adafruit_bno055 / utility / vector.h @ 9474f653
History | View | Annotate | Download (4.74 KB)
1 |
/*
|
---|---|
2 |
Inertial Measurement Unit Maths Library
|
3 |
Copyright (C) 2013-2014 Samuel Cowen
|
4 |
www.camelsoftware.com
|
5 |
|
6 |
This program is free software: you can redistribute it and/or modify
|
7 |
it under the terms of the GNU General Public License as published by
|
8 |
the Free Software Foundation, either version 3 of the License, or
|
9 |
(at your option) any later version.
|
10 |
|
11 |
This program is distributed in the hope that it will be useful,
|
12 |
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
14 |
GNU General Public License for more details.
|
15 |
|
16 |
You should have received a copy of the GNU General Public License
|
17 |
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
18 |
*/
|
19 |
|
20 |
#ifndef IMUMATH_VECTOR_HPP
|
21 |
#define IMUMATH_VECTOR_HPP
|
22 |
|
23 |
#include <stdlib.h> |
24 |
#include <string.h> |
25 |
#include <stdint.h> |
26 |
#include <math.h> |
27 |
|
28 |
|
29 |
namespace imu |
30 |
{ |
31 |
|
32 |
template <uint8_t N> class Vector |
33 |
{ |
34 |
public:
|
35 |
Vector() |
36 |
{ |
37 |
p_vec = &p_vec_data[0];
|
38 |
memset(p_vec, 0, sizeof(double)*N); |
39 |
} |
40 |
|
41 |
Vector(double a)
|
42 |
{ |
43 |
p_vec = &p_vec_data[0];
|
44 |
memset(p_vec, 0, sizeof(double)*N); |
45 |
p_vec[0] = a;
|
46 |
} |
47 |
|
48 |
Vector(double a, double b) |
49 |
{ |
50 |
p_vec = &p_vec_data[0];
|
51 |
memset(p_vec, 0, sizeof(double)*N); |
52 |
p_vec[0] = a;
|
53 |
p_vec[1] = b;
|
54 |
} |
55 |
|
56 |
Vector(double a, double b, double c) |
57 |
{ |
58 |
p_vec = &p_vec_data[0];
|
59 |
memset(p_vec, 0, sizeof(double)*N); |
60 |
p_vec[0] = a;
|
61 |
p_vec[1] = b;
|
62 |
p_vec[2] = c;
|
63 |
} |
64 |
|
65 |
Vector(double a, double b, double c, double d) |
66 |
{ |
67 |
p_vec = &p_vec_data[0];
|
68 |
memset(p_vec, 0, sizeof(double)*N); |
69 |
p_vec[0] = a;
|
70 |
p_vec[1] = b;
|
71 |
p_vec[2] = c;
|
72 |
p_vec[3] = d;
|
73 |
} |
74 |
|
75 |
Vector(const Vector<N> &v)
|
76 |
{ |
77 |
p_vec = &p_vec_data[0];
|
78 |
memset(p_vec, 0, sizeof(double)*N); |
79 |
for (int x = 0; x < N; x++ ) |
80 |
p_vec[x] = v.p_vec[x]; |
81 |
} |
82 |
|
83 |
~Vector() |
84 |
{ |
85 |
} |
86 |
|
87 |
uint8_t n() { return N; }
|
88 |
|
89 |
double magnitude()
|
90 |
{ |
91 |
double res = 0; |
92 |
int i;
|
93 |
for(i = 0; i < N; i++) |
94 |
res += (p_vec[i] * p_vec[i]); |
95 |
|
96 |
if(isnan(res))
|
97 |
return 0; |
98 |
if((fabs(res)-1) >= 0.000001) //avoid a sqrt if possible |
99 |
return sqrt(res);
|
100 |
return 1; |
101 |
} |
102 |
|
103 |
void normalize()
|
104 |
{ |
105 |
double mag = magnitude();
|
106 |
if(abs(mag) <= 0.0001) |
107 |
return;
