adafruit_bno055 / utility / matrix.h @ 4bc1c0c1
History | View | Annotate | Download (5.075 KB)
1 |
/*
|
---|---|
2 |
Inertial Measurement Unit Maths Library
|
3 |
Copyright (C) 2013-2014 Samuel Cowen
|
4 |
www.camelsoftware.com
|
5 |
|
6 |
This program is free software: you can redistribute it and/or modify
|
7 |
it under the terms of the GNU General Public License as published by
|
8 |
the Free Software Foundation, either version 3 of the License, or
|
9 |
(at your option) any later version.
|
10 |
|
11 |
This program is distributed in the hope that it will be useful,
|
12 |
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
14 |
GNU General Public License for more details.
|
15 |
|
16 |
You should have received a copy of the GNU General Public License
|
17 |
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
18 |
*/
|
19 |
|
20 |
#ifndef IMUMATH_MATRIX_HPP
|
21 |
#define IMUMATH_MATRIX_HPP
|
22 |
|
23 |
#include <stdlib.h> |
24 |
#include <string.h> |
25 |
#include <stdint.h> |
26 |
#include <math.h> |
27 |
|
28 |
namespace imu |
29 |
{ |
30 |
|
31 |
|
32 |
template <uint8_t N> class Matrix |
33 |
{ |
34 |
public:
|
35 |
Matrix() |
36 |
{ |
37 |
int r = sizeof(double)*N; |
38 |
_cell = (double*)malloc(r*r);
|
39 |
memset(_cell, 0, r*r);
|
40 |
} |
41 |
|
42 |
Matrix(const Matrix &v)
|
43 |
{ |
44 |
int r = sizeof(double)*N; |
45 |
_cell = (double*)malloc(r*r);
|
46 |
memset(_cell, 0, r*r);
|
47 |
for (int x = 0; x < N; x++ ) |
48 |
{ |
49 |
for(int y = 0; y < N; y++) |
50 |
{ |
51 |
_cell[x*N+y] = v._cell[x*N+y]; |
52 |
} |
53 |
} |
54 |
} |
55 |
|
56 |
~Matrix() |
57 |
{ |
58 |
free(_cell); |
59 |
} |
60 |
|
61 |
void operator = (Matrix m)
|
62 |
{ |
63 |
for(int x = 0; x < N; x++) |
64 |
{ |
65 |
for(int y = 0; y < N; y++) |
66 |
{ |
67 |
cell(x, y) = m.cell(x, y); |
68 |
} |
69 |
} |
70 |
} |
71 |
|
72 |
Vector<N> row_to_vector(int y)
|
73 |
{ |
74 |
Vector<N> ret; |
75 |
for(int i = 0; i < N; i++) |
76 |
{ |
77 |
ret[i] = _cell[y*N+i]; |
78 |
} |
79 |
return ret;
|
80 |
} |
81 |
|
82 |
Vector<N> col_to_vector(int x)
|
83 |
{ |
84 |
Vector<N> ret; |
85 |
for(int i = 0; i < N; i++) |
86 |
{ |
87 |
ret[i] = _cell[i*N+x]; |
88 |
} |
89 |
return ret;
|
90 |
} |
91 |
|
92 |
void vector_to_row(Vector<N> v, int row) |
93 |
{ |
94 |
for(int i = 0; i < N; i++) |
95 |
{ |
96 |
cell(row, i) = v(i); |
97 |
} |
98 |
} |
99 |
|
100 |
void vector_to_col(Vector<N> v, int col) |
101 |
{ |
102 |
for(int i = 0; i < N; i++) |
103 |
{ |
104 |
cell(i, col) = v(i); |
105 |
} |
106 |
} |
107 |
|
108 |
double& operator ()(int x, int y) |
109 |
{ |
110 |
return _cell[x*N+y];
|
111 |
} |
112 |
|
113 |
double& cell(int x, int y) |
114 |
{ |
115 |
return _cell[x*N+y];
|
