Statistics
| Branch: | Revision:

adafruit_bno055 / utility / quaternion.h @ 88b09bb5

History | View | Annotate | Download (6.541 KB)

1
/*
2
    Inertial Measurement Unit Maths Library
3
    Copyright (C) 2013-2014  Samuel Cowen
4
        www.camelsoftware.com
5

6
    This program is free software: you can redistribute it and/or modify
7
    it under the terms of the GNU General Public License as published by
8
    the Free Software Foundation, either version 3 of the License, or
9
    (at your option) any later version.
10

11
    This program is distributed in the hope that it will be useful,
12
    but WITHOUT ANY WARRANTY; without even the implied warranty of
13
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
    GNU General Public License for more details.
15

16
    You should have received a copy of the GNU General Public License
17
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
18
*/
19

    
20

    
21
#ifndef IMUMATH_QUATERNION_HPP
22
#define IMUMATH_QUATERNION_HPP
23

    
24
#include <stdlib.h>
25
#include <string.h>
26
#include <stdint.h>
27
#include <math.h>
28

    
29
#include "matrix.h"
30

    
31

    
32
namespace imu
33
{
34

    
35
class Quaternion
36
{
37
public:
38
    Quaternion(): _w(1.0), _x(0.0), _y(0.0), _z(0.0) {}
39

    
40
    Quaternion(double w, double x, double y, double z):
41
        _w(w), _x(x), _y(y), _z(z) {}
42

    
43
    Quaternion(double w, Vector<3> vec):
44
        _w(w), _x(vec.x()), _y(vec.y()), _z(vec.z()) {}
45

    
46
    double& w()
47
    {
48
        return _w;
49
    }
50
    double& x()
51
    {
52
        return _x;
53
    }
54
    double& y()
55
    {
56
        return _y;
57
    }
58
    double& z()
59
    {
60
        return _z;
61
    }
62

    
63
    double w() const
64
    {
65
        return _w;
66
    }
67
    double x() const
68
    {
69
        return _x;
70
    }
71
    double y() const
72
    {
73
        return _y;
74
    }
75
    double z() const
76
    {
77
        return _z;
78
    }
79

    
80
    double magnitude() const
81
    {
82
        double res = (_w*_w) + (_x*_x) + (_y*_y) + (_z*_z);
83
        return sqrt(res);
84
    }
85

    
86
    void normalize()
87
    {
88
        double mag = magnitude();
89
        *this = this->scale(1/mag);
90
    }
91

    
92
    const Quaternion conjugate() const
93
    {
94
        return Quaternion(_w, -_x, -_y, -_z);
95
    }
96

    
97
    void fromAxisAngle(Vector<3> axis, double theta)
98
    {
99
        _w = cos(theta/2);
100
        //only need to calculate sine of half theta once
101
        double sht = sin(theta/2);
102
        _x = axis.x() * sht;
103
        _y = axis.y() * sht;
104
        _z = axis.z() * sht;
105
    }
106

    
107
    void fromMatrix(const Matrix<3>& m)
108
    {
109
        double tr = m.trace();
110

    
111
        double S;
112
        if (tr > 0)
113
        {
114
            S = sqrt(tr+1.0) * 2;
115
            _w = 0.25 * S;
116
            _x = (m(2, 1) - m(1, 2)) / S;
117
            _y = (m(0, 2) - m(2, 0)) / S;
118
            _z = (m(1, 0) - m(0, 1)) / S;
119
        }
120
        else if (m(0, 0) > m(1, 1) && m(0, 0) > m(2, 2))
121
        {
122
            S = sqrt(1.0 + m(0, 0) - m(1, 1) - m(2, 2)) * 2;
123
            _w = (m(2, 1) - m(1, 2)) / S;
124
            _x = 0.25 * S;
125
            _y = (m(0, 1) + m(1, 0)) / S;
126
            _z = (m(0, 2) + m(2, 0)) / S;
127
        }
128
        else if (m(1, 1) > m(2, 2))
129
        {
130
            S = sqrt(1.0 + m(1, 1) - m(0, 0) - m(2, 2)) * 2;
131
            _w = (m(0, 2) - m(2, 0)) / S;
132
            _x = (m(0, 1) + m(1, 0)) / S;
133
            _y = 0.25 * S;
134
            _z = (m(1, 2) + m(2, 1)) / S;
135
        }
136
        else
137
        {
138
            S = sqrt(1.0 + m(2, 2) - m(0, 0) - m(1, 1)) * 2;
139
            _w = (m(1, 0) - m(0, 1)) / S;
140
            _x = (m(0, 2) + m(2, 0)) / S;
141
            _y = (m(1, 2) + m(2, 1)) / S;
142
            _z = 0.25 * S;
143
        }
144
    }
145

    
146
    void toAxisAngle(Vector<3>& axis, float& angle) const
147
    {
148
        float sqw = sqrt(1-_w*_w);
149
        if(sqw == 0) //it's a singularity and divide by zero, avoid
150
            return;
151

