adafruit_bno055 / utility / matrix.h @ 3cae40b9
History | View | Annotate | Download (4.889 KB)
1 |
/*
|
---|---|
2 |
Inertial Measurement Unit Maths Library
|
3 |
Copyright (C) 2013-2014 Samuel Cowen
|
4 |
www.camelsoftware.com
|
5 |
|
6 |
This program is free software: you can redistribute it and/or modify
|
7 |
it under the terms of the GNU General Public License as published by
|
8 |
the Free Software Foundation, either version 3 of the License, or
|
9 |
(at your option) any later version.
|
10 |
|
11 |
This program is distributed in the hope that it will be useful,
|
12 |
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
14 |
GNU General Public License for more details.
|
15 |
|
16 |
You should have received a copy of the GNU General Public License
|
17 |
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
18 |
*/
|
19 |
|
20 |
#ifndef IMUMATH_MATRIX_HPP
|
21 |
#define IMUMATH_MATRIX_HPP
|
22 |
|
23 |
#include <string.h> |
24 |
#include <stdint.h> |
25 |
|
26 |
#include "vector.h" |
27 |
|
28 |
namespace imu |
29 |
{ |
30 |
|
31 |
|
32 |
template <uint8_t N> class Matrix |
33 |
{ |
34 |
public:
|
35 |
Matrix() |
36 |
{ |
37 |
memset(_cell_data, 0, N*N*sizeof(double)); |
38 |
} |
39 |
|
40 |
Matrix(const Matrix &m)
|
41 |
{ |
42 |
for (int ij = 0; ij < N*N; ++ij) |
43 |
{ |
44 |
_cell_data[ij] = m._cell_data[ij]; |
45 |
} |
46 |
} |
47 |
|
48 |
~Matrix() |
49 |
{ |
50 |
} |
51 |
|
52 |
Matrix& operator=(const Matrix& m)
|
53 |
{ |
54 |
for (int ij = 0; ij < N*N; ++ij) |
55 |
{ |
56 |
_cell_data[ij] = m._cell_data[ij]; |
57 |
} |
58 |
return *this;
|
59 |
} |
60 |
|
61 |
Vector<N> row_to_vector(int i) const |
62 |
{ |
63 |
Vector<N> ret; |
64 |
for (int j = 0; j < N; j++) |
65 |
{ |
66 |
ret[j] = cell(i, j); |
67 |
} |
68 |
return ret;
|
69 |
} |
70 |
|
71 |
Vector<N> col_to_vector(int j) const |
72 |
{ |
73 |
Vector<N> ret; |
74 |
for (int i = 0; i < N; i++) |
75 |
{ |
76 |
ret[i] = cell(i, j); |
77 |
} |
78 |
return ret;
|
79 |
} |
80 |
|
81 |
void vector_to_row(const Vector<N>& v, int i) |
82 |
{ |
83 |
for (int j = 0; j < N; j++) |
84 |
{ |
85 |
cell(i, j) = v[j]; |
86 |
} |
87 |
} |
88 |
|
89 |
void vector_to_col(const Vector<N>& v, int j) |
90 |
{ |
91 |
for (int i = 0; i < N; i++) |
92 |
{ |
93 |
cell(i, j) = v[i]; |
94 |
} |
95 |
} |
96 |
|
97 |
double operator()(int i, int j) const |
98 |
{ |
99 |
return cell(i, j);
|
100 |
} |
101 |
double& operator()(int i, int j) |
102 |
{ |
103 |
return cell(i, j);
|
104 |
} |
105 |
|
106 |
double cell(int i, int j) const |
107 |
{ |
108 |
return _cell_data[i*N+j];
|
109 |
} |
110 |
double& cell(int i, int j) |
111 |
{ |
112 |
return _cell_data[i*N+j];
|
113 |
} |
114 |
|
115 |
|
116 |
Matrix operator+(const Matrix& m) const |
