adafruit_bno055 / utility / matrix.h @ 55604844
History | View | Annotate | Download (4.761 KB)
1 |
/*
|
---|---|
2 |
Inertial Measurement Unit Maths Library
|
3 |
Copyright (C) 2013-2014 Samuel Cowen
|
4 |
www.camelsoftware.com
|
5 |
|
6 |
This program is free software: you can redistribute it and/or modify
|
7 |
it under the terms of the GNU General Public License as published by
|
8 |
the Free Software Foundation, either version 3 of the License, or
|
9 |
(at your option) any later version.
|
10 |
|
11 |
This program is distributed in the hope that it will be useful,
|
12 |
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
14 |
GNU General Public License for more details.
|
15 |
|
16 |
You should have received a copy of the GNU General Public License
|
17 |
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
18 |
*/
|
19 |
|
20 |
#ifndef IMUMATH_MATRIX_HPP
|
21 |
#define IMUMATH_MATRIX_HPP
|
22 |
|
23 |
#include <stdlib.h> |
24 |
#include <string.h> |
25 |
#include <stdint.h> |
26 |
#include <math.h> |
27 |
|
28 |
#include "vector.h" |
29 |
|
30 |
namespace imu |
31 |
{ |
32 |
|
33 |
|
34 |
template <uint8_t N> class Matrix |
35 |
{ |
36 |
public:
|
37 |
Matrix() |
38 |
{ |
39 |
memset(_cell_data, 0, N*N*sizeof(double)); |
40 |
} |
41 |
|
42 |
Matrix(const Matrix &m)
|
43 |
{ |
44 |
for (int ij = 0; ij < N*N; ++ij) |
45 |
{ |
46 |
_cell_data[ij] = m._cell_data[ij]; |
47 |
} |
48 |
} |
49 |
|
50 |
~Matrix() |
51 |
{ |
52 |
} |
53 |
|
54 |
Matrix& operator=(const Matrix& m)
|
55 |
{ |
56 |
for (int ij = 0; ij < N*N; ++ij) |
57 |
{ |
58 |
_cell_data[ij] = m._cell_data[ij]; |
59 |
} |
60 |
return *this;
|
61 |
} |
62 |
|
63 |
Vector<N> row_to_vector(int i) const |
64 |
{ |
65 |
Vector<N> ret; |
66 |
for (int j = 0; j < N; j++) |
67 |
{ |
68 |
ret[j] = cell(i, j); |
69 |
} |
70 |
return ret;
|
71 |
} |
72 |
|
73 |
Vector<N> col_to_vector(int j) const |
74 |
{ |
75 |
Vector<N> ret; |
76 |
for (int i = 0; i < N; i++) |
77 |
{ |
78 |
ret[i] = cell(i, j); |
79 |
} |
80 |
return ret;
|
81 |
} |
82 |
|
83 |
void vector_to_row(const Vector<N>& v, int i) |
84 |
{ |
85 |
for (int j = 0; j < N; j++) |
86 |
{ |
87 |
cell(i, j) = v[j]; |
88 |
} |
89 |
} |
90 |
|
91 |
void vector_to_col(const Vector<N>& v, int j) |
92 |
{ |
93 |
for (int i = 0; i < N; i++) |
94 |
{ |
95 |
cell(i, j) = v[i]; |
96 |
} |
97 |
} |
98 |
|
99 |
double operator()(int i, int j) const |
100 |
{ |
101 |
return cell(i, j);
|
102 |
} |
103 |
double& operator()(int i, int j) |
104 |
{ |
105 |
return cell(i, j);
|
106 |
} |
107 |
|
108 |
double cell(int i, int j) const |
109 |
{ |
110 |
return _cell_data[i*N+j];
|
111 |
