adafruit_bno055 / utility / quaternion.h @ a64dd7d6
History | View | Annotate | Download (6.503 KB)
| 1 |
/*
|
|---|---|
| 2 |
Inertial Measurement Unit Maths Library
|
| 3 |
Copyright (C) 2013-2014 Samuel Cowen
|
| 4 |
www.camelsoftware.com
|
| 5 |
|
| 6 |
Bug fixes and cleanups by Gé Vissers (gvissers@gmail.com)
|
| 7 |
|
| 8 |
This program is free software: you can redistribute it and/or modify
|
| 9 |
it under the terms of the GNU General Public License as published by
|
| 10 |
the Free Software Foundation, either version 3 of the License, or
|
| 11 |
(at your option) any later version.
|
| 12 |
|
| 13 |
This program is distributed in the hope that it will be useful,
|
| 14 |
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
| 15 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
| 16 |
GNU General Public License for more details.
|
| 17 |
|
| 18 |
You should have received a copy of the GNU General Public License
|
| 19 |
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
| 20 |
*/
|
| 21 |
|
| 22 |
|
| 23 |
#ifndef IMUMATH_QUATERNION_HPP
|
| 24 |
#define IMUMATH_QUATERNION_HPP
|
| 25 |
|
| 26 |
#include <stdlib.h> |
| 27 |
#include <string.h> |
| 28 |
#include <stdint.h> |
| 29 |
#include <math.h> |
| 30 |
|
| 31 |
#include "matrix.h" |
| 32 |
|
| 33 |
|
| 34 |
namespace imu |
| 35 |
{
|
| 36 |
|
| 37 |
class Quaternion |
| 38 |
{
|
| 39 |
public:
|
| 40 |
Quaternion(): _w(1.0), _x(0.0), _y(0.0), _z(0.0) {} |
| 41 |
|
| 42 |
Quaternion(double w, double x, double y, double z): |
| 43 |
_w(w), _x(x), _y(y), _z(z) {}
|
| 44 |
|
| 45 |
Quaternion(double w, Vector<3> vec): |
| 46 |
_w(w), _x(vec.x()), _y(vec.y()), _z(vec.z()) {}
|
| 47 |
|
| 48 |
double& w()
|
| 49 |
{
|
| 50 |
return _w;
|
| 51 |
} |
| 52 |
double& x()
|
| 53 |
{
|
| 54 |
return _x;
|
| 55 |
} |
| 56 |
double& y()
|
| 57 |
{
|
| 58 |
return _y;
|
| 59 |
} |
| 60 |
double& z()
|
| 61 |
{
|
| 62 |
return _z;
|
| 63 |
} |
| 64 |
|
| 65 |
double w() const |
| 66 |
{
|
| 67 |
return _w;
|
| 68 |
} |
| 69 |
double x() const |
| 70 |
{
|
| 71 |
return _x;
|
| 72 |
} |
| 73 |
double y() const |
| 74 |
{
|
| 75 |
return _y;
|
| 76 |
} |
| 77 |
double z() const |
| 78 |
{
|
| 79 |
return _z;
|
| 80 |
} |
| 81 |
|
| 82 |
double magnitude() const |
| 83 |
{
|
| 84 |
return sqrt(_w*_w + _x*_x + _y*_y + _z*_z);
|
| 85 |
} |
| 86 |
|
| 87 |
void normalize()
|
| 88 |
{
|
| 89 |
double mag = magnitude();
|
| 90 |
*this = this->scale(1/mag);
|
| 91 |
} |
| 92 |
|
| 93 |
Quaternion conjugate() const
|
| 94 |
{
|
| 95 |
return Quaternion(_w, -_x, -_y, -_z);
|
| 96 |
} |
| 97 |
|
| 98 |
void fromAxisAngle(const Vector<3>& axis, double theta) |
| 99 |
{
|
| 100 |
_w = cos(theta/2);
|
| 101 |
//only need to calculate sine of half theta once
