adafruit_bno055 / utility / matrix.h @ 55604844
History | View | Annotate | Download (4.761 KB)
| 1 |
/*
|
|---|---|
| 2 |
Inertial Measurement Unit Maths Library
|
| 3 |
Copyright (C) 2013-2014 Samuel Cowen
|
| 4 |
www.camelsoftware.com
|
| 5 |
|
| 6 |
This program is free software: you can redistribute it and/or modify
|
| 7 |
it under the terms of the GNU General Public License as published by
|
| 8 |
the Free Software Foundation, either version 3 of the License, or
|
| 9 |
(at your option) any later version.
|
| 10 |
|
| 11 |
This program is distributed in the hope that it will be useful,
|
| 12 |
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 13 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 14 |
GNU General Public License for more details.
|
| 15 |
|
| 16 |
You should have received a copy of the GNU General Public License
|
| 17 |
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
| 18 |
*/
|
| 19 |
|
| 20 |
#ifndef IMUMATH_MATRIX_HPP
|
| 21 |
#define IMUMATH_MATRIX_HPP
|
| 22 |
|
| 23 |
#include <stdlib.h> |
| 24 |
#include <string.h> |
| 25 |
#include <stdint.h> |
| 26 |
#include <math.h> |
| 27 |
|
| 28 |
#include "vector.h" |
| 29 |
|
| 30 |
namespace imu |
| 31 |
{
|
| 32 |
|
| 33 |
|
| 34 |
template <uint8_t N> class Matrix |
| 35 |
{
|
| 36 |
public:
|
| 37 |
Matrix() |
| 38 |
{
|
| 39 |
memset(_cell_data, 0, N*N*sizeof(double)); |
| 40 |
} |
| 41 |
|
| 42 |
Matrix(const Matrix &m)
|
| 43 |
{
|
| 44 |
for (int ij = 0; ij < N*N; ++ij) |
| 45 |
{
|
| 46 |
_cell_data[ij] = m._cell_data[ij]; |
| 47 |
} |
| 48 |
} |
| 49 |
|
| 50 |
~Matrix() |
| 51 |
{
|
| 52 |
} |
| 53 |
|
| 54 |
Matrix& operator=(const Matrix& m)
|
| 55 |
{
|
| 56 |
for (int ij = 0; ij < N*N; ++ij) |
| 57 |
{
|
| 58 |
_cell_data[ij] = m._cell_data[ij]; |
| 59 |
} |
| 60 |
return *this;
|
| 61 |
} |
| 62 |
|
| 63 |
Vector<N> row_to_vector(int i) const |
| 64 |
{
|
| 65 |
Vector<N> ret; |
| 66 |
for (int j = 0; j < N; j++) |
| 67 |
{
|
| 68 |
ret[j] = cell(i, j); |
| 69 |
} |
| 70 |
return ret;
|
| 71 |
} |
| 72 |
|
| 73 |
Vector<N> col_to_vector(int j) const |
| 74 |
{
|
| 75 |
Vector<N> ret; |
| 76 |
for (int i = 0; i < N; i++) |
| 77 |
{
|
| 78 |
ret[i] = cell(i, j); |
| 79 |
} |
| 80 |
return ret;
|
| 81 |
} |
| 82 |
|
| 83 |
void vector_to_row(const Vector<N>& v, int i) |
| 84 |
{
|
| 85 |
for (int j = 0; j < N; j++) |
| 86 |
{
|
| 87 |
cell(i, j) = v[j]; |
| 88 |
} |
| 89 |
} |
| 90 |
|
| 91 |
void vector_to_col(const Vector<N>& v, int j) |
| 92 |
{
|
| 93 |
for (int i = 0; i < N; i++) |
| 94 |
{
|
| 95 |
cell(i, j) = v[i]; |
| 96 |
} |
| 97 |
} |
| 98 |
|
| 99 |
double operator()(int i, int j) const |
| 100 |
{
|
| 101 |
return cell(i, j);
|
| 102 |
} |
| 103 |
double& operator()(int i, int j) |
| 104 |
{
|
| 105 |
return cell(i, j);
|
| 106 |
} |
| 107 |
|
| 108 |
double cell(int i, int j) const |
| 109 |
{
|
| 110 |
return _cell_data[i*N+j];
