2;
54
  const uint32_t LIGHT_RING_ID             = 3;
55
  const uint32_t COGNITION                 = 4;
56
57 b4885314 Thomas Schöpping
  const uint32_t MAGNETOMETER_X_ID         = 0x54;
58
  const uint32_t MAGNETOMETER_Y_ID         = 0x55;
59
  const uint32_t MAGNETOMETER_Z_ID         = 0x56;
60
  const uint32_t GYROSCOPE_ID              = 0x58;
61 58fe0e0b Thomas Schöpping
  const uint32_t PROXIMITY_FLOOR_ID        = 0x51;
62
  const uint32_t ODOMETRY_ID               = 0x50;
63
  const uint32_t BRIGHTNESS_ID             = 0x40;
64
  inline constexpr uint32_t COLOR_ID(uint32_t index)             {return 0x38 | ((index) & 0x7);}
65
  inline constexpr uint32_t PROXIMITY_RING_ID(uint32_t index)    {return 0x30 | ((index) & 0x7);}
66 25388c2f Georg Alberding
  const uint32_t SET_LINE_FOLLOW_SPEED     = 0x23;
67 58fe0e0b Thomas Schöpping
  const uint32_t SET_KINEMATIC_CONST_ID    = 0x22;
68
  const uint32_t TARGET_POSITION_ID        = 0x21;
69
  const uint32_t ACTUAL_SPEED_ID           = 0x20;
70
  const uint32_t SET_ODOMETRY_ID           = 0x12;
71
  const uint32_t TARGET_RPM_ID             = 0x11;
72
  const uint32_t TARGET_SPEED_ID           = 0x10;
73
  const uint32_t POWER_STATUS_ID           = 0x60;
74
  const uint32_t ROBOT_ID                  = 0x48;
75
  inline constexpr uint32_t SHELL_QUERY_ID(uint8_t index)        {return 0x70 | ((index) & 0x7);}
76
  inline constexpr uint32_t SHELL_REPLY_ID(uint8_t index)        {return 0x78 | ((index) & 0x7);}
77
  const uint32_t BROADCAST_SHUTDOWN        = 0x80u;
78
79
  const uint32_t CALIBRATE_PROXIMITY_FLOOR = 0x81u;
80
  const uint32_t CALIBRATE_PROXIMITY_RING  = 0x82u;
81
82
  const uint32_t SHUTDOWN_MAGIC            = 0xAA55u;
83
}
84
85
namespace constants {
86
87
  /** \brief Amount of seconds per minute */
88
  const int32_t secondsPerMinute = 60;
89
90
  /** \brief Amount of minutes per hour */
91
  const int32_t minutesPerHour = 60;
92
93
  /** \brief Amount of milliseconds per second */
94
  const int32_t millisecondsPerSecond = 1000;
95
96
  /* Several definitions of PI */
97
  constexpr float    PI   = float(M_PI);                /**< PI approximated with single precision floating point */
98
  constexpr uint32_t PIe9 = (M_PI * 1000000000) + 0.5f; /**< PI approximated with 32-bit integer and multiplied by factor 1e9 */
99
  constexpr uint32_t PIe6 = (M_PI * 1000000) + 0.5f;    /**< PI approximated with 32-bit integer and multiplied by factor 1e6 */
100
  constexpr uint16_t PIe3 = (M_PI * 1000) + 0.5f;       /**< PI approximated with 16-bit integer and multiplied by factor 1e3 */
101
  constexpr uint16_t PIe2 = (M_PI * 100) + 0.5f;        /**< PI approximated with 16-bit integer and multiplied by factor 1e2 */
102
  constexpr uint8_t  PIe1 = (M_PI * 10) + 0.5f;         /**< PI approximated with 8-bit integer and multiplied by factor 1e1 */
103
  constexpr uint8_t  PIe0 = (M_PI * 1) + 0.5f;          /**< PI approximated with 8-bit integer and multiplied by factor 1e0 */
104
105
namespace LightRing {
106
107
  /** \brief Index of the top LEDs
108
   *
109
   * Top view of the AMiRo top LEDs and their indices:
110
   *   _______
111
   *  / 7 F 0 \
112
   * |6       1|
113
   * |5       2|
114
   *  \_4_B_3_/
115
   */
116
  enum ledIndex : uint8_t {
117
    LED_BL = 4, LED_BACK_LEFT = 4, LED_SSW = 4, LED_SOUTH_SOUTHWEST = 4,
118
    LED_LB = 5, LED_LEFT_BACK = 5, LED_WSW = 5, LED_WEST_SOUTHWEST = 5,
119
    LED_LF = 6, LED_LEFT_FRONT = 6, LED_WNW = 6, LED_WEST_NORTHWEST = 6,
120
    LED_FL = 7, LED_FRONT_LEFT = 7, LED_NNW = 7, LED_NORTH_NORTHWEST = 7,
121
    LED_FR = 0, LED_FRONT_RIGHT = 0, LED_NNE = 0, LED_NORTH_NORTHEAST = 0,
122
    LED_RF = 1, LED_RIGHT_FRONT = 1, LED_ENE = 1, LED_EAST_NORTHEAST = 1,
123
    LED_RB = 2, LED_RIGHT_BACK = 2, LED_ESE = 2, LED_EAST_SOUTHEAST = 2,
124
    LED_BR = 3, LED_BACK_RIGHT = 3, LED_SSE = 3, LED_SOUTH_SOUTHEAST = 3
125
  };
126
}
127
128
namespace DiWheelDrive {
129
130
  /** \brief Distance between wheels in meter */
131
  const float wheelBaseDistanceSI = 0.069f;
132
133
  /** \brief Distance between wheels in micrometer */
134
  const int32_t wheelBaseDistance = wheelBaseDistanceSI * 1e6;
135
136
  /** \brief Wheel diameter in meter */
137
  const float wheelDiameterSI = 0.05571f;
138
139
  /** \brief Wheel diameter */
140
  const int32_t wheelDiameter = wheelDiameterSI * 1e6;
141
142
  /** \brief Wheel circumference in meter */
143
  const float wheelCircumferenceSI = M_PI * wheelDiameterSI;
144
145
  /** \brief Wheel circumference in micrometer */
146
  const int32_t wheelCircumference = wheelCircumferenceSI * 1e6;
147
148
  /** \brief Wheel error in meter (topview left:0, right:1) */
149
  const float wheelErrorSI[2] = {0.1, 0.1};
150
151
  /** \brief Wheel error in meter (topview left:0, right:1) */
152
  const int32_t wheelError[2] = {(int32_t) (wheelErrorSI[0] * 1e6), (int32_t) (wheelErrorSI[1] * 1e6)};
153
154
  /** \brief Motor increments per revolution
155
   *
156
   *  The increments are produced by 2 channels á 16
157
   *  pulses per revolution with respect to the rising
158
   *  and falling signal => 2*2*16 pulses/revolution.
