|
1 |
/* vim:ts=2:sw=2:expandtab
|
|
2 |
|
|
3 |
Mapping BNO055 Orientation to RGB WS2812 LEDs and DRV2605 Haptics
|
|
4 |
on FeatherBase
|
|
5 |
|
|
6 |
Based on BNO055_MS5637_t3 Basic Example Code by Kris Winer
|
|
7 |
|
|
8 |
Original Winer Comments follow:
|
|
9 |
|
|
10 |
date: October 19, 2014
|
|
11 |
license: Beerware - Use this code however you'd like. If you
|
|
12 |
find it useful you can buy me a beer some time.
|
|
13 |
|
|
14 |
Demonstrates basic BNO055 functionality including parameterizing the register addresses,
|
|
15 |
initializing the sensor, communicating with pressure sensor MS5637,
|
|
16 |
getting properly scaled accelerometer, gyroscope, and magnetometer data out.
|
|
17 |
|
|
18 |
Added display functions to allow display to on breadboard monitor.
|
|
19 |
|
|
20 |
Addition of 9 DoF sensor fusion using open source Madgwick and Mahony filter algorithms.
|
|
21 |
Can compare results to hardware 9 DoF sensor fusion carried out on the BNO055.
|
|
22 |
Sketch runs on the 3.3 V 8 MHz Pro Mini and the Teensy 3.1.
|
|
23 |
|
|
24 |
This sketch is intended specifically for the BNO055+MS5637 Add-On Shield for the Teensy 3.1.
|
|
25 |
It uses SDA/SCL on pins 17/16, respectively, and it uses the Teensy 3.1-specific Wire library i2c_t3.h.
|
|
26 |
|
|
27 |
The Add-on shield can also be used as a stand-alone breakout board for any Arduino, Teensy, or
|
|
28 |
other microcontroller by closing the solder jumpers on the back of the board.
|
|
29 |
|
|
30 |
The MS5637 is a simple but high resolution (24-bit) pressure sensor, which can be used in its high resolution
|
|
31 |
mode but with power consumption of 20 microAmp, or in a lower resolution mode with power consumption of
|
|
32 |
only 1 microAmp. The choice will depend on the application.
|
|
33 |
|
|
34 |
All sensors communicate via I2C at 400 Hz or higher.
|
|
35 |
SDA and SCL should have external pull-up resistors (to 3.3V).
|
|
36 |
4K7 resistors are on the BNO055_MS5637 breakout board.
|
|
37 |
|
|
38 |
Hardware setup:
|
|
39 |
Breakout Board --------- Arduino/Teensy
|
|
40 |
3V3 ---------------------- 3.3V
|
|
41 |
SDA -----------------------A4/17
|
|
42 |
SCL -----------------------A5/16
|
|
43 |
GND ---------------------- GND
|
|
44 |
|
|
45 |
Note: The BNO055_MS5637 breakout board is an I2C sensor and uses the Arduino Wire or Teensy i2c_t3.h library.
|
|
46 |
Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1.
|
|
47 |
We have disabled the internal pull-ups used by the Wire library in the Wire.h/twi.c utility file.
|
|
48 |
We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ to 400000L /twi.h utility file.
|
|
49 |
The Teensy has no internal pullups and we are using the Wire.begin function of the i2c_t3.h library
|
|
50 |
to select 400 Hz i2c speed.
|
|
51 |
*/
|
|
52 |
|
|
53 |
// Uncomment to use BNO055 on address 0x29 instead of 0x28
|
|
54 |
//#define ADO 1
|
|
55 |
|
|
56 |
// use DRV2605 Haptics
|
|
57 |
#define USE_DRV
|
|
58 |
|
|
59 |
#if defined(__MK20DX128__) || defined(__MK20DX256__)
|
|
60 |
#include "i2c_t3.h"
|
|
61 |
#else
|
|
62 |
#include "Wire.h"
|
|
63 |
#endif
|
|
64 |
#include <Adafruit_NeoPixel.h>
|
|
65 |
#ifdef __AVR__
|
|
66 |
#include <avr/power.h> // Required for 16 MHz Adafruit Trinket
|
|
67 |
#endif
|
|
68 |
|
|
69 |
#ifdef USE_DRV
|
|
70 |
#include <Adafruit_DRV2605.h>
|
|
71 |
Adafruit_DRV2605 drv;
|
|
72 |
|
|
73 |
#endif
|
|
74 |
|
|
75 |
// Which pin on the Arduino is connected to the NeoPixels?
|
|
76 |
// On a Trinket or Gemma we suggest changing this to 1:
|
|
77 |
#define LED_PIN A1
|
|
78 |
|
|
79 |
// How many NeoPixels are attached to the Arduino?
|
|
80 |
#define LED_COUNT 2
|
|
81 |
Adafruit_NeoPixel strip(LED_COUNT, LED_PIN, NEO_GRB + NEO_KHZ800);
|
|
82 |
|
|
83 |
//#include <Audio.h>
|
|
84 |
//AudioOutputI2S audioOutput; // audio shield: headphones & line-out
|
|
85 |
|
|
86 |
// Audio Code, Enable AudioOutputI2SQuad line to reproduce
|
|
87 |
// GUItool: begin automatically generated code
|
|
88 |
//AudioSynthWaveform waveform0; //xy=192,380
|
|
89 |
//AudioSynthWaveform waveform1; //xy=192,420
|
|
90 |
//AudioSynthWaveform waveform2; //xy=192,460
|
|
91 |
//AudioSynthWaveform waveform3; //xy=192,500
|
|
92 |
//AudioOutputI2SQuad i2s_quad1; //xy=385.8452453613281,443.1428527832031
|
|
93 |
//AudioConnection patchCord0(waveform0, 0, i2s_quad1, 0);
|
|
94 |
//AudioConnection patchCord1(waveform1, 0, i2s_quad1, 1);
|
|
95 |
//AudioConnection patchCord2(waveform2, 0, i2s_quad1, 2);
|
|
96 |
//AudioConnection patchCord3(waveform3, 0, i2s_quad1, 3);
|
|
97 |
//AudioControlSGTL5000 sgtl5000_2; //xy=381.8453063964844,384.8571472167969
|
|
98 |
//AudioControlSGTL5000 sgtl5000_1; //xy=382.2737731933594,345.14288330078125
|
|
99 |
// GUItool: end automatically generated code
|
|
100 |
|
|
101 |
//#include <SPI.h>
|
|
102 |
|
|
103 |
// BNO055 Register Map
|
|
104 |
// http://ae-bst.resource.bosch.com/media/products/dokumente/bno055/BST_BNO055_DS000_10_Release.pdf
|
|
105 |
//
|
|
106 |
// BNO055 Page 0
|
|
107 |
#define BNO055_CHIP_ID 0x00 // should be 0xA0
|
|
108 |
#define BNO055_ACC_ID 0x01 // should be 0xFB
|
|
109 |
#define BNO055_MAG_ID 0x02 // should be 0x32
|
|
110 |
#define BNO055_GYRO_ID 0x03 // should be 0x0F
|
|
111 |
#define BNO055_SW_REV_ID_LSB 0x04
|
|
112 |
#define BNO055_SW_REV_ID_MSB 0x05
|
|
113 |
#define BNO055_BL_REV_ID 0x06
|
|
114 |
#define BNO055_PAGE_ID 0x07
|
|
115 |
#define BNO055_ACC_DATA_X_LSB 0x08
|
|
116 |
#define BNO055_ACC_DATA_X_MSB 0x09