|
108 |
|
109 |
int i;
|
110 |
for(i = 0; i < N; i++) |
111 |
p_vec[i] = p_vec[i]/mag; |
112 |
} |
113 |
|
114 |
double dot(Vector v)
|
115 |
{ |
116 |
double ret = 0; |
117 |
int i;
|
118 |
for(i = 0; i < N; i++) |
119 |
ret += p_vec[i] * v.p_vec[i]; |
120 |
|
121 |
return ret;
|
122 |
} |
123 |
|
124 |
Vector cross(Vector v) |
125 |
{ |
126 |
Vector ret; |
127 |
|
128 |
//the cross product is only valid for vectors with 3 dimensions,
|
129 |
//with the exception of higher dimensional stuff that is beyond the intended scope of this library
|
130 |
if(N != 3) |
131 |
return ret;
|
132 |
|
133 |
ret.p_vec[0] = (p_vec[1] * v.p_vec[2]) - (p_vec[2] * v.p_vec[1]); |
134 |
ret.p_vec[1] = (p_vec[2] * v.p_vec[0]) - (p_vec[0] * v.p_vec[2]); |
135 |
ret.p_vec[2] = (p_vec[0] * v.p_vec[1]) - (p_vec[1] * v.p_vec[0]); |
136 |
return ret;
|
137 |
} |
138 |
|
139 |
Vector scale(double scalar)
|
140 |
{ |
141 |
Vector ret; |
142 |
for(int i = 0; i < N; i++) |
143 |
ret.p_vec[i] = p_vec[i] * scalar; |
144 |
return ret;
|
145 |
} |
146 |
|
147 |
Vector invert() |
148 |
{ |
149 |
Vector ret; |
150 |
for(int i = 0; i < N; i++) |
151 |
ret.p_vec[i] = -p_vec[i]; |
152 |
return ret;
|
153 |
} |
154 |
|
155 |
Vector operator = (Vector v) |
156 |
{ |
157 |
for (int x = 0; x < N; x++ ) |
158 |
p_vec[x] = v.p_vec[x]; |
159 |
return *this;
|
160 |
} |
161 |
|
162 |
double& operator [](int n) |
163 |
{ |
164 |
return p_vec[n];
|
165 |
} |
166 |
|
167 |
double& operator ()(int n) |
168 |
{ |
169 |
return p_vec[n];
|
170 |
} |
171 |
|
172 |
Vector operator + (Vector v) |
173 |
{ |
174 |
Vector ret; |
175 |
for(int i = 0; i < N; i++) |
176 |
ret.p_vec[i] = p_vec[i] + v.p_vec[i]; |
177 |
return ret;
|
178 |
} |
179 |
|
180 |
Vector operator - (Vector v) |
181 |
{ |
182 |
Vector ret; |
183 |
for(int i = 0; i < N; i++) |
184 |
ret.p_vec[i] = p_vec[i] - v.p_vec[i]; |
185 |
return ret;
|
186 |
} |
187 |
|
188 |
Vector operator * (double scalar)
|
189 |
{ |
190 |
return scale(scalar);
|
191 |
} |
192 |
|
193 |
Vector operator / (double scalar)
|
194 |
{ |
195 |
Vector ret; |
196 |
for(int i = 0; i < N; i++) |
197 |
ret.p_vec[i] = p_vec[i] / scalar; |
198 |
return ret;
|
199 |
} |
200 |
|
201 |
void toDegrees()
|
202 |
{ |
203 |
for(int i = 0; i < N; i++) |
204 |
p_vec[i] *= 57.2957795131; //180/pi |
205 |
} |
206 |
|
207 |
void toRadians()
|
208 |
{ |
209 |
for(int i = 0; i < N; i++) |
210 |
p_vec[i] *= 0.01745329251; //pi/180 |
211 |
} |
212 |
|
213 |
double& x() { return p_vec[0]; } |
214 |
double& y() { return p_vec[1]; } |
215 |
double& z() { return p_vec[2]; } |
216 |
|
217 |
|
218 |
private:
|
219 |
double* p_vec;
|
220 |
double p_vec_data[N];
|
221 |
}; |
222 |
|
223 |
|
224 |
}; |
225 |
|
226 |
#endif
|