adafruit_bno055 / utility / quaternion.h @ 67f3cff5
History | View | Annotate | Download (6.572 KB)
1 |
/*
|
---|---|
2 |
Inertial Measurement Unit Maths Library
|
3 |
Copyright (C) 2013-2014 Samuel Cowen
|
4 |
www.camelsoftware.com
|
5 |
|
6 |
This program is free software: you can redistribute it and/or modify
|
7 |
it under the terms of the GNU General Public License as published by
|
8 |
the Free Software Foundation, either version 3 of the License, or
|
9 |
(at your option) any later version.
|
10 |
|
11 |
This program is distributed in the hope that it will be useful,
|
12 |
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
14 |
GNU General Public License for more details.
|
15 |
|
16 |
You should have received a copy of the GNU General Public License
|
17 |
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
18 |
*/
|
19 |
|
20 |
|
21 |
#ifndef IMUMATH_QUATERNION_HPP
|
22 |
#define IMUMATH_QUATERNION_HPP
|
23 |
|
24 |
#include <stdlib.h> |
25 |
#include <string.h> |
26 |
#include <stdint.h> |
27 |
#include <math.h> |
28 |
|
29 |
#include "vector.h" |
30 |
|
31 |
|
32 |
namespace imu |
33 |
{ |
34 |
|
35 |
|
36 |
|
37 |
class Quaternion |
38 |
{ |
39 |
public:
|
40 |
Quaternion() |
41 |
{ |
42 |
_w = 1.0; |
43 |
_x = _y = _z = 0.0; |
44 |
} |
45 |
|
46 |
Quaternion(double iw, double ix, double iy, double iz) |
47 |
{ |
48 |
_w = iw; |
49 |
_x = ix; |
50 |
_y = iy; |
51 |
_z = iz; |
52 |
} |
53 |
|
54 |
Quaternion(double w, Vector<3> vec) |
55 |
{ |
56 |
_w = w; |
57 |
_x = vec.x(); |
58 |
_y = vec.y(); |
59 |
_z = vec.z(); |
60 |
} |
61 |
|
62 |
double& w()
|
63 |
{ |
64 |
return _w;
|
65 |
} |
66 |
double& x()
|
67 |
{ |
68 |
return _x;
|
69 |
} |
70 |
double& y()
|
71 |
{ |
72 |
return _y;
|
73 |
} |
74 |
double& z()
|
75 |
{ |
76 |
return _z;
|
77 |
} |
78 |
|
79 |
double magnitude()
|
80 |
{ |
81 |
double res = (_w*_w) + (_x*_x) + (_y*_y) + (_z*_z);
|
82 |
return sqrt(res);
|
83 |
} |
84 |
|
85 |
void normalize()
|
86 |
{ |
87 |
double mag = magnitude();
|
88 |
*this = this->scale(1/mag);
|
89 |
} |
90 |
|
91 |
|
92 |
Quaternion conjugate() |
93 |
{ |
94 |
Quaternion q; |
95 |
q.w() = _w; |
96 |
q.x() = -_x; |
97 |
q.y() = -_y; |
98 |
q.z() = -_z; |
99 |
return q;
|
100 |
} |
101 |
|
102 |
void fromAxisAngle(Vector<3> axis, double theta) |
103 |
{ |
104 |
_w = cos(theta/2);
|
105 |
//only need to calculate sine of half theta once
|
106 |
double sht = sin(theta/2); |
107 |
_x = axis.x() * sht; |
108 |