|
|
117 |
#define BNO055_ACC_DATA_Y_LSB 0x0A
|
|
118 |
#define BNO055_ACC_DATA_Y_MSB 0x0B
|
|
119 |
#define BNO055_ACC_DATA_Z_LSB 0x0C
|
|
120 |
#define BNO055_ACC_DATA_Z_MSB 0x0D
|
|
121 |
#define BNO055_MAG_DATA_X_LSB 0x0E
|
|
122 |
#define BNO055_MAG_DATA_X_MSB 0x0F
|
|
123 |
#define BNO055_MAG_DATA_Y_LSB 0x10
|
|
124 |
#define BNO055_MAG_DATA_Y_MSB 0x11
|
|
125 |
#define BNO055_MAG_DATA_Z_LSB 0x12
|
|
126 |
#define BNO055_MAG_DATA_Z_MSB 0x13
|
|
127 |
#define BNO055_GYR_DATA_X_LSB 0x14
|
|
128 |
#define BNO055_GYR_DATA_X_MSB 0x15
|
|
129 |
#define BNO055_GYR_DATA_Y_LSB 0x16
|
|
130 |
#define BNO055_GYR_DATA_Y_MSB 0x17
|
|
131 |
#define BNO055_GYR_DATA_Z_LSB 0x18
|
|
132 |
#define BNO055_GYR_DATA_Z_MSB 0x19
|
|
133 |
#define BNO055_EUL_HEADING_LSB 0x1A
|
|
134 |
#define BNO055_EUL_HEADING_MSB 0x1B
|
|
135 |
#define BNO055_EUL_ROLL_LSB 0x1C
|
|
136 |
#define BNO055_EUL_ROLL_MSB 0x1D
|
|
137 |
#define BNO055_EUL_PITCH_LSB 0x1E
|
|
138 |
#define BNO055_EUL_PITCH_MSB 0x1F
|
|
139 |
#define BNO055_QUA_DATA_W_LSB 0x20
|
|
140 |
#define BNO055_QUA_DATA_W_MSB 0x21
|
|
141 |
#define BNO055_QUA_DATA_X_LSB 0x22
|
|
142 |
#define BNO055_QUA_DATA_X_MSB 0x23
|
|
143 |
#define BNO055_QUA_DATA_Y_LSB 0x24
|
|
144 |
#define BNO055_QUA_DATA_Y_MSB 0x25
|
|
145 |
#define BNO055_QUA_DATA_Z_LSB 0x26
|
|
146 |
#define BNO055_QUA_DATA_Z_MSB 0x27
|
|
147 |
#define BNO055_LIA_DATA_X_LSB 0x28
|
|
148 |
#define BNO055_LIA_DATA_X_MSB 0x29
|
|
149 |
#define BNO055_LIA_DATA_Y_LSB 0x2A
|
|
150 |
#define BNO055_LIA_DATA_Y_MSB 0x2B
|
|
151 |
#define BNO055_LIA_DATA_Z_LSB 0x2C
|
|
152 |
#define BNO055_LIA_DATA_Z_MSB 0x2D
|
|
153 |
#define BNO055_GRV_DATA_X_LSB 0x2E
|
|
154 |
#define BNO055_GRV_DATA_X_MSB 0x2F
|
|
155 |
#define BNO055_GRV_DATA_Y_LSB 0x30
|
|
156 |
#define BNO055_GRV_DATA_Y_MSB 0x31
|
|
157 |
#define BNO055_GRV_DATA_Z_LSB 0x32
|
|
158 |
#define BNO055_GRV_DATA_Z_MSB 0x33
|
|
159 |
#define BNO055_TEMP 0x34
|
|
160 |
#define BNO055_CALIB_STAT 0x35
|
|
161 |
#define BNO055_ST_RESULT 0x36
|
|
162 |
#define BNO055_INT_STATUS 0x37
|
|
163 |
#define BNO055_SYS_CLK_STATUS 0x38
|
|
164 |
#define BNO055_SYS_STATUS 0x39
|
|
165 |
#define BNO055_SYS_ERR 0x3A
|
|
166 |
#define BNO055_UNIT_SEL 0x3B
|
|
167 |
#define BNO055_OPR_MODE 0x3D
|
|
168 |
#define BNO055_PWR_MODE 0x3E
|
|
169 |
#define BNO055_SYS_TRIGGER 0x3F
|
|
170 |
#define BNO055_TEMP_SOURCE 0x40
|
|
171 |
#define BNO055_AXIS_MAP_CONFIG 0x41
|
|
172 |
#define BNO055_AXIS_MAP_SIGN 0x42
|
|
173 |
#define BNO055_ACC_OFFSET_X_LSB 0x55
|
|
174 |
#define BNO055_ACC_OFFSET_X_MSB 0x56
|
|
175 |
#define BNO055_ACC_OFFSET_Y_LSB 0x57
|
|
176 |
#define BNO055_ACC_OFFSET_Y_MSB 0x58
|
|
177 |
#define BNO055_ACC_OFFSET_Z_LSB 0x59
|
|
178 |
#define BNO055_ACC_OFFSET_Z_MSB 0x5A
|
|
179 |
#define BNO055_MAG_OFFSET_X_LSB 0x5B
|
|
180 |
#define BNO055_MAG_OFFSET_X_MSB 0x5C
|
|
181 |
#define BNO055_MAG_OFFSET_Y_LSB 0x5D
|
|
182 |
#define BNO055_MAG_OFFSET_Y_MSB 0x5E
|
|
183 |
#define BNO055_MAG_OFFSET_Z_LSB 0x5F
|
|
184 |
#define BNO055_MAG_OFFSET_Z_MSB 0x60
|
|
185 |
#define BNO055_GYR_OFFSET_X_LSB 0x61
|
|
186 |
#define BNO055_GYR_OFFSET_X_MSB 0x62
|
|
187 |
#define BNO055_GYR_OFFSET_Y_LSB 0x63
|
|
188 |
#define BNO055_GYR_OFFSET_Y_MSB 0x64
|
|
189 |
#define BNO055_GYR_OFFSET_Z_LSB 0x65
|
|
190 |
#define BNO055_GYR_OFFSET_Z_MSB 0x66
|
|
191 |
#define BNO055_ACC_RADIUS_LSB 0x67
|
|
192 |
#define BNO055_ACC_RADIUS_MSB 0x68
|
|
193 |
#define BNO055_MAG_RADIUS_LSB 0x69
|
|
194 |
#define BNO055_MAG_RADIUS_MSB 0x6A
|
|
195 |
//
|
|
196 |
// BNO055 Page 1
|
|
197 |
#define BNO055_PAGE_ID 0x07
|
|
198 |
#define BNO055_ACC_CONFIG 0x08
|
|
199 |
#define BNO055_MAG_CONFIG 0x09
|
|
200 |
#define BNO055_GYRO_CONFIG_0 0x0A
|
|
201 |
#define BNO055_GYRO_CONFIG_1 0x0B
|
|
202 |
#define BNO055_ACC_SLEEP_CONFIG 0x0C
|
|
203 |
#define BNO055_GYR_SLEEP_CONFIG 0x0D
|
|
204 |
#define BNO055_INT_MSK 0x0F
|
|
205 |
#define BNO055_INT_EN 0x10
|
|
206 |
#define BNO055_ACC_AM_THRES 0x11
|
|
207 |
#define BNO055_ACC_INT_SETTINGS 0x12
|
|
208 |
#define BNO055_ACC_HG_DURATION 0x13
|
|
209 |
#define BNO055_ACC_HG_THRESH 0x14
|
|
210 |
#define BNO055_ACC_NM_THRESH 0x15
|
|
211 |
#define BNO055_ACC_NM_SET 0x16
|
|
212 |
#define BNO055_GYR_INT_SETTINGS 0x17
|
|
213 |
#define BNO055_GYR_HR_X_SET 0x18
|
|
214 |
#define BNO055_GYR_DUR_X 0x19
|
|
215 |
#define BNO055_GYR_HR_Y_SET 0x1A
|
|
216 |
#define BNO055_GYR_DUR_Y 0x1B
|
|
217 |
#define BNO055_GYR_HR_Z_SET 0x1C
|
|
218 |
#define BNO055_GYR_DUR_Z 0x1D
|
|
219 |
#define BNO055_GYR_AM_THRESH 0x1E
|
|
220 |
#define BNO055_GYR_AM_SET 0x1F
|
|
221 |
|
|
222 |
// Using the BNO055_MS5637 breakout board/Teensy 3.1 Add-On Shield, ADO is set to 1 by default
|
|
223 |
#if ADO
|
|
224 |
#define BNO055_ADDRESS 0x29 // Device address of BNO055 when ADO = 1
|
|
225 |
#define MS5637_ADDRESS 0x76 // Address of MS5637 altimeter
|
|
226 |
#else
|
|
227 |
#define BNO055_ADDRESS 0x28 // Device address of BNO055 when ADO = 0
|
|
228 |
#define MS5637_ADDRESS 0x76 // Address of MS5637 altimeter
|
|
229 |
#endif
|
|
230 |
|
|
231 |
#define SerialDebug true // set to true to get Serial output for debugging
|
|
232 |
|
|
233 |
// Set initial input parameters
|
|
234 |
enum Ascale { // ACC Full Scale
|
|
235 |
AFS_2G = 0,
|
|
236 |
AFS_4G,
|
|
237 |
AFS_8G,
|
|
238 |
AFS_18G
|
|
239 |
};
|
|
240 |
|
|
241 |
enum Abw { // ACC Bandwidth
|
|
242 |
ABW_7_81Hz = 0,
|
|
243 |
ABW_15_63Hz,
|
|
244 |
ABW_31_25Hz,
|
|
245 |
ABW_62_5Hz,
|
|
246 |
ABW_125Hz,
|
|
247 |
