adafruit_bno055 / utility / quaternion.h @ f12bf4b5
History | View | Annotate | Download (7.279 KB)
1 |
/*
|
---|---|
2 |
Inertial Measurement Unit Maths Library
|
3 |
Copyright (C) 2013-2014 Samuel Cowen
|
4 |
www.camelsoftware.com
|
5 |
|
6 |
This program is free software: you can redistribute it and/or modify
|
7 |
it under the terms of the GNU General Public License as published by
|
8 |
the Free Software Foundation, either version 3 of the License, or
|
9 |
(at your option) any later version.
|
10 |
|
11 |
This program is distributed in the hope that it will be useful,
|
12 |
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
14 |
GNU General Public License for more details.
|
15 |
|
16 |
You should have received a copy of the GNU General Public License
|
17 |
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
18 |
*/
|
19 |
|
20 |
|
21 |
#ifndef IMUMATH_QUATERNION_HPP
|
22 |
#define IMUMATH_QUATERNION_HPP
|
23 |
|
24 |
#include <stdlib.h> |
25 |
#include <string.h> |
26 |
#include <stdint.h> |
27 |
#include <math.h> |
28 |
|
29 |
#include "vector.h" |
30 |
|
31 |
|
32 |
namespace imu |
33 |
{ |
34 |
|
35 |
|
36 |
|
37 |
class Quaternion |
38 |
{ |
39 |
public:
|
40 |
Quaternion() |
41 |
{ |
42 |
_w = 1.0; |
43 |
_x = _y = _z = 0.0; |
44 |
} |
45 |
|
46 |
Quaternion(double iw, double ix, double iy, double iz) |
47 |
{ |
48 |
_w = iw; |
49 |
_x = ix; |
50 |
_y = iy; |
51 |
_z = iz; |
52 |
} |
53 |
|
54 |
Quaternion(double w, Vector<3> vec) |
55 |
{ |
56 |
_w = w; |
57 |
_x = vec.x(); |
58 |
_y = vec.y(); |
59 |
_z = vec.z(); |
60 |
} |
61 |
|
62 |
double& w()
|
63 |
{ |
64 |
return _w;
|
65 |
} |
66 |
double& x()
|
67 |
{ |
68 |
return _x;
|
69 |
} |
70 |
double& y()
|
71 |
{ |
72 |
return _y;
|
73 |
} |
74 |
double& z()
|
75 |
{ |
76 |
return _z;
|
77 |
} |
78 |
|
79 |
double w() const |
80 |
{ |
81 |
return _w;
|
82 |
} |
83 |
double x() const |
84 |
{ |
85 |
return _x;
|
86 |
} |
87 |
double y() const |
88 |
{ |
89 |
return _y;
|
90 |
} |
91 |
double z() const |
92 |
{ |
93 |
return _z;
|
94 |
} |
95 |
|
96 |
double magnitude() const |
97 |
{ |
98 |
double res = (_w*_w) + (_x*_x) + (_y*_y) + (_z*_z);
|
99 |
return sqrt(res);
|
100 |
} |
101 |
|
102 |
void normalize()
|
103 |
{ |
104 |
double mag = magnitude();
|
105 |
*this = this->scale(1/mag);
|
106 |
} |
107 |
|
108 |
|
109 |
Quaternion conjugate() const
|
110 |
{ |
111 |
Quaternion q; |
112 |
q.w() = _w; |
113 |
q.x() = -_x; |
114 |
q.y() = -_y; |
115 |
q.z() = -_z; |
116 |
return q;
|
117 |
} |
118 |
|
119 |
void fromAxisAngle(Vector<3> axis, double theta) |
120 |
{ |
121 |
_w = cos(theta/2);
|
122 |
