adafruit_bno055 / utility / vector.h @ master
History | View | Annotate | Download (4.808 KB)
1 |
/*
|
---|---|
2 |
Inertial Measurement Unit Maths Library
|
3 |
Copyright (C) 2013-2014 Samuel Cowen
|
4 |
www.camelsoftware.com
|
5 |
|
6 |
Bug fixes and cleanups by Gé Vissers (gvissers@gmail.com)
|
7 |
|
8 |
This program is free software: you can redistribute it and/or modify
|
9 |
it under the terms of the GNU General Public License as published by
|
10 |
the Free Software Foundation, either version 3 of the License, or
|
11 |
(at your option) any later version.
|
12 |
|
13 |
This program is distributed in the hope that it will be useful,
|
14 |
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
15 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
16 |
GNU General Public License for more details.
|
17 |
|
18 |
You should have received a copy of the GNU General Public License
|
19 |
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
20 |
*/
|
21 |
|
22 |
#ifndef IMUMATH_VECTOR_HPP
|
23 |
#define IMUMATH_VECTOR_HPP
|
24 |
|
25 |
#include <string.h> |
26 |
#include <stdint.h> |
27 |
#include <math.h> |
28 |
|
29 |
|
30 |
namespace imu |
31 |
{ |
32 |
|
33 |
template <uint8_t N> class Vector |
34 |
{ |
35 |
public:
|
36 |
Vector() |
37 |
{ |
38 |
memset(p_vec, 0, sizeof(double)*N); |
39 |
} |
40 |
|
41 |
Vector(double a)
|
42 |
{ |
43 |
memset(p_vec, 0, sizeof(double)*N); |
44 |
p_vec[0] = a;
|
45 |
} |
46 |
|
47 |
Vector(double a, double b) |
48 |
{ |
49 |
memset(p_vec, 0, sizeof(double)*N); |
50 |
p_vec[0] = a;
|
51 |
p_vec[1] = b;
|
52 |
} |
53 |
|
54 |
Vector(double a, double b, double c) |
55 |
{ |
56 |
memset(p_vec, 0, sizeof(double)*N); |
57 |
p_vec[0] = a;
|
58 |
p_vec[1] = b;
|
59 |
p_vec[2] = c;
|
60 |
} |
61 |
|
62 |
Vector(double a, double b, double c, double d) |
63 |
{ |
64 |
memset(p_vec, 0, sizeof(double)*N); |
65 |
p_vec[0] = a;
|
66 |
p_vec[1] = b;
|
67 |
p_vec[2] = c;
|
68 |
p_vec[3] = d;
|
69 |
} |
70 |
|
71 |
Vector(const Vector<N> &v)
|
72 |
{ |
73 |
for (int x = 0; x < N; x++) |
74 |
p_vec[x] = v.p_vec[x]; |
75 |
} |
76 |
|
77 |
~Vector() |
78 |
{ |
79 |
} |
80 |
|
81 |
uint8_t n() { return N; }
|
82 |
|
83 |
double magnitude() const |
84 |
{ |
85 |
double res = 0; |
86 |
for (int i = 0; i < N; i++) |
87 |
res += p_vec[i] * p_vec[i]; |
88 |
|
89 |
return sqrt(res);
|
90 |
} |
91 |
|
92 |
void normalize()
|
93 |
{ |
94 |
double mag = magnitude();
|
95 |
if (isnan(mag) || mag == 0.0) |
96 |
return;
|
97 |
|
98 |
for (int i = 0; i < N; i++) |
99 |
p_vec[i] /= mag; |
100 |
} |
101 |
|
102 |
double dot(const Vector& v) const |
103 |
{ |
104 |
double ret = 0; |
105 |
for (int i = 0; i < N; i++) |
106 |
ret += p_vec[i] * v.p_vec[i]; |
107 |
|
108 |
return ret;
|
109 |
} |
110 |
|
111 |
// The cross product is only valid for vectors with 3 dimensions,
|
112 |
// with the exception of higher dimensional stuff that is beyond
|
113 |
// the intended scope of this library.