ABW_250Hz,
|
|
248 |
ABW_500Hz,
|
|
249 |
ABW_1000Hz, //0x07
|
|
250 |
};
|
|
251 |
|
|
252 |
enum APwrMode { // ACC Pwr Mode
|
|
253 |
NormalA = 0,
|
|
254 |
SuspendA,
|
|
255 |
LowPower1A,
|
|
256 |
StandbyA,
|
|
257 |
LowPower2A,
|
|
258 |
DeepSuspendA
|
|
259 |
};
|
|
260 |
|
|
261 |
enum Gscale { // gyro full scale
|
|
262 |
GFS_2000DPS = 0,
|
|
263 |
GFS_1000DPS,
|
|
264 |
GFS_500DPS,
|
|
265 |
GFS_250DPS,
|
|
266 |
GFS_125DPS // 0x04
|
|
267 |
};
|
|
268 |
|
|
269 |
enum GPwrMode { // GYR Pwr Mode
|
|
270 |
NormalG = 0,
|
|
271 |
FastPowerUpG,
|
|
272 |
DeepSuspendedG,
|
|
273 |
SuspendG,
|
|
274 |
AdvancedPowerSaveG
|
|
275 |
};
|
|
276 |
|
|
277 |
enum Gbw { // gyro bandwidth
|
|
278 |
GBW_523Hz = 0,
|
|
279 |
GBW_230Hz,
|
|
280 |
GBW_116Hz,
|
|
281 |
GBW_47Hz,
|
|
282 |
GBW_23Hz,
|
|
283 |
GBW_12Hz,
|
|
284 |
GBW_64Hz,
|
|
285 |
GBW_32Hz
|
|
286 |
};
|
|
287 |
|
|
288 |
enum OPRMode { // BNO-55 operation modes
|
|
289 |
CONFIGMODE = 0x00,
|
|
290 |
// Sensor Mode
|
|
291 |
ACCONLY,
|
|
292 |
MAGONLY,
|
|
293 |
GYROONLY,
|
|
294 |
ACCMAG,
|
|
295 |
ACCGYRO,
|
|
296 |
MAGGYRO,
|
|
297 |
AMG, // 0x07
|
|
298 |
// Fusion Mode
|
|
299 |
IMU,
|
|
300 |
COMPASS,
|
|
301 |
M4G,
|
|
302 |
NDOF_FMC_OFF,
|
|
303 |
NDOF // 0x0C
|
|
304 |
};
|
|
305 |
|
|
306 |
enum PWRMode {
|
|
307 |
Normalpwr = 0,
|
|
308 |
Lowpower,
|
|
309 |
Suspendpwr
|
|
310 |
};
|
|
311 |
|
|
312 |
enum Modr { // magnetometer output data rate
|
|
313 |
MODR_2Hz = 0,
|
|
314 |
MODR_6Hz,
|
|
315 |
MODR_8Hz,
|
|
316 |
MODR_10Hz,
|
|
317 |
MODR_15Hz,
|
|
318 |
MODR_20Hz,
|
|
319 |
MODR_25Hz,
|
|
320 |
MODR_30Hz
|
|
321 |
};
|
|
322 |
|
|
323 |
enum MOpMode { // MAG Op Mode
|
|
324 |
LowPower = 0,
|
|
325 |
Regular,
|
|
326 |
EnhancedRegular,
|
|
327 |
HighAccuracy
|
|
328 |
};
|
|
329 |
|
|
330 |
enum MPwrMode { // MAG power mode
|
|
331 |
Normal = 0,
|
|
332 |
Sleep,
|
|
333 |
Suspend,
|
|
334 |
ForceMode
|
|
335 |
};
|
|
336 |
|
|
337 |
#define ADC_256 0x00 // define pressure and temperature conversion rates
|
|
338 |
#define ADC_512 0x02
|
|
339 |
#define ADC_1024 0x04
|
|
340 |
#define ADC_2048 0x06
|
|
341 |
#define ADC_4096 0x08
|
|
342 |
#define ADC_8192 0x0A
|
|
343 |
#define ADC_D1 0x40
|
|
344 |
#define ADC_D2 0x50
|
|
345 |
|
|
346 |
// Specify sensor configuration
|
|
347 |
uint8_t OSR = ADC_8192; // set pressure amd temperature oversample rate
|
|
348 |
//
|
|
349 |
uint8_t GPwrMode = Normal; // Gyro power mode
|
|
350 |
uint8_t Gscale = GFS_250DPS; // Gyro full scale
|
|
351 |
//uint8_t Godr = GODR_250Hz; // Gyro sample rate
|
|
352 |
uint8_t Gbw = GBW_23Hz; // Gyro bandwidth
|
|
353 |
//
|
|
354 |
uint8_t Ascale = AFS_2G; // Accel full scale
|
|
355 |
//uint8_t Aodr = AODR_250Hz; // Accel sample rate
|
|
356 |
uint8_t APwrMode = Normal; // Accel power mode
|
|
357 |
uint8_t Abw = ABW_31_25Hz; // Accel bandwidth, accel sample rate divided by ABW_divx
|
|
358 |
//
|
|
359 |
//uint8_t Mscale = MFS_4Gauss; // Select magnetometer full-scale resolution
|
|
360 |
uint8_t MOpMode = HighAccuracy; // Select magnetometer perfomance mode
|
|
361 |
uint8_t MPwrMode = Normal; // Select magnetometer power mode
|
|
362 |
uint8_t Modr = MODR_10Hz; // Select magnetometer ODR when in BNO055 bypass mode
|
|
363 |
|
|
364 |
uint8_t PWRMode = Normal ; // Select BNO055 power mode
|
|
365 |
uint8_t OPRMode = NDOF; // specify operation mode for sensors
|
|
366 |
uint8_t status; // BNO055 data status register
|
|
367 |
float aRes, gRes, mRes; // scale resolutions per LSB for the sensors
|
|
368 |
|
|
369 |
// Pin definitions
|
|
370 |
int intPin = 13; // These can be changed, 2 and 3 are the Arduinos ext int pins
|
|
371 |
int myLed = 9;
|
|
372 |
|
|
373 |
uint16_t Pcal[8]; // calibration constants from MS5637 PROM registers
|
|
374 |
unsigned char nCRC; // calculated check sum to ensure PROM integrity
|
|
375 |
uint32_t D1 = 0, D2 = 0; // raw MS5637 pressure and temperature data
|
|
376 |
double dT, OFFSET, SENS, OFFSET2, SENS2; // First order and second order corrections for raw S5637 temperature and pressure data
|
|
377 |
int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output
|
|
378 |
int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output
|
|
379 |
int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output
|
|
380 |
int16_t quatCount[4]; // Stores the 16-bit signed quaternion output
|
|
381 |
int16_t EulCount[3]; // Stores the 16-bit signed Euler angle output
|
|
382 |
int16_t LIACount[3]; // Stores the 16-bit signed linear acceleration output
|
|
383 |
int16_t GRVCount[3]; // Stores the 16-bit signed gravity vector output
|
|
384 |
float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}, magBias[3] = {0, 0, 0}; // Bias corrections for gyro, accelerometer, and magnetometer
|
|
385 |
int16_t tempGCount, tempMCount; // temperature raw count output of mag and gyro
|
|
386 |
float Gtemperature, Mtemperature; // Stores the BNO055 gyro and LIS3MDL mag internal chip temperatures in degrees Celsius
|
|
387 |
double Temperature, Pressure; // stores MS5637 pressures sensor pressure and temperature
|
|
388 |
|
|
389 |
// global constants for 9 DoF fusion and AHRS (Attitude and Heading Reference System)
|
|
390 |
float GyroMeasError = PI * (40.0f / 180.0f); // gyroscope measurement error in rads/s (start at 40 deg/s)
|
|
391 |
float GyroMeasDrift = PI * (0.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s)
|
|
392 |
// There is a tradeoff in the beta parameter between accuracy and response speed.