117 |
{ |
118 |
Matrix ret; |
119 |
for (int ij = 0; ij < N*N; ++ij) |
120 |
{ |
121 |
ret._cell_data[ij] = _cell_data[ij] + m._cell_data[ij]; |
122 |
} |
123 |
return ret;
|
124 |
} |
125 |
|
126 |
Matrix operator-(const Matrix& m) const |
127 |
{ |
128 |
Matrix ret; |
129 |
for (int ij = 0; ij < N*N; ++ij) |
130 |
{ |
131 |
ret._cell_data[ij] = _cell_data[ij] - m._cell_data[ij]; |
132 |
} |
133 |
return ret;
|
134 |
} |
135 |
|
136 |
Matrix operator*(double scalar) const |
137 |
{ |
138 |
Matrix ret; |
139 |
for (int ij = 0; ij < N*N; ++ij) |
140 |
{ |
141 |
ret._cell_data[ij] = _cell_data[ij] * scalar; |
142 |
} |
143 |
return ret;
|
144 |
} |
145 |
|
146 |
Matrix operator*(const Matrix& m) const |
147 |
{ |
148 |
Matrix ret; |
149 |
for (int i = 0; i < N; i++) |
150 |
{ |
151 |
Vector<N> row = row_to_vector(i); |
152 |
for (int j = 0; j < N; j++) |
153 |
{ |
154 |
ret(i, j) = row.dot(m.col_to_vector(j)); |
155 |
} |
156 |
} |
157 |
return ret;
|
158 |
} |
159 |
|
160 |
Matrix transpose() const
|
161 |
{ |
162 |
Matrix ret; |
163 |
for (int i = 0; i < N; i++) |
164 |
{ |
165 |
for (int j = 0; j < N; j++) |
166 |
{ |
167 |
ret(j, i) = cell(i, j); |
168 |
} |
169 |
} |
170 |
return ret;
|
171 |
} |
172 |
|
173 |
Matrix<N-1> minor_matrix(int row, int col) const |
174 |
{ |
175 |
Matrix<N-1> ret;
|
176 |
for (int i = 0, im = 0; i < N; i++) |
177 |
{ |
178 |
if (i == row)
|
179 |
continue;
|
180 |
|
181 |
for (int j = 0, jm = 0; j < N; j++) |
182 |
{ |
183 |
if (j != col)
|
184 |
{ |
185 |
ret(im, jm++) = cell(i, j); |
186 |
} |
187 |
} |
188 |
im++; |
189 |
} |
190 |
return ret;
|
191 |
} |
192 |
|
193 |
double determinant() const |
194 |
{ |
195 |
// specialization for N == 1 given below this class
|
196 |
double det = 0.0, sign = 1.0; |
197 |
for (int i = 0; i < N; ++i, sign = -sign) |
198 |
det += sign * cell(0, i) * minor_matrix(0, i).determinant(); |
199 |
return det;
|
200 |
} |
201 |
|
202 |
Matrix invert() const
|
203 |
{ |
204 |
Matrix ret; |
205 |
double det = determinant();
|
206 |
|
207 |
for (int i = 0; i < N; i++) |
208 |
{ |
209 |
for (int j = 0; j < N; j++) |
210 |
{ |
211 |
ret(i, j) = minor_matrix(j, i).determinant() / det; |
212 |
if ((i+j)%2 == 1) |
213 |
ret(i, j) = -ret(i, j); |
214 |
} |
215 |
} |
216 |
return ret;
|
217 |
} |
218 |
|
219 |
double trace() const |
220 |
{ |
221 |
double tr = 0.0; |
222 |
for (int i = 0; i < N; ++i) |
223 |
tr += cell(i, i); |
224 |
return tr;
|
225 |
} |
226 |
|
227 |
private:
|
228 |
double _cell_data[N*N];
|
229 |
}; |
230 |
|
231 |
|
232 |
template<> |
233 |
inline double Matrix<1>::determinant() const |
234 |
{ |
235 |
return cell(0, 0); |
236 |
} |
237 |
|
238 |
}; |
239 |
|
240 |
#endif
|
241 |
|