|
| 102 |
double sht = sin(theta/2); |
| 103 |
_x = axis.x() * sht; |
| 104 |
_y = axis.y() * sht; |
| 105 |
_z = axis.z() * sht; |
| 106 |
} |
| 107 |
|
| 108 |
void fromMatrix(const Matrix<3>& m) |
| 109 |
{
|
| 110 |
double tr = m.trace();
|
| 111 |
|
| 112 |
double S;
|
| 113 |
if (tr > 0) |
| 114 |
{
|
| 115 |
S = sqrt(tr+1.0) * 2; |
| 116 |
_w = 0.25 * S; |
| 117 |
_x = (m(2, 1) - m(1, 2)) / S; |
| 118 |
_y = (m(0, 2) - m(2, 0)) / S; |
| 119 |
_z = (m(1, 0) - m(0, 1)) / S; |
| 120 |
} |
| 121 |
else if (m(0, 0) > m(1, 1) && m(0, 0) > m(2, 2)) |
| 122 |
{
|
| 123 |
S = sqrt(1.0 + m(0, 0) - m(1, 1) - m(2, 2)) * 2; |
| 124 |
_w = (m(2, 1) - m(1, 2)) / S; |
| 125 |
_x = 0.25 * S; |
| 126 |
_y = (m(0, 1) + m(1, 0)) / S; |
| 127 |
_z = (m(0, 2) + m(2, 0)) / S; |
| 128 |
} |
| 129 |
else if (m(1, 1) > m(2, 2)) |
| 130 |
{
|
| 131 |
S = sqrt(1.0 + m(1, 1) - m(0, 0) - m(2, 2)) * 2; |
| 132 |
_w = (m(0, 2) - m(2, 0)) / S; |
| 133 |
_x = (m(0, 1) + m(1, 0)) / S; |
| 134 |
_y = 0.25 * S; |
| 135 |
_z = (m(1, 2) + m(2, 1)) / S; |
| 136 |
} |
| 137 |
else
|
| 138 |
{
|
| 139 |
S = sqrt(1.0 + m(2, 2) - m(0, 0) - m(1, 1)) * 2; |
| 140 |
_w = (m(1, 0) - m(0, 1)) / S; |
| 141 |
_x = (m(0, 2) + m(2, 0)) / S; |
| 142 |
_y = (m(1, 2) + m(2, 1)) / S; |
| 143 |
_z = 0.25 * S; |
| 144 |
} |
| 145 |
} |
| 146 |
|
| 147 |
void toAxisAngle(Vector<3>& axis, double& angle) const |
| 148 |
{
|
| 149 |
double sqw = sqrt(1-_w*_w); |
| 150 |
if (sqw == 0) //it's a singularity and divide by zero, avoid |
| 151 |
return;
|
| 152 |
|
| 153 |
angle = 2 * acos(_w);
|
| 154 |
axis.x() = _x / sqw; |
| 155 |
axis.y() = _y / sqw; |
| 156 |
axis.z() = _z / sqw; |
| 157 |
} |
| 158 |
|
| 159 |
Matrix<3> toMatrix() const |
| 160 |
{
|
| 161 |
Matrix<3> ret;
|
| 162 |
ret.cell(0, 0) = 1 - 2*_y*_y - 2*_z*_z; |
| 163 |
ret.cell(0, 1) = 2*_x*_y - 2*_w*_z; |
| 164 |
ret.cell(0, 2) = 2*_x*_z + 2*_w*_y; |
| 165 |
|
| 166 |
ret.cell(1, 0) = 2*_x*_y + 2*_w*_z; |
| 167 |
ret.cell(1, 1) = 1 - 2*_x*_x - 2*_z*_z; |
| 168 |
ret.cell(1, 2) = 2*_y*_z - 2*_w*_x; |
| 169 |
|
| 170 |
ret.cell(2, 0) = 2*_x*_z - 2*_w*_y; |
| 171 |
ret.cell(2, 1) = 2*_y*_z + 2*_w*_x; |
| 172 |
ret.cell(2, 2) = 1 - 2*_x*_x - 2*_y*_y; |
| 173 |
return ret;
|
| 174 |
} |
| 175 |
|
| 176 |
|
| 177 |
// Returns euler angles that represent the quaternion. Angles are
|
| 178 |
// returned in rotation order and right-handed about the specified
|
| 179 |
// axes:
|
| 180 |
//
|
| 181 |
// v[0] is applied 1st about z (ie, roll)
|
| 182 |
// v[1] is applied 2nd about y (ie, pitch)
|
| 183 |
// v[2] is applied 3rd about x (ie, yaw)
|
| 184 |
//
|
| 185 |
// Note that this means result.x() is not a rotation about x;
|
| 186 |
// similarly for result.z().