    
152
        angle = 2 * acos(_w);
153
        axis.x() = _x / sqw;
154
        axis.y() = _y / sqw;
155
        axis.z() = _z / sqw;
156
    }
157

    
158
    Matrix<3> toMatrix() const
159
    {
160
        Matrix<3> ret;
161
        ret.cell(0, 0) = 1-(2*(_y*_y))-(2*(_z*_z));
162
        ret.cell(0, 1) = (2*_x*_y)-(2*_w*_z);
163
        ret.cell(0, 2) = (2*_x*_z)+(2*_w*_y);
164

    
165
        ret.cell(1, 0) = (2*_x*_y)+(2*_w*_z);
166
        ret.cell(1, 1) = 1-(2*(_x*_x))-(2*(_z*_z));
167
        ret.cell(1, 2) = (2*(_y*_z))-(2*(_w*_x));
168

    
169
        ret.cell(2, 0) = (2*(_x*_z))-(2*_w*_y);
170
        ret.cell(2, 1) = (2*_y*_z)+(2*_w*_x);
171
        ret.cell(2, 2) = 1-(2*(_x*_x))-(2*(_y*_y));
172
        return ret;
173
    }
174

    
175

    
176
    // Returns euler angles that represent the quaternion.  Angles are
177
    // returned in rotation order and right-handed about the specified
178
    // axes:
179
    //
180
    //   v[0] is applied 1st about z (ie, roll)
181
    //   v[1] is applied 2nd about y (ie, pitch)
182
    //   v[2] is applied 3rd about x (ie, yaw)
183
    //
184
    // Note that this means result.x() is not a rotation about x;
185
    // similarly for result.z().
186
    //
187
    Vector<3> toEuler() const
188
    {
189
        Vector<3> ret;
190
        double sqw = _w*_w;
191
        double sqx = _x*_x;
192
        double sqy = _y*_y;
193
        double sqz = _z*_z;
194

    
195
        ret.x() = atan2(2.0*(_x*_y+_z*_w),(sqx-sqy-sqz+sqw));
196
        ret.y() = asin(-2.0*(_x*_z-_y*_w)/(sqx+sqy+sqz+sqw));
197
        ret.z() = atan2(2.0*(_y*_z+_x*_w),(-sqx-sqy+sqz+sqw));
198

    
199
        return ret;
200
    }
201

    
202
    Vector<3> toAngularVelocity(float dt) const
203
    {
204
        Vector<3> ret;
205
        Quaternion one(1.0, 0.0, 0.0, 0.0);
206
        Quaternion delta = one - *this;
207
        Quaternion r = (delta/dt);
208
        r = r * 2;
209
        r = r * one;
210

    
211
        ret.x() = r.x();
212
        ret.y() = r.y();
213
        ret.z() = r.z();
214
        return ret;
215
    }
216

    
217
    Vector<3> rotateVector(Vector<2> v) const
218
    {
219
        Vector<3> ret(v.x(), v.y(), 0.0);
220
        return rotateVector(ret);
221
    }
222

    
223
    Vector<3> rotateVector(Vector<3> v) const
224
    {
225
        Vector<3> qv(this->x(), this->y(), this->z());
226
        Vector<3> t;
227
        t = qv.cross(v) * 2.0;
228
        return v + (t * _w) + qv.cross(t);
229
    }
230

    
231

    
232
    Quaternion operator*(const Quaternion& q) const
233
    {
234
        return Quaternion(
235
            _w*q._w - _x*q._x - _y*q._y - _z*q._z,
236
            _w*q._x + _x*q._w + _y*q._z - _z*q._y,
237
            _w*q._y - _x*q._z + _y*q._w + _z*q._x,
238
            _w*q._z + _x*q._y - _y*q._x + _z*q._w
239
        );
240
    }
241

    
242
    Quaternion operator+(const Quaternion& q) const
243
    {
244
        return Quaternion(_w + q._w, _x + q._x, _y + q._y, _z + q._z);
245
    }
246

    
247
    Quaternion operator-(const Quaternion& q) const
248
    {
249
        return Quaternion(_w - q._w, _x - q._x, _y - q._y, _z - q._z);
250
    }
251

    
252
    Quaternion operator/(double scalar) const
253
    {
254
        return Quaternion(_w / scalar, _x / scalar, _y / scalar, _z / scalar);
255
    }
256

    
257
    Quaternion operator*(double scalar) const
258
    {
259
        return scale(scalar);
260
    }
261

    
262
    Quaternion scale(double scalar) const
263
    {
264
        return Quaternion(_w * scalar, _x * scalar, _y * scalar, _z * scalar);
265
    }
266

    
267
private:
268
    double _w, _x, _y, _z;
269
};
270

    
271
} // namespace
272

    
273
#endif