adafruit_bno055 / utility / matrix.h @ c2a8045b
History | View | Annotate | Download (5.109 KB)
| 1 | 
      /*
     | 
  
|---|---|
| 2 | 
          Inertial Measurement Unit Maths Library
     | 
  
| 3 | 
          Copyright (C) 2013-2014  Samuel Cowen
     | 
  
| 4 | 
          www.camelsoftware.com
     | 
  
| 5 | 
       | 
  
| 6 | 
          This program is free software: you can redistribute it and/or modify
     | 
  
| 7 | 
          it under the terms of the GNU General Public License as published by
     | 
  
| 8 | 
          the Free Software Foundation, either version 3 of the License, or
     | 
  
| 9 | 
          (at your option) any later version.
     | 
  
| 10 | 
       | 
  
| 11 | 
          This program is distributed in the hope that it will be useful,
     | 
  
| 12 | 
          but WITHOUT ANY WARRANTY; without even the implied warranty of
     | 
  
| 13 | 
          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     | 
  
| 14 | 
          GNU General Public License for more details.
     | 
  
| 15 | 
       | 
  
| 16 | 
          You should have received a copy of the GNU General Public License
     | 
  
| 17 | 
          along with this program.  If not, see <http://www.gnu.org/licenses/>.
     | 
  