//only need to calculate sine of half theta once
|
123 |
double sht = sin(theta/2); |
124 |
_x = axis.x() * sht; |
125 |
_y = axis.y() * sht; |
126 |
_z = axis.z() * sht; |
127 |
} |
128 |
|
129 |
void fromMatrix(Matrix<3> m) |
130 |
{ |
131 |
float tr = m(0, 0) + m(1, 1) + m(2, 2); |
132 |
|
133 |
float S = 0.0; |
134 |
if (tr > 0) |
135 |
{ |
136 |
S = sqrt(tr+1.0) * 2; |
137 |
_w = 0.25 * S; |
138 |
_x = (m(2, 1) - m(1, 2)) / S; |
139 |
_y = (m(0, 2) - m(2, 0)) / S; |
140 |
_z = (m(1, 0) - m(0, 1)) / S; |
141 |
} |
142 |
else if ((m(0, 0) < m(1, 1))&(m(0, 0) < m(2, 2))) |
143 |
{ |
144 |
S = sqrt(1.0 + m(0, 0) - m(1, 1) - m(2, 2)) * 2; |
145 |
_w = (m(2, 1) - m(1, 2)) / S; |
146 |
_x = 0.25 * S; |
147 |
_y = (m(0, 1) + m(1, 0)) / S; |
148 |
_z = (m(0, 2) + m(2, 0)) / S; |
149 |
} |
150 |
else if (m(1, 1) < m(2, 2)) |
151 |
{ |
152 |
S = sqrt(1.0 + m(1, 1) - m(0, 0) - m(2, 2)) * 2; |
153 |
_w = (m(0, 2) - m(2, 0)) / S; |
154 |
_x = (m(0, 1) + m(1, 0)) / S; |
155 |
_y = 0.25 * S; |
156 |
_z = (m(1, 2) + m(2, 1)) / S; |
157 |
} |
158 |
else
|
159 |
{ |
160 |
S = sqrt(1.0 + m(2, 2) - m(0, 0) - m(1, 1)) * 2; |
161 |
_w = (m(1, 0) - m(0, 1)) / S; |
162 |
_x = (m(0, 2) + m(2, 0)) / S; |
163 |
_y = (m(1, 2) + m(2, 1)) / S; |
164 |
_z = 0.25 * S; |
165 |
} |
166 |
} |
167 |
|
168 |
void toAxisAngle(Vector<3>& axis, float& angle) const |
169 |
{ |
170 |
float sqw = sqrt(1-_w*_w); |
171 |
if(sqw == 0) //it's a singularity and divide by zero, avoid |
172 |
return;
|
173 |
|
174 |
angle = 2 * acos(_w);
|
175 |
axis.x() = _x / sqw; |
176 |
axis.y() = _y / sqw; |
177 |
axis.z() = _z / sqw; |
178 |
} |
179 |
|
180 |
Matrix<3> toMatrix() const |
181 |
{ |
182 |
Matrix<3> ret;
|
183 |
ret.cell(0, 0) = 1-(2*(_y*_y))-(2*(_z*_z)); |
184 |
ret.cell(0, 1) = (2*_x*_y)-(2*_w*_z); |
185 |
ret.cell(0, 2) = (2*_x*_z)+(2*_w*_y); |
186 |
|
187 |
ret.cell(1, 0) = (2*_x*_y)+(2*_w*_z); |
188 |
ret.cell(1, 1) = 1-(2*(_x*_x))-(2*(_z*_z)); |
189 |
ret.cell(1, 2) = (2*(_y*_z))-(2*(_w*_x)); |
190 |
|
191 |
ret.cell(2, 0) = (2*(_x*_z))-(2*_w*_y); |
192 |
ret.cell(2, 1) = (2*_y*_z)+(2*_w*_x); |
193 |
ret.cell(2, 2) = 1-(2*(_x*_x))-(2*(_y*_y)); |
194 |
return ret;
|
195 |
} |
196 |
|
197 |
|
198 |
// Returns euler angles that represent the quaternion. Angles are
|
199 |
// returned in rotation order and right-handed about the specified
|
200 |
// axes:
|
201 |
//
|
202 |
// v[0] is applied 1st about z (ie, roll)
|
203 |
// v[1] is applied 2nd about y (ie, pitch)
|
204 |
// v[2] is applied 3rd about x (ie, yaw)
|
205 |
//
|
206 |
// Note that this means result.x() is not a rotation about x;
|
207 |
// similarly for result.z().
