adafruit_bno055 / utility / vector.h @ f12bf4b5
History | View | Annotate | Download (4.79 KB)
1 |
/*
|
---|---|
2 |
Inertial Measurement Unit Maths Library
|
3 |
Copyright (C) 2013-2014 Samuel Cowen
|
4 |
www.camelsoftware.com
|
5 |
|
6 |
This program is free software: you can redistribute it and/or modify
|
7 |
it under the terms of the GNU General Public License as published by
|
8 |
the Free Software Foundation, either version 3 of the License, or
|
9 |
(at your option) any later version.
|
10 |
|
11 |
This program is distributed in the hope that it will be useful,
|
12 |
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
14 |
GNU General Public License for more details.
|
15 |
|
16 |
You should have received a copy of the GNU General Public License
|
17 |
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
18 |
*/
|
19 |
|
20 |
#ifndef IMUMATH_VECTOR_HPP
|
21 |
#define IMUMATH_VECTOR_HPP
|
22 |
|
23 |
#include <stdlib.h> |
24 |
#include <string.h> |
25 |
#include <stdint.h> |
26 |
#include <math.h> |
27 |
|
28 |
|
29 |
namespace imu |
30 |
{ |
31 |
|
32 |
template <uint8_t N> class Vector |
33 |
{ |
34 |
public:
|
35 |
Vector() |
36 |
{ |
37 |
memset(p_vec, 0, sizeof(double)*N); |
38 |
} |
39 |
|
40 |
Vector(double a)
|
41 |
{ |
42 |
memset(p_vec, 0, sizeof(double)*N); |
43 |
p_vec[0] = a;
|
44 |
} |
45 |
|
46 |
Vector(double a, double b) |
47 |
{ |
48 |
memset(p_vec, 0, sizeof(double)*N); |
49 |
p_vec[0] = a;
|
50 |
p_vec[1] = b;
|
51 |
} |
52 |
|
53 |
Vector(double a, double b, double c) |
54 |
{ |
55 |
memset(p_vec, 0, sizeof(double)*N); |
56 |
p_vec[0] = a;
|
57 |
p_vec[1] = b;
|
58 |
p_vec[2] = c;
|
59 |
} |
60 |
|
61 |
Vector(double a, double b, double c, double d) |
62 |
{ |
63 |
memset(p_vec, 0, sizeof(double)*N); |
64 |
p_vec[0] = a;
|
65 |
p_vec[1] = b;
|
66 |
p_vec[2] = c;
|
67 |
p_vec[3] = d;
|
68 |
} |
69 |
|
70 |
Vector(const Vector<N> &v)
|
71 |
{ |
72 |
for (int x = 0; x < N; x++) |
73 |
p_vec[x] = v.p_vec[x]; |
74 |
} |
75 |
|
76 |
~Vector() |
77 |
{ |
78 |
} |
79 |
|
80 |
uint8_t n() { return N; }
|
81 |
|
82 |
double magnitude()
|
83 |
{ |
84 |
double res = 0; |
85 |
int i;
|
86 |
for(i = 0; i < N; i++) |
87 |
res += (p_vec[i] * p_vec[i]); |
88 |
|
89 |
if(isnan(res))
|
90 |
return 0; |
91 |
if((fabs(res-1)) >= 0.000001) // Avoid a sqrt if possible. |
92 |
return sqrt(res);
|
93 |
return 1; |
94 |
} |
95 |
|
96 |
void normalize()
|
97 |
{ |
98 |
double mag = magnitude();
|
99 |
if(abs(mag) <= 0.0001) |
100 |
return;
|
101 |
|
102 |
int i;
|
103 |
for(i = 0; i < N; i++) |
104 |
p_vec[i] = p_vec[i]/mag; |
105 |
} |
106 |
|
107 |
double dot(Vector v)
|
108 |
{ |
109 |
double ret = 0; |
110 |
int i;
|
111 |
for(i = 0; i < N; i++) |
112 |
ret += p_vec[i] * v.p_vec[i]; |
113 |
|
114 |
return ret;
|
