adafruit_bno055 / utility / quaternion.h @ master
History | View | Annotate | Download (6.503 KB)
1 |
/*
|
---|---|
2 |
Inertial Measurement Unit Maths Library
|
3 |
Copyright (C) 2013-2014 Samuel Cowen
|
4 |
www.camelsoftware.com
|
5 |
|
6 |
Bug fixes and cleanups by Gé Vissers (gvissers@gmail.com)
|
7 |
|
8 |
This program is free software: you can redistribute it and/or modify
|
9 |
it under the terms of the GNU General Public License as published by
|
10 |
the Free Software Foundation, either version 3 of the License, or
|
11 |
(at your option) any later version.
|
12 |
|
13 |
This program is distributed in the hope that it will be useful,
|
14 |
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
GNU General Public License for more details.
|
17 |
|
18 |
You should have received a copy of the GNU General Public License
|
19 |
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
20 |
*/
|
21 |
|
22 |
|
23 |
#ifndef IMUMATH_QUATERNION_HPP
|
24 |
#define IMUMATH_QUATERNION_HPP
|
25 |
|
26 |
#include <stdlib.h> |
27 |
#include <string.h> |
28 |
#include <stdint.h> |
29 |
#include <math.h> |
30 |
|
31 |
#include "matrix.h" |
32 |
|
33 |
|
34 |
namespace imu |
35 |
{ |
36 |
|
37 |
class Quaternion |
38 |
{ |
39 |
public:
|
40 |
Quaternion(): _w(1.0), _x(0.0), _y(0.0), _z(0.0) {} |
41 |
|
42 |
Quaternion(double w, double x, double y, double z): |
43 |
_w(w), _x(x), _y(y), _z(z) {} |
44 |
|
45 |
Quaternion(double w, Vector<3> vec): |
46 |
_w(w), _x(vec.x()), _y(vec.y()), _z(vec.z()) {} |
47 |
|
48 |
double& w()
|
49 |
{ |
50 |
return _w;
|
51 |
} |
52 |
double& x()
|
53 |
{ |
54 |
return _x;
|
55 |
} |
56 |
double& y()
|
57 |
{ |
58 |
return _y;
|
59 |
} |
60 |
double& z()
|
61 |
{ |
62 |
return _z;
|
63 |
} |
64 |
|
65 |
double w() const |
66 |
{ |
67 |
return _w;
|
68 |
} |
69 |
double x() const |
70 |
{ |
71 |
return _x;
|
72 |
} |
73 |
double y() const |
74 |
{ |
75 |
return _y;
|
76 |
} |
77 |
double z() const |
78 |
{ |
79 |
return _z;
|
80 |
} |
81 |
|
82 |
double magnitude() const |
83 |
{ |
84 |
return sqrt(_w*_w + _x*_x + _y*_y + _z*_z);
|
85 |
} |
86 |
|
87 |
void normalize()
|
88 |
{ |
89 |
double mag = magnitude();
|
90 |
*this = this->scale(1/mag);
|
91 |
} |
92 |
|
93 |
Quaternion conjugate() const
|
94 |
{ |
95 |
return Quaternion(_w, -_x, -_y, -_z);
|
96 |
} |
97 |
|
98 |
void fromAxisAngle(const Vector<3>& axis, double theta) |
99 |
{ |
100 |
_w = cos(theta/2);
|
101 |
//only need to calculate sine of half theta once
|
102 |
double sht = sin(theta/2); |
103 |
_x = axis.x() * sht; |
104 |
_y = axis.y() * sht; |
105 |
_z = axis.z() * sht; |
106 |
} |
107 |
|
108 |
void fromMatrix(const Matrix<3>& m) |
109 |
{ |
110 |
double tr = m.trace();
|
111 |
|
112 |
double S;
|
113 |
if (tr > 0) |
114 |
{ |
115 |
S = sqrt(tr+1.0) * 2; |
116 |
_w = 0.25 * S; |
117 |
_x = (m(2, 1) - m(1, 2)) / S; |
118 |
_y = (m(0, 2) - m(2, 0)) / S; |
119 |
_z = (m(1, 0) - m(0, 1)) / S; |
120 |
} |
121 |
else if (m(0, 0) > m(1, 1) && m(0, 0) > m(2, 2)) |
122 |
{ |
123 |
S = sqrt(1.0 + m(0, 0) - m(1, 1) - m(2, 2)) * 2; |
124 |
_w = (m(2, 1) - m(1, 2)) / S; |
125 |
_x = 0.25 * S; |
126 |
_y = (m(0, 1) + m(1, 0)) / S; |
127 |
_z = (m(0, 2) + m(2, 0)) / S; |
128 |
} |
129 |
else if (m(1, 1) > m(2, 2)) |
130 |
{ |
131 |
S = sqrt(1.0 + m(1, 1) - m(0, 0) - m(2, 2)) * 2; |
132 |
_w = (m(0, 2) - m(2, 0)) / S; |
133 |
_x = (m(0, 1) + m(1, 0)) / S; |
134 |
_y = 0.25 * S; |
135 |
_z = (m(1, 2) + m(2, 1)) / S; |
136 |
} |
137 |
else
|
138 |
{ |
139 |
S = sqrt(1.0 + m(2, 2) - m(0, 0) - m(1, 1)) * 2; |
140 |
_w = (m(1, 0) - m(0, 1)) / S; |
141 |
_x = (m(0, 2) + m(2, 0)) / S; |
142 |
_y = (m(1, 2) + m(2, 1)) / S; |
143 |