|
| 187 |
//
|
| 188 |
Vector<3> toEuler() const |
| 189 |
{
|
| 190 |
Vector<3> ret;
|
| 191 |
double sqw = _w*_w;
|
| 192 |
double sqx = _x*_x;
|
| 193 |
double sqy = _y*_y;
|
| 194 |
double sqz = _z*_z;
|
| 195 |
|
| 196 |
ret.x() = atan2(2.0*(_x*_y+_z*_w),(sqx-sqy-sqz+sqw)); |
| 197 |
ret.y() = asin(-2.0*(_x*_z-_y*_w)/(sqx+sqy+sqz+sqw)); |
| 198 |
ret.z() = atan2(2.0*(_y*_z+_x*_w),(-sqx-sqy+sqz+sqw)); |
| 199 |
|
| 200 |
return ret;
|
| 201 |
} |
| 202 |
|
| 203 |
Vector<3> toAngularVelocity(double dt) const |
| 204 |
{
|
| 205 |
Vector<3> ret;
|
| 206 |
Quaternion one(1.0, 0.0, 0.0, 0.0); |
| 207 |
Quaternion delta = one - *this; |
| 208 |
Quaternion r = (delta/dt); |
| 209 |
r = r * 2;
|
| 210 |
r = r * one; |
| 211 |
|
| 212 |
ret.x() = r.x(); |
| 213 |
ret.y() = r.y(); |
| 214 |
ret.z() = r.z(); |
| 215 |
return ret;
|
| 216 |
} |
| 217 |
|
| 218 |
Vector<3> rotateVector(const Vector<2>& v) const |
| 219 |
{
|
| 220 |
return rotateVector(Vector<3>(v.x(), v.y())); |
| 221 |
} |
| 222 |
|
| 223 |
Vector<3> rotateVector(const Vector<3>& v) const |
| 224 |
{
|
| 225 |
Vector<3> qv(_x, _y, _z);
|
| 226 |
Vector<3> t = qv.cross(v) * 2.0; |
| 227 |
return v + t*_w + qv.cross(t);
|
| 228 |
} |
| 229 |
|
| 230 |
|
| 231 |
Quaternion operator*(const Quaternion& q) const |
| 232 |
{
|
| 233 |
return Quaternion(
|
| 234 |
_w*q._w - _x*q._x - _y*q._y - _z*q._z, |
| 235 |
_w*q._x + _x*q._w + _y*q._z - _z*q._y, |
| 236 |
_w*q._y - _x*q._z + _y*q._w + _z*q._x, |
| 237 |
_w*q._z + _x*q._y - _y*q._x + _z*q._w |
| 238 |
); |
| 239 |
} |
| 240 |
|
| 241 |
Quaternion operator+(const Quaternion& q) const |
| 242 |
{
|
| 243 |
return Quaternion(_w + q._w, _x + q._x, _y + q._y, _z + q._z);
|
| 244 |
} |
| 245 |
|
| 246 |
Quaternion operator-(const Quaternion& q) const |
| 247 |
{
|
| 248 |
return Quaternion(_w - q._w, _x - q._x, _y - q._y, _z - q._z);
|
| 249 |
} |
| 250 |
|
| 251 |
Quaternion operator/(double scalar) const |
| 252 |
{
|
| 253 |
return Quaternion(_w / scalar, _x / scalar, _y / scalar, _z / scalar);
|
| 254 |
} |
| 255 |
|
| 256 |
Quaternion operator*(double scalar) const |
| 257 |
{
|
| 258 |
return scale(scalar);
|
| 259 |
} |
| 260 |
|
| 261 |
Quaternion scale(double scalar) const |
| 262 |
{
|
| 263 |
return Quaternion(_w * scalar, _x * scalar, _y * scalar, _z * scalar);
|
| 264 |
} |
| 265 |
|
| 266 |
private:
|
| 267 |
double _w, _x, _y, _z;
|
| 268 |
}; |
| 269 |
|
| 270 |
} // namespace
|
| 271 |
|
| 272 |
#endif
|