115 |
} |
116 |
|
117 |
Vector cross(Vector v) |
118 |
{ |
119 |
Vector ret; |
120 |
|
121 |
// The cross product is only valid for vectors with 3 dimensions,
|
122 |
// with the exception of higher dimensional stuff that is beyond the intended scope of this library
|
123 |
if(N != 3) |
124 |
return ret;
|
125 |
|
126 |
ret.p_vec[0] = (p_vec[1] * v.p_vec[2]) - (p_vec[2] * v.p_vec[1]); |
127 |
ret.p_vec[1] = (p_vec[2] * v.p_vec[0]) - (p_vec[0] * v.p_vec[2]); |
128 |
ret.p_vec[2] = (p_vec[0] * v.p_vec[1]) - (p_vec[1] * v.p_vec[0]); |
129 |
return ret;
|
130 |
} |
131 |
|
132 |
Vector scale(double scalar) const |
133 |
{ |
134 |
Vector ret; |
135 |
for(int i = 0; i < N; i++) |
136 |
ret.p_vec[i] = p_vec[i] * scalar; |
137 |
return ret;
|
138 |
} |
139 |
|
140 |
Vector invert() const
|
141 |
{ |
142 |
Vector ret; |
143 |
for(int i = 0; i < N; i++) |
144 |
ret.p_vec[i] = -p_vec[i]; |
145 |
return ret;
|
146 |
} |
147 |
|
148 |
Vector operator = (Vector v) |
149 |
{ |
150 |
for (int x = 0; x < N; x++ ) |
151 |
p_vec[x] = v.p_vec[x]; |
152 |
return *this;
|
153 |
} |
154 |
|
155 |
double& operator [](int n) |
156 |
{ |
157 |
return p_vec[n];
|
158 |
} |
159 |
|
160 |
double operator [](int n) const |
161 |
{ |
162 |
return p_vec[n];
|
163 |
} |
164 |
|
165 |
double& operator ()(int n) |
166 |
{ |
167 |
return p_vec[n];
|
168 |
} |
169 |
|
170 |
double operator ()(int n) const |
171 |
{ |
172 |
return p_vec[n];
|
173 |
} |
174 |
|
175 |
Vector operator + (Vector v) const
|
176 |
{ |
177 |
Vector ret; |
178 |
for(int i = 0; i < N; i++) |
179 |
ret.p_vec[i] = p_vec[i] + v.p_vec[i]; |
180 |
return ret;
|
181 |
} |
182 |
|
183 |
Vector operator - (Vector v) const
|
184 |
{ |
185 |
Vector ret; |
186 |
for(int i = 0; i < N; i++) |
187 |
ret.p_vec[i] = p_vec[i] - v.p_vec[i]; |
188 |
return ret;
|
189 |
} |
190 |
|
191 |
Vector operator * (double scalar) const |
192 |
{ |
193 |
return scale(scalar);
|
194 |
} |
195 |
|
196 |
Vector operator / (double scalar) const |
197 |
{ |
198 |
Vector ret; |
199 |
for(int i = 0; i < N; i++) |
200 |
ret.p_vec[i] = p_vec[i] / scalar; |
201 |
return ret;
|
202 |
} |
203 |
|
204 |
void toDegrees()
|
205 |
{ |
206 |
for(int i = 0; i < N; i++) |
207 |
p_vec[i] *= 57.2957795131; //180/pi |
208 |
} |
209 |
|
210 |
void toRadians()
|
211 |
{ |
212 |
for(int i = 0; i < N; i++) |
213 |
p_vec[i] *= 0.01745329251; //pi/180 |
214 |
} |
215 |
|
216 |
double& x() { return p_vec[0]; } |
217 |
double& y() { return p_vec[1]; } |
218 |
double& z() { return p_vec[2]; } |
219 |
double x() const { return p_vec[0]; } |
220 |
double y() const { return p_vec[1]; } |
221 |
double z() const { return p_vec[2]; } |
222 |
|
223 |
|
224 |
private:
|
225 |
double p_vec[N];
|
226 |
}; |
227 |
|
228 |
|
229 |
}; |
230 |
|
231 |
#endif
|