116 |
} |
117 |
|
118 |
|
119 |
Matrix operator + (Matrix m) |
120 |
{ |
121 |
Matrix ret; |
122 |
for(int x = 0; x < N; x++) |
123 |
{ |
124 |
for(int y = 0; y < N; y++) |
125 |
{ |
126 |
ret._cell[x*N+y] = _cell[x*N+y] + m._cell[x*N+y]; |
127 |
} |
128 |
} |
129 |
return ret;
|
130 |
} |
131 |
|
132 |
Matrix operator - (Matrix m) |
133 |
{ |
134 |
Matrix ret; |
135 |
for(int x = 0; x < N; x++) |
136 |
{ |
137 |
for(int y = 0; y < N; y++) |
138 |
{ |
139 |
ret._cell[x*N+y] = _cell[x*N+y] - m._cell[x*N+y]; |
140 |
} |
141 |
} |
142 |
return ret;
|
143 |
} |
144 |
|
145 |
Matrix operator * (double scalar)
|
146 |
{ |
147 |
Matrix ret; |
148 |
for(int x = 0; x < N; x++) |
149 |
{ |
150 |
for(int y = 0; y < N; y++) |
151 |
{ |
152 |
ret._cell[x*N+y] = _cell[x*N+y] * scalar; |
153 |
} |
154 |
} |
155 |
return ret;
|
156 |
} |
157 |
|
158 |
Matrix operator * (Matrix m) |
159 |
{ |
160 |
Matrix ret; |
161 |
for(int x = 0; x < N; x++) |
162 |
{ |
163 |
for(int y = 0; y < N; y++) |
164 |
{ |
165 |
Vector<N> row = row_to_vector(x); |
166 |
Vector<N> col = m.col_to_vector(y); |
167 |
ret.cell(x, y) = row.dot(col); |
168 |
} |
169 |
} |
170 |
return ret;
|
171 |
} |
172 |
|
173 |
Matrix transpose() |
174 |
{ |
175 |
Matrix ret; |
176 |
for(int x = 0; x < N; x++) |
177 |
{ |
178 |
for(int y = 0; y < N; y++) |
179 |
{ |
180 |
ret.cell(y, x) = cell(x, y); |
181 |
} |
182 |
} |
183 |
return ret;
|
184 |
} |
185 |
|
186 |
Matrix<N-1> minor_matrix(int row, int col) |
187 |
{ |
188 |
int colCount = 0, rowCount = 0; |
189 |
Matrix<N-1> ret;
|
190 |
for(int i = 0; i < N; i++ ) |
191 |
{ |
192 |
if( i != row )
|
193 |
{ |
194 |
for(int j = 0; j < N; j++ ) |
195 |
{ |
196 |
if( j != col )
|
197 |
{ |
198 |
ret(rowCount, colCount) = cell(i, j); |
199 |
colCount++; |
200 |
} |
201 |
} |
202 |
rowCount++; |
203 |
} |
204 |
} |
205 |
return ret;
|
206 |
} |
207 |
|
208 |
double determinant()
|
209 |
{ |
210 |
if(N == 1) |
211 |
return cell(0, 0); |
212 |
|
213 |
float det = 0.0; |
214 |
for(int i = 0; i < N; i++ ) |
215 |
{ |
216 |
Matrix<N-1> minor = minor_matrix(0, i); |
217 |
det += (i%2==1?-1.0:1.0) * cell(0, i) * minor.determinant(); |
218 |
} |
219 |
return det;
|
220 |
} |
221 |
|
222 |
Matrix invert() |
223 |
{ |
224 |
Matrix ret; |
225 |
float det = determinant();
|
226 |
|
227 |
for(int x = 0; x < N; x++) |
228 |
{ |
229 |
for(int y = 0; y < N; y++) |
230 |
{ |
231 |
Matrix<N-1> minor = minor_matrix(y, x);
|
232 |
ret(x, y) = det*minor.determinant(); |
233 |
if( (x+y)%2 == 1) |
234 |
ret(x, y) = -ret(x, y); |
235 |
} |
236 |
} |
237 |
return ret;
|
238 |
} |
239 |
|
240 |
private:
|
241 |
double* _cell;
|
242 |
}; |
243 |
|
244 |
|
245 |
}; |
246 |
|
247 |
#endif
|
248 |
|