159
   *  The gearbox is 22:1 => 2*2*16*22 pulses/revolution
160
   */
161
  const int32_t incrementsPerRevolution = 2 * 2 * 16 * 22;
162
163
  /** \brief Index of the proximity sensors
164
   *
165
   * Bottom view of the AMiRo sensors and their indices (F:Front, B:Back):
166
   *  _____
167
   * / 0F3 \
168
   * |1   2|
169
   * \__B__/
170
   */
171
  enum proximitySensorIdx : uint8_t {
172
    PROX_WL = 2, PROX_LW = 2, PROX_WHEEL_LEFT = 2, PROX_LEFT_WHEEL = 2,
173
    PROX_FL = 3, PROX_LF = 3, PROX_FRONT_LEFT = 3, PROX_LEFT_FRONT = 3,
174
    PROX_FR = 0, PROX_RF = 0, PROX_FRONT_RIGHT = 0, PROX_RIGHT_FRONT = 0,
175
    PROX_WR = 1, PROX_RW = 1, PROX_WHEEL_RIGHT = 1, PROX_RIGHT_WHEEL = 1,
176
  };
177
178
  /** \brief Index of the wheels
179
   *
180
   * Top view of the AMiRo wheels and their indices (F:Front, B:Back):
181
   *   ____
182
   * /| F |\
183
   * |0   1|
184
   * \|_B_|/
185
   */
186
  enum wheelIdx : uint8_t {
187
    WHEEL_L = 0, WHEEL_LEFT = 0, LEFT_WHEEL = 0,
188
    WHEEL_R = 1, WHEEL_RIGHT = 1, RIGHT_WHEEL = 1,
189
  };
190
}
191
192
namespace PowerManagement {
193
194
  /** \brief Index of the proximity sensors
195
   *
196
   * Top view of the AMiRo sensors and their indices:
197
   *   _______
198
   *  / 3 F 4 \
199
   * |2       5|
200
   * |1       6|
201
   *  \_0_B_7_/
202
   */
203
  enum proximitySensorIdx : uint8_t {
204
    PROX_BL = 0, PROX_BACK_LEFT = 0, PROX_SSW = 0, PROX_SOUTH_SOUTHWEST = 0,
205
    PROX_LB = 1, PROX_LEFT_BACK = 1, PROX_WSW = 1, PROX_WEST_SOUTHWEST = 1,
206
    PROX_LF = 2, PROX_LEFT_FRONT = 2, PROX_WNW = 2, PROX_WEST_NORTHWEST = 2,
207
    PROX_FL = 3, PROX_FRONT_LEFT = 3, PROX_NNW = 3, PROX_NORTH_NORTHWEST = 3,
208
    PROX_FR = 4, PROX_FRONT_RIGHT = 4, PROX_NNE = 4, PROX_NORTH_NORTHEAST = 4,
209
    PROX_RF = 5, PROX_RIGHT_FRONT = 5, PROX_ENE = 5, PROX_EAST_NORTHEAST = 5,
210
    PROX_RB = 6, PROX_RIGHT_BACK = 6, PROX_ESE = 6, PROX_EAST_SOUTHEAST = 6,
211
    PROX_BR = 7, PROX_BACK_RIGHT = 7, PROX_SSE = 7, PROX_SOUTH_SOUTHEAST = 7
212
  };
213
214
  /** \brief Index of the batteries.
215
   *
216
   * The port names are printed on the PCB.
217
   */
218
  enum batteryPortIdx : uint8_t {
219
    BAT_P7 = 0, BAT_A = 0,
220
    BAT_P8 = 1, BAT_B = 1
221
  };
222
223
  /** \brief Index of the power monitors.
224
   */
225
  enum powerMonitorIdx : uint8_t {
226
    INA_VDD = 0,
227
    INA_VIO18 = 1,
228
    INA_VIO33 = 2,
229
    INA_VIO42 = 3,
230
    INA_VIO50 = 4
231
  };
232
}
233
234
}
235
236
}
237
238
#endif /* AMIRO_CONSTANTS_H_ */