| 18 | 
      */
     | 
  
| 19 | 
       | 
  
| 20 | 
      #ifndef IMUMATH_MATRIX_HPP
     | 
  
| 21 | 
      #define IMUMATH_MATRIX_HPP
     | 
  
| 22 | 
       | 
  
| 23 | 
      #include <stdlib.h>  | 
  
| 24 | 
      #include <string.h>  | 
  
| 25 | 
      #include <stdint.h>  | 
  
| 26 | 
      #include <math.h>  | 
  
| 27 | 
       | 
  
| 28 | 
      #include "vector.h"  | 
  
| 29 | 
       | 
  
| 30 | 
      namespace imu  | 
  
| 31 | 
      {
     | 
  
| 32 | 
       | 
  
| 33 | 
       | 
  
| 34 | 
      template <uint8_t N> class Matrix  | 
  
| 35 | 
      {
     | 
  
| 36 | 
      public:
     | 
  
| 37 | 
      Matrix()  | 
  
| 38 | 
          {
     | 
  
| 39 | 
      int r = sizeof(double)*N;  | 
  
| 40 | 
              _cell = &_cell_data[0];
     | 
  
| 41 | 
              memset(_cell, 0, r*r);
     | 
  
| 42 | 
      }  | 
  
| 43 | 
       | 
  
| 44 | 
          Matrix(const Matrix &v)
     | 
  
| 45 | 
          {
     | 
  
| 46 | 
      int r = sizeof(double)*N;  | 
  
| 47 | 
              _cell = &_cell_data[0];
     | 
  
| 48 | 
              memset(_cell, 0, r*r);
     | 
  
| 49 | 
      for (int x = 0; x < N; x++ )  | 
  
| 50 | 
              {
     | 
  
| 51 | 
      for(int y = 0; y < N; y++)  | 
  
| 52 | 
                  {
     | 
  
| 53 | 
      _cell[x*N+y] = v._cell[x*N+y];  | 
  
| 54 | 
      }  | 
  
| 55 | 
      }  | 
  
| 56 | 
      }  | 
  
| 57 | 
       | 
  
| 58 | 
      ~Matrix()  | 
  
| 59 | 
          {
     | 
  
| 60 | 
      }  | 
  
| 61 | 
       | 
  
| 62 | 
          void operator = (Matrix m)
     | 
  
| 63 | 
          {
     | 
  
| 64 | 
      for(int x = 0; x < N; x++)  | 
  
| 65 | 
              {
     | 
  
| 66 | 
      for(int y = 0; y < N; y++)  | 
  
| 67 | 
                  {
     | 
  
| 68 | 
      cell(x, y) = m.cell(x, y);  | 
  
| 69 | 
      }  | 
  
| 70 | 
      }  | 
  
| 71 | 
      }  | 
  
| 72 | 
       | 
  
| 73 | 
          Vector<N> row_to_vector(int y)
     | 
  
| 74 | 
          {
     | 
  
| 75 | 
      Vector<N> ret;  | 
  
| 76 | 
      for(int i = 0; i < N; i++)  | 
  
| 77 | 
              {
     | 
  
| 78 | 
      ret[i] = _cell[y*N+i];  | 
  
| 79 | 
      }  | 
  
| 80 | 
              return ret;
     | 
  
| 81 | 
      }  | 
  
| 82 | 
       | 
  
| 83 | 
          Vector<N> col_to_vector(int x)
     | 
  
| 84 | 
          {
     | 
  
| 85 | 
      Vector<N> ret;  | 
  
| 86 | 
      for(int i = 0; i < N; i++)  | 
  
| 87 | 
              {
     | 
  
| 88 | 
      ret[i] = _cell[i*N+x];  | 
  
| 89 | 
      }  | 
  
| 90 | 
              return ret;
     | 
  
| 91 | 
      }  | 
  
| 92 | 
       | 
  
| 93 | 
      void vector_to_row(Vector<N> v, int row)  | 
  
| 94 | 
          {
     | 
  
| 95 | 
      for(int i = 0; i < N; i++)  | 
  
| 96 | 
              {
     | 
  
| 97 | 
      cell(row, i) = v(i);  | 
  
| 98 | 
      }  | 
  
| 99 | 
      }  | 
  
| 100 | 
       | 
  
| 101 | 
      void vector_to_col(Vector<N> v, int col)  | 
  
| 102 | 
          {
     | 
  
| 103 | 
      for(int i = 0; i < N; i++)  | 
  
| 104 | 
              {
     | 
  
| 105 | 
      cell(i, col) = v(i);  | 
  
| 106 | 
      }  | 
  
| 107 | 
      }  | 
  
| 108 | 
       | 
  
| 109 | 
      double& operator ()(int x, int y)  | 
  
| 110 | 
          {
     | 
  
| 111 | 
              return _cell[x*N+y];
     | 
  
| 112 | 
      }  | 
  
| 113 | 
       | 
  
| 114 | 
      double& cell(int x, int y)  | 
  
| 115 | 
          {
     | 
  
| 116 | 
              return _cell[x*N+y];
     | 
  
| 117 | 
      }  | 
  
| 118 | 
       | 
  
| 119 | 
       | 
  
| 120 | 
      Matrix operator + (Matrix m)  | 
  
| 121 | 
          {
     | 
  
| 122 | 
      Matrix ret;  | 
  
| 123 | 
      for(int x = 0; x < N; x++)  | 
  
| 124 | 
              {
     | 
  
| 125 | 
      for(int y = 0; y < N; y++)  | 
  
| 126 | 
                  {
     | 
  
| 127 | 
      ret._cell[x*N+y] = _cell[x*N+y] + m._cell[x*N+y];  | 
  
| 128 | 
      }  | 
  
| 129 | 
      }  | 
  
| 130 | 
              return ret;
     | 
  
| 131 | 
      }  | 
  
| 132 | 
       | 
  
| 133 | 
      Matrix operator - (Matrix m)  | 
  
| 134 | 
          {
     | 
  
| 135 | 
      Matrix ret;  | 
  
| 136 | 
      for(int x = 0; x < N; x++)  | 
  
| 137 | 
              {
     | 
  