_y = axis.y() * sht; |
109 |
_z = axis.z() * sht; |
110 |
} |
111 |
|
112 |
void fromMatrix(Matrix<3> m) |
113 |
{ |
114 |
float tr = m(0, 0) + m(1, 1) + m(2, 2); |
115 |
|
116 |
float S = 0.0; |
117 |
if (tr > 0) |
118 |
{ |
119 |
S = sqrt(tr+1.0) * 2; |
120 |
_w = 0.25 * S; |
121 |
_x = (m(2, 1) - m(1, 2)) / S; |
122 |
_y = (m(0, 2) - m(2, 0)) / S; |
123 |
_z = (m(1, 0) - m(0, 1)) / S; |
124 |
} |
125 |
else if ((m(0, 0) < m(1, 1))&(m(0, 0) < m(2, 2))) |
126 |
{ |
127 |
S = sqrt(1.0 + m(0, 0) - m(1, 1) - m(2, 2)) * 2; |
128 |
_w = (m(2, 1) - m(1, 2)) / S; |
129 |
_x = 0.25 * S; |
130 |
_y = (m(0, 1) + m(1, 0)) / S; |
131 |
_z = (m(0, 2) + m(2, 0)) / S; |
132 |
} |
133 |
else if (m(1, 1) < m(2, 2)) |
134 |
{ |
135 |
S = sqrt(1.0 + m(1, 1) - m(0, 0) - m(2, 2)) * 2; |
136 |
_w = (m(0, 2) - m(2, 0)) / S; |
137 |
_x = (m(0, 1) + m(1, 0)) / S; |
138 |
_y = 0.25 * S; |
139 |
_z = (m(1, 2) + m(2, 1)) / S; |
140 |
} |
141 |
else
|
142 |
{ |
143 |
S = sqrt(1.0 + m(2, 2) - m(0, 0) - m(1, 1)) * 2; |
144 |
_w = (m(1, 0) - m(0, 1)) / S; |
145 |
_x = (m(0, 2) + m(2, 0)) / S; |
146 |
_y = (m(1, 2) + m(2, 1)) / S; |
147 |
_z = 0.25 * S; |
148 |
} |
149 |
} |
150 |
|
151 |
void toAxisAngle(Vector<3>& axis, float& angle) |
152 |
{ |
153 |
float sqw = sqrt(1-_w*_w); |
154 |
if(sqw == 0) //it's a singularity and divide by zero, avoid |
155 |
return;
|
156 |
|
157 |
angle = 2 * acos(_w);
|
158 |
axis.x() = _x / sqw; |
159 |
axis.y() = _y / sqw; |
160 |
axis.z() = _z / sqw; |
161 |
} |
162 |
|
163 |
Matrix<3> toMatrix()
|
164 |
{ |
165 |
Matrix<3> ret;
|
166 |
ret.cell(0, 0) = 1-(2*(_y*_y))-(2*(_z*_z)); |
167 |
ret.cell(0, 1) = (2*_x*_y)-(2*_w*_z); |
168 |
ret.cell(0, 2) = (2*_x*_z)+(2*_w*_y); |
169 |
|
170 |
ret.cell(1, 0) = (2*_x*_y)+(2*_w*_z); |
171 |
ret.cell(1, 1) = 1-(2*(_x*_x))-(2*(_z*_z)); |
172 |
ret.cell(1, 2) = (2*(_y*_z))-(2*(_w*_x)); |
173 |
|
174 |
ret.cell(2, 0) = (2*(_x*_z))-(2*_w*_y); |
175 |
ret.cell(2, 1) = (2*_y*_z)+(2*_w*_x); |
176 |
ret.cell(2, 2) = 1-(2*(_x*_x))-(2*(_y*_y)); |
177 |
return ret;
|
178 |
} |
179 |
|
180 |
|
181 |
Vector<3> toEuler()
|
182 |
{ |
183 |
Vector<3> ret;
|
184 |
double sqw = _w*_w;
|
185 |
double sqx = _x*_x;
|
186 |
double sqy = _y*_y;
|
187 |
double sqz = _z*_z;
|
188 |
|
189 |
ret.x() = atan2(2.0*(_x*_y+_z*_w),(sqx-sqy-sqz+sqw)); |
190 |
ret.y() = asin(-2.0*(_x*_z-_y*_w)/(sqx+sqy+sqz+sqw)); |
191 |
ret.z() = atan2(2.0*(_y*_z+_x*_w),(-sqx-sqy+sqz+sqw)); |
192 |
|
193 |
return ret;