|
114 |
// Only a definition for N==3 is given below this class, using
|
115 |
// cross() with another value for N will result in a link error.
|
116 |
Vector cross(const Vector& v) const; |
117 |
|
118 |
Vector scale(double scalar) const |
119 |
{ |
120 |
Vector ret; |
121 |
for(int i = 0; i < N; i++) |
122 |
ret.p_vec[i] = p_vec[i] * scalar; |
123 |
return ret;
|
124 |
} |
125 |
|
126 |
Vector invert() const
|
127 |
{ |
128 |
Vector ret; |
129 |
for(int i = 0; i < N; i++) |
130 |
ret.p_vec[i] = -p_vec[i]; |
131 |
return ret;
|
132 |
} |
133 |
|
134 |
Vector& operator=(const Vector& v)
|
135 |
{ |
136 |
for (int x = 0; x < N; x++ ) |
137 |
p_vec[x] = v.p_vec[x]; |
138 |
return *this;
|
139 |
} |
140 |
|
141 |
double& operator [](int n) |
142 |
{ |
143 |
return p_vec[n];
|
144 |
} |
145 |
|
146 |
double operator [](int n) const |
147 |
{ |
148 |
return p_vec[n];
|
149 |
} |
150 |
|
151 |
double& operator ()(int n) |
152 |
{ |
153 |
return p_vec[n];
|
154 |
} |
155 |
|
156 |
double operator ()(int n) const |
157 |
{ |
158 |
return p_vec[n];
|
159 |
} |
160 |
|
161 |
Vector operator+(const Vector& v) const |
162 |
{ |
163 |
Vector ret; |
164 |
for(int i = 0; i < N; i++) |
165 |
ret.p_vec[i] = p_vec[i] + v.p_vec[i]; |
166 |
return ret;
|
167 |
} |
168 |
|
169 |
Vector operator-(const Vector& v) const |
170 |
{ |
171 |
Vector ret; |
172 |
for(int i = 0; i < N; i++) |
173 |
ret.p_vec[i] = p_vec[i] - v.p_vec[i]; |
174 |
return ret;
|
175 |
} |
176 |
|
177 |
Vector operator * (double scalar) const |
178 |
{ |
179 |
return scale(scalar);
|
180 |
} |
181 |
|
182 |
Vector operator / (double scalar) const |
183 |
{ |
184 |
Vector ret; |
185 |
for(int i = 0; i < N; i++) |
186 |
ret.p_vec[i] = p_vec[i] / scalar; |
187 |
return ret;
|
188 |
} |
189 |
|
190 |
void toDegrees()
|
191 |
{ |
192 |
for(int i = 0; i < N; i++) |
193 |
p_vec[i] *= 57.2957795131; //180/pi |
194 |
} |
195 |
|
196 |
void toRadians()
|
197 |
{ |
198 |
for(int i = 0; i < N; i++) |
199 |
p_vec[i] *= 0.01745329251; //pi/180 |
200 |
} |
201 |
|
202 |
double& x() { return p_vec[0]; } |
203 |
double& y() { return p_vec[1]; } |
204 |
double& z() { return p_vec[2]; } |
205 |
double x() const { return p_vec[0]; } |
206 |
double y() const { return p_vec[1]; } |
207 |
double z() const { return p_vec[2]; } |
208 |
|
209 |
|
210 |
private:
|
211 |
double p_vec[N];
|
212 |
}; |
213 |
|
214 |
|
215 |
template <> |
216 |
inline Vector<3> Vector<3>::cross(const Vector& v) const |
217 |
{ |
218 |
return Vector(
|
219 |
p_vec[1] * v.p_vec[2] - p_vec[2] * v.p_vec[1], |
220 |
p_vec[2] * v.p_vec[0] - p_vec[0] * v.p_vec[2], |
221 |
p_vec[0] * v.p_vec[1] - p_vec[1] * v.p_vec[0] |
222 |
); |
223 |
} |
224 |
|
225 |
} // namespace
|
226 |
|
227 |
#endif
|