|
| 111 |
} |
| 112 |
double& cell(int i, int j) |
| 113 |
{
|
| 114 |
return _cell_data[i*N+j];
|
| 115 |
} |
| 116 |
|
| 117 |
|
| 118 |
Matrix operator+(const Matrix& m) const |
| 119 |
{
|
| 120 |
Matrix ret; |
| 121 |
for (int ij = 0; ij < N*N; ++ij) |
| 122 |
{
|
| 123 |
ret._cell_data[ij] = _cell_data[ij] + m._cell_data[ij]; |
| 124 |
} |
| 125 |
return ret;
|
| 126 |
} |
| 127 |
|
| 128 |
Matrix operator-(const Matrix& m) const |
| 129 |
{
|
| 130 |
Matrix ret; |
| 131 |
for (int ij = 0; ij < N*N; ++ij) |
| 132 |
{
|
| 133 |
ret._cell_data[ij] = _cell_data[ij] - m._cell_data[ij]; |
| 134 |
} |
| 135 |
return ret;
|
| 136 |
} |
| 137 |
|
| 138 |
Matrix operator*(double scalar) const |
| 139 |
{
|
| 140 |
Matrix ret; |
| 141 |
for (int ij = 0; ij < N*N; ++ij) |
| 142 |
{
|
| 143 |
ret._cell_data[ij] = _cell_data[ij] * scalar; |
| 144 |
} |
| 145 |
return ret;
|
| 146 |
} |
| 147 |
|
| 148 |
Matrix operator*(const Matrix& m) const |
| 149 |
{
|
| 150 |
Matrix ret; |
| 151 |
for (int i = 0; i < N; i++) |
| 152 |
{
|
| 153 |
Vector<N> row = row_to_vector(i); |
| 154 |
for (int j = 0; j < N; j++) |
| 155 |
{
|
| 156 |
ret(i, j) = row.dot(m.col_to_vector(j)); |
| 157 |
} |
| 158 |
} |
| 159 |
return ret;
|
| 160 |
} |
| 161 |
|
| 162 |
Matrix transpose() const
|
| 163 |
{
|
| 164 |
Matrix ret; |
| 165 |
for (int i = 0; i < N; i++) |
| 166 |
{
|
| 167 |
for (int j = 0; j < N; j++) |
| 168 |
{
|
| 169 |
ret(j, i) = cell(i, j); |
| 170 |
} |
| 171 |
} |
| 172 |
return ret;
|
| 173 |
} |
| 174 |
|
| 175 |
Matrix<N-1> minor_matrix(int row, int col) const |
| 176 |
{
|
| 177 |
Matrix<N-1> ret;
|
| 178 |
for (int i = 0, im = 0; i < N; i++) |
| 179 |
{
|
| 180 |
if (i == row)
|
| 181 |
continue;
|
| 182 |
|
| 183 |
for (int j = 0, jm = 0; j < N; j++) |
| 184 |
{
|
| 185 |
if (j != col)
|
| 186 |
{
|
| 187 |
ret(im, jm++) = cell(i, j); |
| 188 |
} |
| 189 |
} |
| 190 |
im++; |
| 191 |
} |
| 192 |
return ret;
|
| 193 |
} |
| 194 |
|
| 195 |
double determinant()
|
| 196 |
{
|
| 197 |
if(N == 1) |
| 198 |
return cell(0, 0); |
| 199 |
|
| 200 |
float det = 0.0; |
| 201 |
for(int i = 0; i < N; i++ ) |
| 202 |
{
|
| 203 |
Matrix<N-1> minor = minor_matrix(0, i); |
| 204 |
det += (i%2==1?-1.0:1.0) * cell(0, i) * minor.determinant(); |
| 205 |
} |
| 206 |
return det;
|
| 207 |
} |
| 208 |
|
| 209 |
Matrix invert() |
| 210 |
{
|
| 211 |
Matrix ret; |
| 212 |
float det = determinant();
|
| 213 |
|
| 214 |
for(int x = 0; x < N; x++) |
| 215 |
{
|
| 216 |
for(int y = 0; y < N; y++) |
| 217 |
{
|
| 218 |
Matrix<N-1> minor = minor_matrix(y, x);
|
| 219 |
ret(x, y) = det*minor.determinant(); |
| 220 |
if( (x+y)%2 == 1) |
| 221 |
ret(x, y) = -ret(x, y); |
| 222 |
} |
| 223 |
} |
| 224 |
return ret;
|
| 225 |
} |
| 226 |
|
| 227 |
private:
|
| 228 |
double _cell_data[N*N];
|
| 229 |
}; |
| 230 |
|
| 231 |
|
| 232 |
}; |
| 233 |
|
| 234 |
#endif
|
| 235 |
|