|
194 |
} |
195 |
|
196 |
Vector<3> toAngularVelocity(float dt) |
197 |
{ |
198 |
Vector<3> ret;
|
199 |
Quaternion one(1.0, 0.0, 0.0, 0.0); |
200 |
Quaternion delta = one - *this; |
201 |
Quaternion r = (delta/dt); |
202 |
r = r * 2;
|
203 |
r = r * one; |
204 |
|
205 |
ret.x() = r.x(); |
206 |
ret.y() = r.y(); |
207 |
ret.z() = r.z(); |
208 |
return ret;
|
209 |
} |
210 |
|
211 |
Vector<3> rotateVector(Vector<2> v) |
212 |
{ |
213 |
Vector<3> ret(v.x(), v.y(), 0.0); |
214 |
return rotateVector(ret);
|
215 |
} |
216 |
|
217 |
Vector<3> rotateVector(Vector<3> v) |
218 |
{ |
219 |
Vector<3> qv(this->x(), this->y(), this->z());
|
220 |
Vector<3> t;
|
221 |
t = qv.cross(v) * 2.0; |
222 |
return v + (t * _w) + qv.cross(t);
|
223 |
} |
224 |
|
225 |
|
226 |
Quaternion operator * (Quaternion q) |
227 |
{ |
228 |
Quaternion ret; |
229 |
ret._w = ((_w*q._w) - (_x*q._x) - (_y*q._y) - (_z*q._z)); |
230 |
ret._x = ((_w*q._x) + (_x*q._w) + (_y*q._z) - (_z*q._y)); |
231 |
ret._y = ((_w*q._y) - (_x*q._z) + (_y*q._w) + (_z*q._x)); |
232 |
ret._z = ((_w*q._z) + (_x*q._y) - (_y*q._x) + (_z*q._w)); |
233 |
return ret;
|
234 |
} |
235 |
|
236 |
Quaternion operator + (Quaternion q) |
237 |
{ |
238 |
Quaternion ret; |
239 |
ret._w = _w + q._w; |
240 |
ret._x = _x + q._x; |
241 |
ret._y = _y + q._y; |
242 |
ret._z = _z + q._z; |
243 |
return ret;
|
244 |
} |
245 |
|
246 |
Quaternion operator - (Quaternion q) |
247 |
{ |
248 |
Quaternion ret; |
249 |
ret._w = _w - q._w; |
250 |
ret._x = _x - q._x; |
251 |
ret._y = _y - q._y; |
252 |
ret._z = _z - q._z; |
253 |
return ret;
|
254 |
} |
255 |
|
256 |
Quaternion operator / (float scalar)
|
257 |
{ |
258 |
Quaternion ret; |
259 |
ret._w = this->_w/scalar; |
260 |
ret._x = this->_x/scalar; |
261 |
ret._y = this->_y/scalar; |
262 |
ret._z = this->_z/scalar; |
263 |
return ret;
|
264 |
} |
265 |
|
266 |
Quaternion operator * (float scalar)
|
267 |
{ |
268 |
Quaternion ret; |
269 |
ret._w = this->_w*scalar; |
270 |
ret._x = this->_x*scalar; |
271 |
ret._y = this->_y*scalar; |
272 |
ret._z = this->_z*scalar; |
273 |
return ret;
|
274 |
} |
275 |
|
276 |
Quaternion scale(double scalar)
|
277 |
{ |
278 |
Quaternion ret; |
279 |
ret._w = this->_w*scalar; |
280 |
ret._x = this->_x*scalar; |
281 |
ret._y = this->_y*scalar; |
282 |
ret._z = this->_z*scalar; |
283 |
return ret;
|
284 |
} |
285 |
|
286 |
private:
|
287 |
double _w, _x, _y, _z;
|
288 |
}; |
289 |
|
290 |
|
291 |
}; |
292 |
|
293 |
#endif
|