|
|
393 |
// In the original Madgwick study, beta of 0.041 (corresponding to GyroMeasError of 2.7 degrees/s) was found to give optimal accuracy.
|
|
394 |
// However, with this value, the LSM9SD0 response time is about 10 seconds to a stable initial quaternion.
|
|
395 |
// Subsequent changes also require a longish lag time to a stable output, not fast enough for a quadcopter or robot car!
|
|
396 |
// By increasing beta (GyroMeasError) by about a factor of fifteen, the response time constant is reduced to ~2 sec
|
|
397 |
// I haven't noticed any reduction in solution accuracy. This is essentially the I coefficient in a PID control sense;
|
|
398 |
// the bigger the feedback coefficient, the faster the solution converges, usually at the expense of accuracy.
|
|
399 |
// In any case, this is the free parameter in the Madgwick filtering and fusion scheme.
|
|
400 |
float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta
|
|
401 |
float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value
|
|
402 |
#define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral
|
|
403 |
#define Ki 0.0f
|
|
404 |
|
|
405 |
uint32_t delt_t = 0, count = 0, sumCount = 0; // used to control display output rate
|
|
406 |
float pitch, yaw, roll;
|
|
407 |
float Pitch, Yaw, Roll;
|
|
408 |
float LIAx, LIAy, LIAz, GRVx, GRVy, GRVz;
|
|
409 |
float deltat = 0.0f, sum = 0.0f; // integration interval for both filter schemes
|
|
410 |
uint32_t lastUpdate = 0, firstUpdate = 0; // used to calculate integration interval
|
|
411 |
uint32_t Now = 0; // used to calculate integration interval
|
|
412 |
|
|
413 |
float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values
|
|
414 |
float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
|
|
415 |
float quat[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion
|
|
416 |
float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method
|
|
417 |
|
|
418 |
void setup()
|
|
419 |
{
|
|
420 |
// Wire.begin();
|
|
421 |
// TWBR = 12; // 400 kbit/sec I2C speed for Pro Mini
|
|
422 |
// Setup for Master mode, pins 16/17, external pullups, 400kHz for Teensy 3.1
|
|
423 |
#if defined(__MK20DX128__) || defined(__MK20DX256__)
|
|
424 |
Wire.begin(I2C_MASTER, 0x00, I2C_PINS_18_19, I2C_PULLUP_INT, 400000);
|
|
425 |
#else
|
|
426 |
Wire.begin();
|
|
427 |
#endif
|
|
428 |
|
|
429 |
strip.begin(); // INITIALIZE NeoPixel strip object (REQUIRED)
|
|
430 |
strip.show(); // Turn OFF all pixels ASAP
|
|
431 |
strip.setBrightness(100); // Set BRIGHTNESS to about 1/5 (max = 255)
|
|
432 |
|
|
433 |
#ifdef USE_DRV
|
|
434 |
drv.selectLibrary(6);
|
|
435 |
drv.useLRA();
|
|
436 |
drv.setMode(DRV2605_MODE_REALTIME);
|
|
437 |
pinMode(A3, OUTPUT);
|
|
438 |
digitalWrite(A3, HIGH);
|
|
439 |
#endif
|
|
440 |
|
|
441 |
delay(1000);
|
|
442 |
Serial.begin(115200);
|
|
443 |
|
|
444 |
// Set up the interrupt pin, its set as active high, push-pull
|
|
445 |
pinMode(intPin, INPUT);
|
|
446 |
pinMode(myLed, OUTPUT);
|
|
447 |
digitalWrite(myLed, HIGH);
|
|
448 |
|
|
449 |
/*
|
|
450 |
// scan for i2c devices
|
|
451 |
byte error, address;
|
|
452 |
int nDevices;
|
|
453 |
|
|
454 |
Serial.println("Scanning...");
|
|
455 |
|
|
456 |
nDevices = 0;
|
|
457 |
for(address = 1; address < 127; address++ )
|
|
458 |
{
|
|
459 |
// The i2c_scanner uses the return value of
|
|
460 |
// the Write.endTransmisstion to see if
|
|
461 |
// a device did acknowledge to the address.
|
|
462 |
Wire.beginTransmission(address);
|
|
463 |
error = Wire.endTransmission();
|
|
464 |
|
|
465 |
if (error == 0)
|
|
466 |
{
|
|
467 |
Serial.print("I2C device found at address 0x");
|
|
468 |
if (address<16)
|
|
469 |
Serial.print("0");
|
|
470 |
Serial.print(address,HEX);
|
|
471 |
Serial.println(" !");
|
|
472 |
|
|
473 |
nDevices++;
|
|
474 |
}
|
|
475 |
else if (error==4)
|
|
476 |
{
|
|
477 |
Serial.print("Unknow error at address 0x");
|
|
478 |
if (address<16)
|
|
479 |
Serial.print("0");
|
|
480 |
Serial.println(address,HEX);
|
|
481 |
}
|
|
482 |
}
|
|
483 |
if (nDevices == 0)
|
|
484 |
Serial.println("No I2C devices found\n");
|
|
485 |
else
|
|
486 |
Serial.println("done\n");
|
|
487 |
|
|
488 |
*/
|
|
489 |
|
|
490 |
// Read the WHO_AM_I register, this is a good test of communication
|
|
491 |
Serial.println("BNO055 9-axis motion sensor...");
|
|
492 |
byte c = readByte(BNO055_ADDRESS, BNO055_CHIP_ID); // Read WHO_AM_I register for BNO055
|
|
493 |
Serial.print("BNO055 Address = 0x"); Serial.println(BNO055_ADDRESS, HEX);
|
|
494 |
Serial.print("BNO055 WHO_AM_I = 0x"); Serial.println(BNO055_CHIP_ID, HEX);
|
|
495 |
Serial.print("BNO055 "); Serial.print("I AM "); Serial.print(c, HEX); Serial.println(" I should be 0xA0");
|
|
496 |
|
|
497 |
delay(500);
|
|
498 |
|
|
499 |
// Read the WHO_AM_I register of the accelerometer, this is a good test of communication
|
|
500 |
byte d = readByte(BNO055_ADDRESS, BNO055_ACC_ID); // Read WHO_AM_I register for accelerometer
|
|
501 |
Serial.print("BNO055 ACC "); Serial.print("I AM "); Serial.print(d, HEX); Serial.println(" I should be 0xFB");
|
|
502 |
|
|
503 |
delay(500);
|
|
504 |
|
|
505 |
// Read the WHO_AM_I register of the magnetometer, this is a good test of communication
|
|
506 |
byte e = readByte(BNO055_ADDRESS, BNO055_MAG_ID); // Read WHO_AM_I register for magnetometer
|
|
507 |
Serial.print("BNO055 MAG "); Serial.print("I AM "); Serial.print(e, HEX); Serial.println(" I should be 0x32");
|
|
508 |
|
|
509 |
delay(500);
|
|
510 |
|
|
511 |
// Read the WHO_AM_I register of the gyroscope, this is a good test of communication
|
|
512 |
byte f = readByte(BNO055_ADDRESS, BNO055_GYRO_ID); // Read WHO_AM_I register for LIS3MDL
|
|
513 |
Serial.print("BNO055 GYRO "); Serial.print("I AM "); Serial.print(f, HEX); Serial.println(" I should be 0x0F");
|
|
514 |
|
|
515 |
delay(500);
|
|
516 |
|
|
517 |