| 138 | 
      for(int y = 0; y < N; y++)  | 
  
| 139 | 
                  {
     | 
  
| 140 | 
      ret._cell[x*N+y] = _cell[x*N+y] - m._cell[x*N+y];  | 
  
| 141 | 
      }  | 
  
| 142 | 
      }  | 
  
| 143 | 
              return ret;
     | 
  
| 144 | 
      }  | 
  
| 145 | 
       | 
  
| 146 | 
          Matrix operator * (double scalar)
     | 
  
| 147 | 
          {
     | 
  
| 148 | 
      Matrix ret;  | 
  
| 149 | 
      for(int x = 0; x < N; x++)  | 
  
| 150 | 
              {
     | 
  
| 151 | 
      for(int y = 0; y < N; y++)  | 
  
| 152 | 
                  {
     | 
  
| 153 | 
      ret._cell[x*N+y] = _cell[x*N+y] * scalar;  | 
  
| 154 | 
      }  | 
  
| 155 | 
      }  | 
  
| 156 | 
              return ret;
     | 
  
| 157 | 
      }  | 
  
| 158 | 
       | 
  
| 159 | 
      Matrix operator * (Matrix m)  | 
  
| 160 | 
          {
     | 
  
| 161 | 
      Matrix ret;  | 
  
| 162 | 
      for(int x = 0; x < N; x++)  | 
  
| 163 | 
              {
     | 
  
| 164 | 
      for(int y = 0; y < N; y++)  | 
  
| 165 | 
                  {
     | 
  
| 166 | 
      Vector<N> row = row_to_vector(x);  | 
  
| 167 | 
      Vector<N> col = m.col_to_vector(y);  | 
  
| 168 | 
      ret.cell(x, y) = row.dot(col);  | 
  
| 169 | 
      }  | 
  
| 170 | 
      }  | 
  
| 171 | 
              return ret;
     | 
  
| 172 | 
      }  | 
  
| 173 | 
       | 
  
| 174 | 
      Matrix transpose()  | 
  
| 175 | 
          {
     | 
  
| 176 | 
      Matrix ret;  | 
  
| 177 | 
      for(int x = 0; x < N; x++)  | 
  
| 178 | 
              {
     | 
  
| 179 | 
      for(int y = 0; y < N; y++)  | 
  
| 180 | 
                  {
     | 
  
| 181 | 
      ret.cell(y, x) = cell(x, y);  | 
  
| 182 | 
      }  | 
  
| 183 | 
      }  | 
  
| 184 | 
              return ret;
     | 
  
| 185 | 
      }  | 
  
| 186 | 
       | 
  
| 187 | 
      Matrix<N-1> minor_matrix(int row, int col)  | 
  
| 188 | 
          {
     | 
  
| 189 | 
      int colCount = 0, rowCount = 0;  | 
  
| 190 | 
              Matrix<N-1> ret;
     | 
  
| 191 | 
      for(int i = 0; i < N; i++ )  | 
  
| 192 | 
              {
     | 
  
| 193 | 
                  if( i != row )
     | 
  
| 194 | 
                  {
     | 
  
| 195 | 
      for(int j = 0; j < N; j++ )  | 
  
| 196 | 
                      {
     | 
  
| 197 | 
                          if( j != col )
     | 
  
| 198 | 
                          {
     | 
  
| 199 | 
      ret(rowCount, colCount) = cell(i, j);  | 
  
| 200 | 
      colCount++;  | 
  
| 201 | 
      }  | 
  
| 202 | 
      }  | 
  
| 203 | 
      rowCount++;  | 
  
| 204 | 
      }  | 
  
| 205 | 
      }  | 
  
| 206 | 
              return ret;
     | 
  
| 207 | 
      }  | 
  
| 208 | 
       | 
  
| 209 | 
          double determinant()
     | 
  
| 210 | 
          {
     | 
  
| 211 | 
      if(N == 1)  | 
  
| 212 | 
      return cell(0, 0);  | 
  
| 213 | 
       | 
  
| 214 | 
      float det = 0.0;  | 
  
| 215 | 
      for(int i = 0; i < N; i++ )  | 
  
| 216 | 
              {
     | 
  
| 217 | 
      Matrix<N-1> minor = minor_matrix(0, i);  | 
  
| 218 | 
      det += (i%2==1?-1.0:1.0) * cell(0, i) * minor.determinant();  | 
  
| 219 | 
      }  | 
  
| 220 | 
              return det;
     | 
  
| 221 | 
      }  | 
  
| 222 | 
       | 
  
| 223 | 
      Matrix invert()  | 
  
| 224 | 
          {
     | 
  
| 225 | 
      Matrix ret;  | 
  
| 226 | 
              float det = determinant();
     | 
  
| 227 | 
       | 
  
| 228 | 
      for(int x = 0; x < N; x++)  | 
  
| 229 | 
              {
     | 
  
| 230 | 
      for(int y = 0; y < N; y++)  | 
  
| 231 | 
                  {
     | 
  
| 232 | 
                      Matrix<N-1> minor = minor_matrix(y, x);
     | 
  
| 233 | 
      ret(x, y) = det*minor.determinant();  | 
  
| 234 | 
      if( (x+y)%2 == 1)  | 
  
| 235 | 
      ret(x, y) = -ret(x, y);  | 
  
| 236 | 
      }  | 
  
| 237 | 
      }  | 
  
| 238 | 
              return ret;
     | 
  
| 239 | 
      }  | 
  
| 240 | 
       | 
  
| 241 | 
      private:
     | 
  
| 242 | 
          double* _cell;
     | 
  
| 243 | 
          double  _cell_data[N*N];
     | 
  
| 244 | 
      };  | 
  
| 245 | 
       | 
  
| 246 | 
       | 
  
| 247 | 
      };  | 
  
| 248 | 
       | 
  
| 249 | 
      #endif
     | 
  
| 250 | 
       |