} |
112 |
double& cell(int i, int j) |
113 |
{ |
114 |
return _cell_data[i*N+j];
|
115 |
} |
116 |
|
117 |
|
118 |
Matrix operator+(const Matrix& m) const |
119 |
{ |
120 |
Matrix ret; |
121 |
for (int ij = 0; ij < N*N; ++ij) |
122 |
{ |
123 |
ret._cell_data[ij] = _cell_data[ij] + m._cell_data[ij]; |
124 |
} |
125 |
return ret;
|
126 |
} |
127 |
|
128 |
Matrix operator-(const Matrix& m) const |
129 |
{ |
130 |
Matrix ret; |
131 |
for (int ij = 0; ij < N*N; ++ij) |
132 |
{ |
133 |
ret._cell_data[ij] = _cell_data[ij] - m._cell_data[ij]; |
134 |
} |
135 |
return ret;
|
136 |
} |
137 |
|
138 |
Matrix operator*(double scalar) const |
139 |
{ |
140 |
Matrix ret; |
141 |
for (int ij = 0; ij < N*N; ++ij) |
142 |
{ |
143 |
ret._cell_data[ij] = _cell_data[ij] * scalar; |
144 |
} |
145 |
return ret;
|
146 |
} |
147 |
|
148 |
Matrix operator*(const Matrix& m) const |
149 |
{ |
150 |
Matrix ret; |
151 |
for (int i = 0; i < N; i++) |
152 |
{ |
153 |
Vector<N> row = row_to_vector(i); |
154 |
for (int j = 0; j < N; j++) |
155 |
{ |
156 |
ret(i, j) = row.dot(m.col_to_vector(j)); |
157 |
} |
158 |
} |
159 |
return ret;
|
160 |
} |
161 |
|
162 |
Matrix transpose() const
|
163 |
{ |
164 |
Matrix ret; |
165 |
for (int i = 0; i < N; i++) |
166 |
{ |
167 |
for (int j = 0; j < N; j++) |
168 |
{ |
169 |
ret(j, i) = cell(i, j); |
170 |
} |
171 |
} |
172 |
return ret;
|
173 |
} |
174 |
|
175 |
Matrix<N-1> minor_matrix(int row, int col) const |
176 |
{ |
177 |
Matrix<N-1> ret;
|
178 |
for (int i = 0, im = 0; i < N; i++) |
179 |
{ |
180 |
if (i == row)
|
181 |
continue;
|
182 |
|
183 |
for (int j = 0, jm = 0; j < N; j++) |
184 |
{ |
185 |
if (j != col)
|
186 |
{ |
187 |
ret(im, jm++) = cell(i, j); |
188 |
} |
189 |
} |
190 |
im++; |
191 |
} |
192 |
return ret;
|
193 |
} |
194 |
|
195 |
double determinant()
|
196 |
{ |
197 |
if(N == 1) |
198 |
return cell(0, 0); |
199 |
|
200 |
float det = 0.0; |
201 |
for(int i = 0; i < N; i++ ) |
202 |
{ |
203 |
Matrix<N-1> minor = minor_matrix(0, i); |
204 |
det += (i%2==1?-1.0:1.0) * cell(0, i) * minor.determinant(); |
205 |
} |
206 |
return det;
|
207 |
} |
208 |
|
209 |
Matrix invert() |
210 |
{ |
211 |
Matrix ret; |
212 |
float det = determinant();
|
213 |
|
214 |
for(int x = 0; x < N; x++) |
215 |
{ |
216 |
for(int y = 0; y < N; y++) |
217 |
{ |
218 |
Matrix<N-1> minor = minor_matrix(y, x);
|
219 |
ret(x, y) = det*minor.determinant(); |
220 |
if( (x+y)%2 == 1) |
221 |
ret(x, y) = -ret(x, y); |
222 |
} |
223 |
} |
224 |
return ret;
|
225 |
} |
226 |
|
227 |
private:
|
228 |
double _cell_data[N*N];
|
229 |
}; |
230 |
|
231 |
|
232 |
}; |
233 |
|
234 |
#endif
|
235 |
|