if (c == 0xA0) // BNO055 WHO_AM_I should always be 0xA0
|
|
518 |
{
|
|
519 |
Serial.println("BNO055 is online...");
|
|
520 |
|
|
521 |
// Check software revision ID
|
|
522 |
byte swlsb = readByte(BNO055_ADDRESS, BNO055_SW_REV_ID_LSB);
|
|
523 |
byte swmsb = readByte(BNO055_ADDRESS, BNO055_SW_REV_ID_MSB);
|
|
524 |
Serial.print("BNO055 SW Revision ID: "); Serial.print(swmsb, HEX); Serial.print("."); Serial.println(swlsb, HEX);
|
|
525 |
Serial.println("Should be 03.04");
|
|
526 |
|
|
527 |
// Check bootloader version
|
|
528 |
byte blid = readByte(BNO055_ADDRESS, BNO055_BL_REV_ID);
|
|
529 |
Serial.print("BNO055 bootloader Version: "); Serial.println(blid);
|
|
530 |
|
|
531 |
// Check self-test results
|
|
532 |
byte selftest = readByte(BNO055_ADDRESS, BNO055_ST_RESULT);
|
|
533 |
|
|
534 |
if (selftest & 0x01) {
|
|
535 |
Serial.println("accelerometer passed selftest");
|
|
536 |
} else {
|
|
537 |
Serial.println("accelerometer failed selftest");
|
|
538 |
}
|
|
539 |
if (selftest & 0x02) {
|
|
540 |
Serial.println("magnetometer passed selftest");
|
|
541 |
} else {
|
|
542 |
Serial.println("magnetometer failed selftest");
|
|
543 |
}
|
|
544 |
if (selftest & 0x04) {
|
|
545 |
Serial.println("gyroscope passed selftest");
|
|
546 |
} else {
|
|
547 |
Serial.println("gyroscope failed selftest");
|
|
548 |
}
|
|
549 |
if (selftest & 0x08) {
|
|
550 |
Serial.println("MCU passed selftest");
|
|
551 |
} else {
|
|
552 |
Serial.println("MCU failed selftest");
|
|
553 |
}
|
|
554 |
|
|
555 |
delay(500);
|
|
556 |
|
|
557 |
//delay(500);
|
|
558 |
|
|
559 |
//accelgyroCalBNO055(accelBias, gyroBias);
|
|
560 |
|
|
561 |
// Serial.println("Average accelerometer bias (mg) = "); Serial.println(accelBias[0]); Serial.println(accelBias[1]); Serial.println(accelBias[2]);
|
|
562 |
// Serial.println("Average gyro bias (dps) = "); Serial.println(gyroBias[0]); Serial.println(gyroBias[1]); Serial.println(gyroBias[2]);
|
|
563 |
|
|
564 |
//delay(500);
|
|
565 |
|
|
566 |
//magCalBNO055(magBias);
|
|
567 |
|
|
568 |
//Serial.println("Average magnetometer bias (mG) = "); Serial.println(magBias[0]); Serial.println(magBias[1]); Serial.println(magBias[2]);
|
|
569 |
|
|
570 |
// delay(500);
|
|
571 |
|
|
572 |
// Check calibration status of the sensors
|
|
573 |
uint8_t calstat = readByte(BNO055_ADDRESS, BNO055_CALIB_STAT);
|
|
574 |
Serial.println("Not calibrated = 0, fully calibrated = 3");
|
|
575 |
Serial.print("System calibration status "); Serial.println( (0xC0 & calstat) >> 6);
|
|
576 |
Serial.print("Gyro calibration status "); Serial.println( (0x30 & calstat) >> 4);
|
|
577 |
Serial.print("Accel calibration status "); Serial.println( (0x0C & calstat) >> 2);
|
|
578 |
Serial.print("Mag calibration status "); Serial.println( (0x03 & calstat) >> 0);
|
|
579 |
|
|
580 |
initBNO055(); // Initialize the BNO055
|
|
581 |
Serial.println("BNO055 initialized for sensor mode...."); // Initialize BNO055 for sensor read
|
|
582 |
|
|
583 |
}
|
|
584 |
else
|
|
585 |
{
|
|
586 |
Serial.print("Could not connect to BNO055: 0x");
|
|
587 |
Serial.println(c, HEX);
|
|
588 |
while (1) ; // Loop forever if communication doesn't happen
|
|
589 |
}
|
|
590 |
}
|
|
591 |
|
|
592 |
void loop()
|
|
593 |
{
|
|
594 |
|
|
595 |
readAccelData(accelCount); // Read the x/y/z adc values
|
|
596 |
// Now we'll calculate the accleration value into actual mg's
|
|
597 |
ax = (float)accelCount[0] - accelBias[0]; // subtract off calculated accel bias
|
|
598 |
ay = (float)accelCount[1] - accelBias[1];
|
|
599 |
az = (float)accelCount[2] - accelBias[2];
|
|
600 |
|
|
601 |
readGyroData(gyroCount); // Read the x/y/z adc values
|
|
602 |
// Calculate the gyro value into actual degrees per second
|
|
603 |
gx = (float)gyroCount[0] / 16. - gyroBias[0]; // subtract off calculated gyro bias
|
|
604 |
gy = (float)gyroCount[1] / 16. - gyroBias[1];
|
|
605 |
gz = (float)gyroCount[2] / 16. - gyroBias[2];
|
|
606 |
|
|
607 |
readMagData(magCount); // Read the x/y/z adc values
|
|
608 |
// Calculate the magnetometer values in milliGauss
|
|
609 |
mx = (float)magCount[0] / 1.6 - magBias[0]; // get actual magnetometer value in mGauss
|
|
610 |
my = (float)magCount[1] / 1.6 - magBias[1];
|
|
611 |
mz = (float)magCount[2] / 1.6 - magBias[2];
|
|
612 |
|
|
613 |
readQuatData(quatCount); // Read the x/y/z adc values
|
|
614 |
// Calculate the quaternion values
|
|
615 |
quat[0] = (float)(quatCount[0]) / 16384.;
|
|
616 |
quat[1] = (float)(quatCount[1]) / 16384.;
|
|
617 |
quat[2] = (float)(quatCount[2]) / 16384.;
|
|
618 |
quat[3] = (float)(quatCount[3]) / 16384.;
|
|
619 |
|
|
620 |
readEulData(EulCount); // Read the x/y/z adc values
|
|
621 |
// Calculate the Euler angles values in degrees
|
|
622 |
Yaw = (float)EulCount[0] / 16.;
|
|
623 |
Roll = (float)EulCount[1] / 16.;
|
|
624 |
Pitch = (float)EulCount[2] / 16.;
|
|
625 |
|
|
626 |
readLIAData(LIACount); // Read the x/y/z adc values
|
|
627 |
// Calculate the linear acceleration (sans gravity) values in mg
|
|
628 |
LIAx = (float)LIACount[0];
|
|
629 |
LIAy = (float)LIACount[1];
|
|
630 |
LIAz = (float)LIACount[2];
|
|
631 |
|
|
632 |
readGRVData(GRVCount); // Read the x/y/z adc values
|
|
633 |
// Calculate the linear acceleration (sans gravity) values in mg
|
|
634 |
GRVx = (float)GRVCount[0];
|
|
635 |
GRVy = (float)GRVCount[1];
|
|
636 |
GRVz = (float)GRVCount[2];
|
|
637 |
|
|
638 |
Now = micros();
|
|
639 |
deltat = ((Now - lastUpdate) / 1000000.0f); // set integration time by time elapsed since last filter update
|
|
640 |
lastUpdate = Now;
|
|
641 |
|
|
642 |
sum += deltat; // sum for averaging filter update rate
|
|
643 |
sumCount++;
|
|
644 |
|
|
645 |
// Sensors x, y, and z-axes for the three sensor: accel, gyro, and magnetometer are all aligned, so
|
|
646 |
// no allowance for any orientation mismatch in feeding the output to the quaternion filter is required.