|
208 |
//
|
209 |
Vector<3> toEuler() const |
210 |
{ |
211 |
Vector<3> ret;
|
212 |
double sqw = _w*_w;
|
213 |
double sqx = _x*_x;
|
214 |
double sqy = _y*_y;
|
215 |
double sqz = _z*_z;
|
216 |
|
217 |
ret.x() = atan2(2.0*(_x*_y+_z*_w),(sqx-sqy-sqz+sqw)); |
218 |
ret.y() = asin(-2.0*(_x*_z-_y*_w)/(sqx+sqy+sqz+sqw)); |
219 |
ret.z() = atan2(2.0*(_y*_z+_x*_w),(-sqx-sqy+sqz+sqw)); |
220 |
|
221 |
return ret;
|
222 |
} |
223 |
|
224 |
Vector<3> toAngularVelocity(float dt) const |
225 |
{ |
226 |
Vector<3> ret;
|
227 |
Quaternion one(1.0, 0.0, 0.0, 0.0); |
228 |
Quaternion delta = one - *this; |
229 |
Quaternion r = (delta/dt); |
230 |
r = r * 2;
|
231 |
r = r * one; |
232 |
|
233 |
ret.x() = r.x(); |
234 |
ret.y() = r.y(); |
235 |
ret.z() = r.z(); |
236 |
return ret;
|
237 |
} |
238 |
|
239 |
Vector<3> rotateVector(Vector<2> v) const |
240 |
{ |
241 |
Vector<3> ret(v.x(), v.y(), 0.0); |
242 |
return rotateVector(ret);
|
243 |
} |
244 |
|
245 |
Vector<3> rotateVector(Vector<3> v) const |
246 |
{ |
247 |
Vector<3> qv(this->x(), this->y(), this->z());
|
248 |
Vector<3> t;
|
249 |
t = qv.cross(v) * 2.0; |
250 |
return v + (t * _w) + qv.cross(t);
|
251 |
} |
252 |
|
253 |
|
254 |
Quaternion operator * (Quaternion q) const
|
255 |
{ |
256 |
Quaternion ret; |
257 |
ret._w = ((_w*q._w) - (_x*q._x) - (_y*q._y) - (_z*q._z)); |
258 |
ret._x = ((_w*q._x) + (_x*q._w) + (_y*q._z) - (_z*q._y)); |
259 |
ret._y = ((_w*q._y) - (_x*q._z) + (_y*q._w) + (_z*q._x)); |
260 |
ret._z = ((_w*q._z) + (_x*q._y) - (_y*q._x) + (_z*q._w)); |
261 |
return ret;
|
262 |
} |
263 |
|
264 |
Quaternion operator + (Quaternion q) const
|
265 |
{ |
266 |
Quaternion ret; |
267 |
ret._w = _w + q._w; |
268 |
ret._x = _x + q._x; |
269 |
ret._y = _y + q._y; |
270 |
ret._z = _z + q._z; |
271 |
return ret;
|
272 |
} |
273 |
|
274 |
Quaternion operator - (Quaternion q) const
|
275 |
{ |
276 |
Quaternion ret; |
277 |
ret._w = _w - q._w; |
278 |
ret._x = _x - q._x; |
279 |
ret._y = _y - q._y; |
280 |
ret._z = _z - q._z; |
281 |
return ret;
|
282 |
} |
283 |
|
284 |
Quaternion operator / (float scalar) const |
285 |
{ |
286 |
Quaternion ret; |
287 |
ret._w = this->_w/scalar; |
288 |
ret._x = this->_x/scalar; |
289 |
ret._y = this->_y/scalar; |
290 |
ret._z = this->_z/scalar; |
291 |
return ret;
|
292 |
} |
293 |
|
294 |
Quaternion operator * (float scalar) const |
295 |
{ |
296 |
Quaternion ret; |
297 |
ret._w = this->_w*scalar; |
298 |
ret._x = this->_x*scalar; |
299 |
ret._y = this->_y*scalar; |
300 |
ret._z = this->_z*scalar; |
301 |
return ret;
|
302 |
} |
303 |
|
304 |
Quaternion scale(double scalar) const |
305 |
{ |
306 |
Quaternion ret; |
307 |
ret._w = this->_w*scalar; |
308 |
ret._x = this->_x*scalar; |
309 |
ret._y = this->_y*scalar; |
310 |
ret._z = this->_z*scalar; |
311 |
return ret;
|
312 |
} |
313 |
|
314 |
private:
|
315 |
double _w, _x, _y, _z;
|
316 |
}; |
317 |
|
318 |
|
319 |
}; |
320 |
|
321 |
#endif
|