adafruit_bno055 / utility / vector.h @ 67f3cff5
History | View | Annotate | Download (4.729 KB)
| 1 |
/*
|
|---|---|
| 2 |
Inertial Measurement Unit Maths Library
|
| 3 |
Copyright (C) 2013-2014 Samuel Cowen
|
| 4 |
www.camelsoftware.com
|
| 5 |
|
| 6 |
This program is free software: you can redistribute it and/or modify
|
| 7 |
it under the terms of the GNU General Public License as published by
|
| 8 |
the Free Software Foundation, either version 3 of the License, or
|
| 9 |
(at your option) any later version.
|
| 10 |
|
| 11 |
This program is distributed in the hope that it will be useful,
|
| 12 |
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 13 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 14 |
GNU General Public License for more details.
|
| 15 |
|
| 16 |
You should have received a copy of the GNU General Public License
|
| 17 |
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
| 18 |
*/
|
| 19 |
|
| 20 |
#ifndef IMUMATH_VECTOR_HPP
|
| 21 |
#define IMUMATH_VECTOR_HPP
|
| 22 |
|
| 23 |
#include <stdlib.h> |
| 24 |
#include <string.h> |
| 25 |
#include <stdint.h> |
| 26 |
#include <math.h> |
| 27 |
|
| 28 |
|
| 29 |
namespace imu |
| 30 |
{
|
| 31 |
|
| 32 |
template <uint8_t N> class Vector |
| 33 |
{
|
| 34 |
public:
|
| 35 |
Vector() |
| 36 |
{
|
| 37 |
p_vec = (double*)malloc(sizeof(double)*N+1); |
| 38 |
memset(p_vec, 0, sizeof(double)*N); |
| 39 |
} |
| 40 |
|
| 41 |
Vector(double a)
|
| 42 |
{
|
| 43 |
p_vec = (double*)malloc(sizeof(double)*N+1); |
| 44 |
memset(p_vec, 0, sizeof(double)*N); |
| 45 |
p_vec[0] = a;
|
| 46 |
} |
| 47 |
|
| 48 |
Vector(double a, double b) |
| 49 |
{
|
| 50 |
p_vec = (double*)malloc(sizeof(double)*N+1); |
| 51 |
memset(p_vec, 0, sizeof(double)*N); |
| 52 |
p_vec[0] = a;
|
| 53 |
p_vec[1] = b;
|
| 54 |
} |
| 55 |
|
| 56 |
Vector(double a, double b, double c) |
| 57 |
{
|
| 58 |
p_vec = (double*)malloc(sizeof(double)*N+1); |
| 59 |
memset(p_vec, 0, sizeof(double)*N); |
| 60 |
p_vec[0] = a;
|
| 61 |
p_vec[1] = b;
|
| 62 |
p_vec[2] = c;
|
| 63 |
} |
| 64 |
|
| 65 |
Vector(double a, double b, double c, double d) |
| 66 |
{
|
| 67 |
p_vec = (double*)malloc(sizeof(double)*N+1); |
| 68 |
memset(p_vec, 0, sizeof(double)*N); |
| 69 |
p_vec[0] = a;
|
| 70 |
p_vec[1] = b;
|
| 71 |
p_vec[2] = c;
|
| 72 |
p_vec[3] = d;
|
| 73 |
} |
| 74 |
|
| 75 |
Vector(const Vector<N> &v)
|
| 76 |
{
|
| 77 |
p_vec = (double*)malloc(sizeof(double)*N); |
| 78 |
memset(p_vec, 0, sizeof(double)*N); |
| 79 |
for (int x = 0; x < N; x++ ) |
| 80 |
p_vec[x] = v.p_vec[x]; |
| 81 |
} |
| 82 |
|
| 83 |
~Vector() |
| 84 |
{
|
| 85 |
free(p_vec); |
| 86 |
} |
| 87 |
|
| 88 |
uint8_t n() { return N; }
|
| 89 |
|
| 90 |
double magnitude()
|
| 91 |
{
|
| 92 |
double res = 0; |
| 93 |
int i;
|
| 94 |
for(i = 0; i < N; i++) |
| 95 |
res += (p_vec[i] * p_vec[i]); |
| 96 |
|
| 97 |
if(isnan(res))
|
| 98 |
return 0; |
| 99 |
if((fabs(res)-1) >= 0.000001) //avoid a sqrt if possible |
| 100 |
return sqrt(res);
|
| 101 |
return 1; |
| 102 |
} |
| 103 |
|
| 104 |
void normalize()