|
|
647 |
// For the BNO055, the sensor forward is along the x-axis just like
|
|
648 |
// in the LSM9DS0 and MPU9250 sensors. This rotation can be modified to allow any convenient orientation convention.
|
|
649 |
// This is ok by aircraft orientation standards!
|
|
650 |
// Pass gyro rate as rad/s
|
|
651 |
// MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, mx, my, mz);
|
|
652 |
// MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, mx, my, mz);
|
|
653 |
|
|
654 |
// Serial print and/or display at 0.5 s rate independent of data rates
|
|
655 |
delt_t = millis() - count;
|
|
656 |
if (delt_t > 100) { // update LCD once per half-second independent of read rate
|
|
657 |
|
|
658 |
// check BNO-055 error status at 2 Hz rate
|
|
659 |
uint8_t errstat = readByte(BNO055_ADDRESS, BNO055_CALIB_STAT);
|
|
660 |
if (errstat == 0x01) {
|
|
661 |
uint8_t syserr = readByte(BNO055_ADDRESS, BNO055_SYS_ERR);
|
|
662 |
if (syserr == 0x01) Serial.println("Peripheral initialization error");
|
|
663 |
if (syserr == 0x02) Serial.println("System initialization error");
|
|
664 |
if (syserr == 0x03) Serial.println("Self test result failed");
|
|
665 |
if (syserr == 0x04) Serial.println("Register map value out of range");
|
|
666 |
if (syserr == 0x05) Serial.println("Register map address out of range");
|
|
667 |
if (syserr == 0x06) Serial.println("Register map write error");
|
|
668 |
if (syserr == 0x07) Serial.println("BNO low power mode no available for selected operation mode");
|
|
669 |
if (syserr == 0x08) Serial.println("Accelerometer power mode not available");
|
|
670 |
if (syserr == 0x09) Serial.println("Fusion algorithm configuration error");
|
|
671 |
if (syserr == 0x0A) Serial.println("Sensor configuration error");
|
|
672 |
}
|
|
673 |
|
|
674 |
// Serial.print("ax = "); Serial.print((int)ax);
|
|
675 |
// Serial.print(" ay = "); Serial.print((int)ay);
|
|
676 |
// Serial.print(" az = "); Serial.print((int)az); Serial.println(" mg");
|
|
677 |
// Serial.print("gx = "); Serial.print( gx, 2);
|
|
678 |
// Serial.print(" gy = "); Serial.print( gy, 2);
|
|
679 |
// Serial.print(" gz = "); Serial.print( gz, 2); Serial.println(" deg/s");
|
|
680 |
// Serial.print("mx = "); Serial.print( (int)mx );
|
|
681 |
// Serial.print(" my = "); Serial.print( (int)my );
|
|
682 |
// Serial.print(" mz = "); Serial.print( (int)mz ); Serial.println(" mG");
|
|
683 |
//
|
|
684 |
// Serial.print("qx = "); Serial.print(q[0]);
|
|
685 |
// Serial.print(" qy = "); Serial.print(q[1]);
|
|
686 |
// Serial.print(" qz = "); Serial.print(q[2]);
|
|
687 |
// Serial.print(" qw = "); Serial.println(q[3]);
|
|
688 |
// Serial.print("quatw = "); Serial.print(quat[0]);
|
|
689 |
// Serial.print(" quatx = "); Serial.print(quat[1]);
|
|
690 |
// Serial.print(" quaty = "); Serial.print(quat[2]);
|
|
691 |
// Serial.print(" quatz = "); Serial.println(quat[3]);
|
|
692 |
|
|
693 |
tempGCount = readGyroTempData(); // Read the gyro adc values
|
|
694 |
Gtemperature = (float) tempGCount; // Gyro chip temperature in degrees Centigrade
|
|
695 |
// Print gyro die temperature in degrees Centigrade
|
|
696 |
// Serial.print("Gyro temperature is "); Serial.print(Gtemperature, 1); Serial.println(" degrees C"); // Print T values to tenths of a degree C
|
|
697 |
|
|
698 |
// Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
|
|
699 |
// In this coordinate system, the positive z-axis is down toward Earth.
|
|
700 |
// Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
|
|
701 |
// Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
|
|
702 |
// Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
|
|
703 |
// These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
|
|
704 |
// Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
|
|
705 |
// applied in the correct order which for this configuration is yaw, pitch, and then roll.
|
|
706 |
// For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
|
|
707 |
yaw = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);
|
|
708 |
pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
|
|
709 |
roll = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
|
|
710 |
pitch *= 180.0f / PI;
|
|
711 |
yaw *= 180.0f / PI;
|
|
712 |
// yaw -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
|
|
713 |
roll *= 180.0f / PI;
|
|
714 |
|
|
715 |
// Serial.print("Software Yaw, Pitch, Roll: ");
|
|
716 |
// Serial.print(yaw, 2);
|
|
717 |
// Serial.print(", ");
|
|
718 |
// Serial.print(pitch, 2);
|
|
719 |
// Serial.print(", ");
|
|
720 |
// Serial.println(roll, 2);
|
|
721 |
//
|
|
722 |
// Serial.print("Hardware Yaw, Pitch, Roll: ");
|
|
723 |
// Serial.print(Yaw, 2);
|
|
724 |
// Serial.print(", ");
|
|
725 |
// Serial.print(Pitch, 2);
|
|
726 |
// Serial.print(", ");
|
|
727 |
// Serial.println(Roll, 2);
|
|
728 |
//
|
|
729 |
// Serial.print("Hardware x, y, z linear acceleration: ");
|
|
730 |
// Serial.print(LIAx, 2);
|
|
731 |
// Serial.print(", ");
|
|
732 |
// Serial.print(LIAy, 2);
|
|
733 |
// Serial.print(", ");
|
|
734 |
// Serial.println(LIAz, 2);
|
|
735 |
|
|
736 |
Serial.print("Hardware x, y, z gravity vector: ");
|
|
737 |
Serial.print(GRVx, 2);
|
|
738 |
Serial.print(", ");
|
|
739 |
Serial.print(GRVy, 2);
|
|
740 |
Serial.print(", ");
|
|
741 |
Serial.println(GRVz, 2);
|
|
742 |
|
|
743 |
Serial.print("rate = "); Serial.print((float)sumCount / sum, 2); Serial.println(" Hz");
|
|
744 |
uint8_t r = map (GRVx, -1000, 1000, 0, 255);
|
|
745 |
uint8_t g = map (GRVy, -1000, 1000, 0, 255);
|
|
746 |
uint8_t b = map (GRVz, -1000, 1000, 0, 255);
|
|
747 |
Serial.print("LED Data: ");
|
|
748 |
Serial.print(r);
|
|
749 |
Serial.print(", ");
|
|
750 |
Serial.print(g);
|
|
751 |
Serial.print(", ");
|
|
752 |
Serial.println(b);
|
|
753 |
strip.setPixelColor(0, r, g, b); // Set pixel 'c' to value 'color'
|
|
754 |
strip.setPixelColor(1, 255-r, 255-g, 255-b); // Set pixel 'c' to value 'color'
|
|
755 |
strip.show(); // Turn OFF all pixels ASAP
|
|
756 |
|
|
757 |
digitalWrite(myLed, !digitalRead(myLed));
|
|
758 |
count = millis();
|
|
759 |
sumCount = 0;
|
|
760 |
sum = 0;
|
|
761 |
|
|
762 |
#ifdef USE_DRV
|
|
763 |