_z = 0.25 * S; |
144 |
} |
145 |
} |
146 |
|
147 |
void toAxisAngle(Vector<3>& axis, double& angle) const |
148 |
{ |
149 |
double sqw = sqrt(1-_w*_w); |
150 |
if (sqw == 0) //it's a singularity and divide by zero, avoid |
151 |
return;
|
152 |
|
153 |
angle = 2 * acos(_w);
|
154 |
axis.x() = _x / sqw; |
155 |
axis.y() = _y / sqw; |
156 |
axis.z() = _z / sqw; |
157 |
} |
158 |
|
159 |
Matrix<3> toMatrix() const |
160 |
{ |
161 |
Matrix<3> ret;
|
162 |
ret.cell(0, 0) = 1 - 2*_y*_y - 2*_z*_z; |
163 |
ret.cell(0, 1) = 2*_x*_y - 2*_w*_z; |
164 |
ret.cell(0, 2) = 2*_x*_z + 2*_w*_y; |
165 |
|
166 |
ret.cell(1, 0) = 2*_x*_y + 2*_w*_z; |
167 |
ret.cell(1, 1) = 1 - 2*_x*_x - 2*_z*_z; |
168 |
ret.cell(1, 2) = 2*_y*_z - 2*_w*_x; |
169 |
|
170 |
ret.cell(2, 0) = 2*_x*_z - 2*_w*_y; |
171 |
ret.cell(2, 1) = 2*_y*_z + 2*_w*_x; |
172 |
ret.cell(2, 2) = 1 - 2*_x*_x - 2*_y*_y; |
173 |
return ret;
|
174 |
} |
175 |
|
176 |
|
177 |
// Returns euler angles that represent the quaternion. Angles are
|
178 |
// returned in rotation order and right-handed about the specified
|
179 |
// axes:
|
180 |
//
|
181 |
// v[0] is applied 1st about z (ie, roll)
|
182 |
// v[1] is applied 2nd about y (ie, pitch)
|
183 |
// v[2] is applied 3rd about x (ie, yaw)
|
184 |
//
|
185 |
// Note that this means result.x() is not a rotation about x;
|
186 |
// similarly for result.z().
|
187 |
//
|
188 |
Vector<3> toEuler() const |
189 |
{ |
190 |
Vector<3> ret;
|
191 |
double sqw = _w*_w;
|
192 |
double sqx = _x*_x;
|
193 |
double sqy = _y*_y;
|
194 |
double sqz = _z*_z;
|
195 |
|
196 |
ret.x() = atan2(2.0*(_x*_y+_z*_w),(sqx-sqy-sqz+sqw)); |
197 |
ret.y() = asin(-2.0*(_x*_z-_y*_w)/(sqx+sqy+sqz+sqw)); |
198 |
ret.z() = atan2(2.0*(_y*_z+_x*_w),(-sqx-sqy+sqz+sqw)); |
199 |
|
200 |
return ret;
|
201 |
} |
202 |
|
203 |
Vector<3> toAngularVelocity(double dt) const |
204 |
{ |
205 |
Vector<3> ret;
|
206 |
Quaternion one(1.0, 0.0, 0.0, 0.0); |
207 |
Quaternion delta = one - *this; |
208 |
Quaternion r = (delta/dt); |
209 |
r = r * 2;
|
210 |
r = r * one; |
211 |
|
212 |
ret.x() = r.x(); |
213 |
ret.y() = r.y(); |
214 |
ret.z() = r.z(); |
215 |
return ret;
|
216 |
} |
217 |
|
218 |
Vector<3> rotateVector(const Vector<2>& v) const |
219 |
{ |
220 |
return rotateVector(Vector<3>(v.x(), v.y())); |
221 |
} |
222 |
|
223 |
Vector<3> rotateVector(const Vector<3>& v) const |
224 |
{ |
225 |
Vector<3> qv(_x, _y, _z);
|
226 |
Vector<3> t = qv.cross(v) * 2.0; |
227 |
return v + t*_w + qv.cross(t);
|
228 |
} |
229 |
|
230 |
|
231 |
Quaternion operator*(const Quaternion& q) const |
232 |
{ |
233 |
return Quaternion(
|
234 |
_w*q._w - _x*q._x - _y*q._y - _z*q._z, |
235 |
_w*q._x + _x*q._w + _y*q._z - _z*q._y, |
236 |
_w*q._y - _x*q._z + _y*q._w + _z*q._x, |
237 |
_w*q._z + _x*q._y - _y*q._x + _z*q._w |
238 |
); |
239 |
} |
240 |
|
241 |
Quaternion operator+(const Quaternion& q) const |
242 |
{ |
243 |
return Quaternion(_w + q._w, _x + q._x, _y + q._y, _z + q._z);
|
244 |
} |
245 |
|
246 |
Quaternion operator-(const Quaternion& q) const |
247 |
{ |
248 |
return Quaternion(_w - q._w, _x - q._x, _y - q._y, _z - q._z);
|
249 |
} |
250 |
|
251 |
Quaternion operator/(double scalar) const |
252 |
{ |
253 |
return Quaternion(_w / scalar, _x / scalar, _y / scalar, _z / scalar);
|
254 |
} |
255 |
|
256 |
Quaternion operator*(double scalar) const |
257 |
{ |
258 |
return scale(scalar);
|
259 |
} |
260 |
|
261 |
Quaternion scale(double scalar) const |
262 |
{ |
263 |
return Quaternion(_w * scalar, _x * scalar, _y * scalar, _z * scalar);
|
264 |
} |
265 |
|
266 |
private:
|
267 |
double _w, _x, _y, _z;
|
268 |
}; |
269 |
|
270 |
} // namespace
|
271 |
|
272 |
#endif
|