|
| 105 |
{
|
| 106 |
double mag = magnitude();
|
| 107 |
if(abs(mag) <= 0.0001) |
| 108 |
return;
|
| 109 |
|
| 110 |
int i;
|
| 111 |
for(i = 0; i < N; i++) |
| 112 |
p_vec[i] = p_vec[i]/mag; |
| 113 |
} |
| 114 |
|
| 115 |
double dot(Vector v)
|
| 116 |
{
|
| 117 |
double ret = 0; |
| 118 |
int i;
|
| 119 |
for(i = 0; i < N; i++) |
| 120 |
ret += p_vec[i] * v.p_vec[i]; |
| 121 |
|
| 122 |
return ret;
|
| 123 |
} |
| 124 |
|
| 125 |
Vector cross(Vector v) |
| 126 |
{
|
| 127 |
Vector ret; |
| 128 |
|
| 129 |
//the cross product is only valid for vectors with 3 dimensions,
|
| 130 |
//with the exception of higher dimensional stuff that is beyond the intended scope of this library
|
| 131 |
if(N != 3) |
| 132 |
return ret;
|
| 133 |
|
| 134 |
ret.p_vec[0] = (p_vec[1] * v.p_vec[2]) - (p_vec[2] * v.p_vec[1]); |
| 135 |
ret.p_vec[1] = (p_vec[2] * v.p_vec[0]) - (p_vec[0] * v.p_vec[2]); |
| 136 |
ret.p_vec[2] = (p_vec[0] * v.p_vec[1]) - (p_vec[1] * v.p_vec[0]); |
| 137 |
return ret;
|
| 138 |
} |
| 139 |
|
| 140 |
Vector scale(double scalar)
|
| 141 |
{
|
| 142 |
Vector ret; |
| 143 |
for(int i = 0; i < N; i++) |
| 144 |
ret.p_vec[i] = p_vec[i] * scalar; |
| 145 |
return ret;
|
| 146 |
} |
| 147 |
|
| 148 |
Vector invert() |
| 149 |
{
|
| 150 |
Vector ret; |
| 151 |
for(int i = 0; i < N; i++) |
| 152 |
ret.p_vec[i] = -p_vec[i]; |
| 153 |
return ret;
|
| 154 |
} |
| 155 |
|
| 156 |
Vector operator = (Vector v) |
| 157 |
{
|
| 158 |
for (int x = 0; x < N; x++ ) |
| 159 |
p_vec[x] = v.p_vec[x]; |
| 160 |
return *this;
|
| 161 |
} |
| 162 |
|
| 163 |
double& operator [](int n) |
| 164 |
{
|
| 165 |
return p_vec[n];
|
| 166 |
} |
| 167 |
|
| 168 |
double& operator ()(int n) |
| 169 |
{
|
| 170 |
return p_vec[n];
|
| 171 |
} |
| 172 |
|
| 173 |
Vector operator + (Vector v) |
| 174 |
{
|
| 175 |
Vector ret; |
| 176 |
for(int i = 0; i < N; i++) |
| 177 |
ret.p_vec[i] = p_vec[i] + v.p_vec[i]; |
| 178 |
return ret;
|
| 179 |
} |
| 180 |
|
| 181 |
Vector operator - (Vector v) |
| 182 |
{
|
| 183 |
Vector ret; |
| 184 |
for(int i = 0; i < N; i++) |
| 185 |
ret.p_vec[i] = p_vec[i] - v.p_vec[i]; |
| 186 |
return ret;
|
| 187 |
} |
| 188 |
|
| 189 |
Vector operator * (double scalar)
|
| 190 |
{
|
| 191 |
return scale(scalar);
|
| 192 |
} |
| 193 |
|
| 194 |
Vector operator / (double scalar)
|
| 195 |
{
|
| 196 |
Vector ret; |
| 197 |
for(int i = 0; i < N; i++) |
| 198 |
ret.p_vec[i] = p_vec[i] / scalar; |
| 199 |
return ret;
|
| 200 |
} |
| 201 |
|
| 202 |
void toDegrees()
|
| 203 |
{
|
| 204 |
for(int i = 0; i < N; i++) |
| 205 |
p_vec[i] *= 57.2957795131; //180/pi |
| 206 |
} |
| 207 |
|
| 208 |
void toRadians()
|
| 209 |
{
|
| 210 |
for(int i = 0; i < N; i++) |
| 211 |
p_vec[i] *= 0.01745329251; //pi/180 |
| 212 |
} |
| 213 |
|
| 214 |
double& x() { return p_vec[0]; } |
| 215 |
double& y() { return p_vec[1]; } |
| 216 |
double& z() { return p_vec[2]; } |
| 217 |
|
| 218 |
|
| 219 |
private:
|
| 220 |
double* p_vec;
|
| 221 |
}; |
| 222 |
|
| 223 |
|
| 224 |
}; |
| 225 |
|
| 226 |
#endif
|