drv.setRealtimeValue(map(GRVx, -1000, 1000, 0, 127));
|
|
764 |
#endif
|
|
765 |
}
|
|
766 |
|
|
767 |
}
|
|
768 |
|
|
769 |
//===================================================================================================================
|
|
770 |
//====== Set of useful function to access acceleration. gyroscope, magnetometer, and temperature data
|
|
771 |
//===================================================================================================================
|
|
772 |
|
|
773 |
void readAccelData(int16_t * destination)
|
|
774 |
{
|
|
775 |
uint8_t rawData[6]; // x/y/z accel register data stored here
|
|
776 |
readBytes(BNO055_ADDRESS, BNO055_ACC_DATA_X_LSB, 6, &rawData[0]); // Read the six raw data registers into data array
|
|
777 |
destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value
|
|
778 |
destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ;
|
|
779 |
destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ;
|
|
780 |
}
|
|
781 |
|
|
782 |
void readGyroData(int16_t * destination)
|
|
783 |
{
|
|
784 |
uint8_t rawData[6]; // x/y/z gyro register data stored here
|
|
785 |
readBytes(BNO055_ADDRESS, BNO055_GYR_DATA_X_LSB, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
|
|
786 |
destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value
|
|
787 |
destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ;
|
|
788 |
destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ;
|
|
789 |
}
|
|
790 |
|
|
791 |
int8_t readGyroTempData()
|
|
792 |
{
|
|
793 |
return readByte(BNO055_ADDRESS, BNO055_TEMP); // Read the two raw data registers sequentially into data array
|
|
794 |
}
|
|
795 |
|
|
796 |
void readMagData(int16_t * destination)
|
|
797 |
{
|
|
798 |
uint8_t rawData[6]; // x/y/z gyro register data stored here
|
|
799 |
readBytes(BNO055_ADDRESS, BNO055_MAG_DATA_X_LSB, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
|
|
800 |
destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value
|
|
801 |
destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ;
|
|
802 |
destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ;
|
|
803 |
}
|
|
804 |
|
|
805 |
void readQuatData(int16_t * destination)
|
|
806 |
{
|
|
807 |
uint8_t rawData[8]; // x/y/z gyro register data stored here
|
|
808 |
readBytes(BNO055_ADDRESS, BNO055_QUA_DATA_W_LSB, 8, &rawData[0]); // Read the six raw data registers sequentially into data array
|
|
809 |
destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value
|
|
810 |
destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ;
|
|
811 |
destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ;
|
|
812 |
destination[3] = ((int16_t)rawData[7] << 8) | rawData[6] ;
|
|
813 |
}
|
|
814 |
|
|
815 |
void readEulData(int16_t * destination)
|
|
816 |
{
|
|
817 |
uint8_t rawData[6]; // x/y/z gyro register data stored here
|
|
818 |
readBytes(BNO055_ADDRESS, BNO055_EUL_HEADING_LSB, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
|
|
819 |
destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value
|
|
820 |
destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ;
|
|
821 |
destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ;
|
|
822 |
}
|
|
823 |
|
|
824 |
void readLIAData(int16_t * destination)
|
|
825 |
{
|
|
826 |
uint8_t rawData[6]; // x/y/z gyro register data stored here
|
|
827 |
readBytes(BNO055_ADDRESS, BNO055_LIA_DATA_X_LSB, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
|
|
828 |
destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value
|
|
829 |
destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ;
|
|
830 |
destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ;
|
|
831 |
}
|
|
832 |
|
|
833 |
void readGRVData(int16_t * destination)
|
|
834 |
{
|
|
835 |
uint8_t rawData[6]; // x/y/z gyro register data stored here
|
|
836 |
readBytes(BNO055_ADDRESS, BNO055_GRV_DATA_X_LSB, 6, &rawData[0]); // Read the six raw data registers sequentially into data array
|
|
837 |
destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value
|
|
838 |
destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ;
|
|
839 |
destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ;
|
|
840 |
}
|
|
841 |
|
|
842 |
void initBNO055() {
|
|
843 |
// Select page 1 to configure sensors
|
|
844 |
writeByte(BNO055_ADDRESS, BNO055_PAGE_ID, 0x01);
|
|
845 |
// Configure ACC
|
|
846 |
writeByte(BNO055_ADDRESS, BNO055_ACC_CONFIG, APwrMode << 5 | Abw << 3 | Ascale );
|
|
847 |
// Configure GYR
|
|
848 |
writeByte(BNO055_ADDRESS, BNO055_GYRO_CONFIG_0, Gbw << 3 | Gscale );
|
|
849 |
writeByte(BNO055_ADDRESS, BNO055_GYRO_CONFIG_1, GPwrMode);
|
|
850 |
// Configure MAG
|
|
851 |
writeByte(BNO055_ADDRESS, BNO055_MAG_CONFIG, MPwrMode << 4 | MOpMode << 2 | Modr );
|
|
852 |
|
|
853 |
// Select page 0 to read sensors
|
|
854 |
writeByte(BNO055_ADDRESS, BNO055_PAGE_ID, 0x00);
|
|
855 |
|
|
856 |
// Select BNO055 gyro temperature source
|
|
857 |
writeByte(BNO055_ADDRESS, BNO055_TEMP_SOURCE, 0x01 );
|
|
858 |
|
|
859 |
// Select BNO055 sensor units (temperature in degrees C, rate in dps, accel in mg)
|
|
860 |
writeByte(BNO055_ADDRESS, BNO055_UNIT_SEL, 0x01 );
|
|
861 |
|
|
862 |
// Select BNO055 system power mode
|
|
863 |
writeByte(BNO055_ADDRESS, BNO055_PWR_MODE, PWRMode );
|
|
864 |
|
|
865 |
// Select BNO055 system operation mode
|
|
866 |
writeByte(BNO055_ADDRESS, BNO055_OPR_MODE, OPRMode );
|
|
867 |
}
|
|
868 |
|
|
869 |
void accelgyroCalBNO055(float * dest1, float * dest2)
|
|
870 |
{
|
|
871 |
uint8_t data[6]; // data array to hold accelerometer and gyro x, y, z, data
|
|
872 |
uint16_t ii = 0, sample_count = 0;
|
|
873 |
int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
|
|
874 |
|
|
875 |
Serial.println("Accel/Gyro Calibration: Put device on a level surface and keep motionless! Wait......");
|
|
876 |
delay(1000);
|
|
877 |
|
|
878 |
// Select page 0 to read sensors
|
|
879 |
writeByte(BNO055_ADDRESS, BNO055_PAGE_ID, 0x00);
|
|
880 |
// Select BNO055 system operation mode as NDOF for calibration
|
|
881 |
writeByte(BNO055_ADDRESS, BNO055_OPR_MODE, CONFIGMODE );
|
|
882 |
delay(25);
|
|
883 |
writeByte(BNO055_ADDRESS, BNO055_OPR_MODE, NDOF );
|
|
884 |
|
|
885 |
// In NDF fusion mode, accel full scale is at +/- 4g, ODR is 62.5 Hz
|
|
886 |
sample_count = 256;
|
|
887 |
for (ii = 0; ii < sample_count; ii++) {
|
|
888 |
int16_t accel_temp[3] = {0, 0, 0};
|
|
889 |
readBytes(BNO055_ADDRESS, BNO055_ACC_DATA_X_LSB, 6, &data[0]); // Read the six raw data registers into data array
|
|
890 |
accel_temp[0] = (int16_t) (((int16_t)data[1] << 8) | data[0]) ; // Form signed 16-bit integer for each sample in FIFO
|
|
891 |
accel_temp[1] = (int16_t) (((int16_t)data[3] << 8) | data[2]) ;
|
|
892 |
accel_temp[2] = (int16_t) (((int16_t)data[5] << 8) | data[4]) ;
|
|
893 |
accel_bias[0] += (int32_t) accel_temp[0];
|
|
894 |
accel_bias[1] += (int32_t) accel_temp[1];
|
|
895 |
accel_bias[2] += (int32_t) accel_temp[2];
|
|
896 |
delay(20); // at 62.5 Hz ODR, new accel data is available every 16 ms
|
|
897 |
}
|
|
898 |
accel_bias[0] /= (int32_t) sample_count; // get average accel bias in mg
|
|
899 |
accel_bias[1] /= (int32_t) sample_count;
|
|
900 |
accel_bias[2] /= (int32_t) sample_count;
|
|
901 |
|
|
902 |
if (accel_bias[2] > 0L) {
|
|
903 |
accel_bias[2] -= (int32_t) 1000; // Remove gravity from the z-axis accelerometer bias calculation
|
|
904 |
}
|
|
905 |
else {
|
|
906 |
accel_bias[2] += (int32_t) 1000;
|
|
907 |
}
|
|
908 |
|
|
909 |
dest1[0] = (float) accel_bias[0]; // save accel biases in mg for use in main program
|
|
910 |
dest1[1] = (float) accel_bias[1]; // accel data is 1 LSB/mg
|
|
911 |
dest1[2] = (float) accel_bias[2];
|
|
912 |
|
|
913 |
// In NDF fusion mode, gyro full scale is at +/- 2000 dps, ODR is 32 Hz
|
|
914 |
for (ii = 0; ii < sample_count; ii++) {
|
|
915 |
int16_t gyro_temp[3] = {0, 0, 0};
|
|
916 |
readBytes(BNO055_ADDRESS, BNO055_GYR_DATA_X_LSB, 6, &data[0]); // Read the six raw data registers into data array
|
|
917 |
gyro_temp[0] = (int16_t) (((int16_t)data[1] << 8) | data[0]) ; // Form signed 16-bit integer for each sample in FIFO
|
|
918 |
gyro_temp[1] = (int16_t) (((int16_t)data[3] << 8) | data[2]) ;
|
|
919 |
gyro_temp[2] = (int16_t) (((int16_t)data[5] << 8) | data[4]) ;
|
|
920 |
gyro_bias[0] += (int32_t) gyro_temp[0];
|
|
921 |
gyro_bias[1] += (int32_t) gyro_temp[1];
|
|
922 |
gyro_bias[2] += (int32_t) gyro_temp[2];
|
|
923 |
delay(35); // at 32 Hz ODR, new gyro data available every 31 ms
|
|
924 |
}
|
|
925 |
gyro_bias[0] /= (int32_t) sample_count; // get average gyro bias in counts
|
|
926 |
gyro_bias[1] /= (int32_t) sample_count;
|
|
927 |
gyro_bias[2] /= (int32_t) sample_count;
|
|
928 |
|
|
929 |
dest2[0] = (float) gyro_bias[0] / 16.; // save gyro biases in dps for use in main program
|
|
930 |
dest2[1] = (float) gyro_bias[1] / 16.; // gyro data is 16 LSB/dps
|
|
931 |
dest2[2] = (float) gyro_bias[2] / 16.;
|
|
932 |
|
|
933 |
// Return to config mode to write accelerometer biases in offset register
|
|
934 |
// This offset register is only used while in fusion mode when accelerometer full-scale is +/- 4g
|
|
935 |
writeByte(BNO055_ADDRESS, BNO055_OPR_MODE, CONFIGMODE );
|
|
936 |
delay(25);
|
|
937 |
|
|
938 |
//write biases to accelerometer offset registers ad 16 LSB/dps
|
|
939 |
writeByte(BNO055_ADDRESS, BNO055_ACC_OFFSET_X_LSB, (int16_t)accel_bias[0] & 0xFF);
|
|
940 |
writeByte(BNO055_ADDRESS, BNO055_ACC_OFFSET_X_MSB, ((int16_t)accel_bias[0] >> 8) & 0xFF);
|
|
941 |
writeByte(BNO055_ADDRESS, BNO055_ACC_OFFSET_Y_LSB, (int16_t)accel_bias[1] & 0xFF);
|
|
942 |
writeByte(BNO055_ADDRESS, BNO055_ACC_OFFSET_Y_MSB, ((int16_t)accel_bias[1] >> 8) & 0xFF);
|
|
943 |
writeByte(BNO055_ADDRESS, BNO055_ACC_OFFSET_Z_LSB, (int16_t)accel_bias[2] & 0xFF);
|
|
944 |
writeByte(BNO055_ADDRESS, BNO055_ACC_OFFSET_Z_MSB, ((int16_t)accel_bias[2] >> 8) & 0xFF);
|
|
945 |
|
|
946 |
// Check that offsets were properly written to offset registers
|
|
947 |
// Serial.println("Average accelerometer bias = ");
|
|
948 |
// Serial.println((int16_t)((int16_t)readByte(BNO055_ADDRESS, BNO055_ACC_OFFSET_X_MSB) << 8 | readByte(BNO055_ADDRESS, BNO055_ACC_OFFSET_X_LSB)));
|
|
949 |
// Serial.println((int16_t)((int16_t)readByte(BNO055_ADDRESS, BNO055_ACC_OFFSET_Y_MSB) << 8 | readByte(BNO055_ADDRESS, BNO055_ACC_OFFSET_Y_LSB)));
|
|
950 |
// Serial.println((int16_t)((int16_t)readByte(BNO055_ADDRESS, BNO055_ACC_OFFSET_Z_MSB) << 8 | readByte(BNO055_ADDRESS, BNO055_ACC_OFFSET_Z_LSB)));
|
|
951 |
|
|
952 |
//write biases to gyro offset registers
|
|
953 |
writeByte(BNO055_ADDRESS, BNO055_GYR_OFFSET_X_LSB, (int16_t)gyro_bias[0] & 0xFF);
|
|
954 |
writeByte(BNO055_ADDRESS, BNO055_GYR_OFFSET_X_MSB, ((int16_t)gyro_bias[0] >> 8) & 0xFF);
|
|
955 |
writeByte(BNO055_ADDRESS, BNO055_GYR_OFFSET_Y_LSB, (int16_t)gyro_bias[1] & 0xFF);
|
|
956 |
writeByte(BNO055_ADDRESS, BNO055_GYR_OFFSET_Y_MSB, ((int16_t)gyro_bias[1] >> 8) & 0xFF);
|
|
957 |
writeByte(BNO055_ADDRESS, BNO055_GYR_OFFSET_Z_LSB, (int16_t)gyro_bias[2] & 0xFF);
|
|
958 |
writeByte(BNO055_ADDRESS, BNO055_GYR_OFFSET_Z_MSB, ((int16_t)gyro_bias[2] >> 8) & 0xFF);
|
|
959 |
|
|
960 |
// Select BNO055 system operation mode
|
|
961 |
writeByte(BNO055_ADDRESS, BNO055_OPR_MODE, OPRMode );
|
|
962 |
|
|
963 |
// Check that offsets were properly written to offset registers
|
|
964 |
// Serial.println("Average gyro bias = ");
|
|
965 |
// Serial.println((int16_t)((int16_t)readByte(BNO055_ADDRESS, BNO055_GYR_OFFSET_X_MSB) << 8 | readByte(BNO055_ADDRESS, BNO055_GYR_OFFSET_X_LSB)));
|
|
966 |
// Serial.println((int16_t)((int16_t)readByte(BNO055_ADDRESS, BNO055_GYR_OFFSET_Y_MSB) << 8 | readByte(BNO055_ADDRESS, BNO055_GYR_OFFSET_Y_LSB)));
|
|
967 |
// Serial.println((int16_t)((int16_t)readByte(BNO055_ADDRESS, BNO055_GYR_OFFSET_Z_MSB) << 8 | readByte(BNO055_ADDRESS, BNO055_GYR_OFFSET_Z_LSB)));
|
|
968 |
|
|
969 |
Serial.println("Accel/Gyro Calibration done!");
|
|
970 |
}
|
|
971 |
|
|
972 |
void magCalBNO055(float * dest1)
|
|
973 |
{
|
|
974 |
uint8_t data[6]; // data array to hold accelerometer and gyro x, y, z, data
|
|
975 |
uint16_t ii = 0, sample_count = 0;
|
|
976 |
int32_t mag_bias[3] = {0, 0, 0};
|
|
977 |
int16_t mag_max[3] = {0, 0, 0}, mag_min[3] = {0, 0, 0};
|
|
978 |
|
|
979 |
Serial.println("Mag Calibration: Wave device in a figure eight until done!");
|
|
980 |
delay(4000);
|
|
981 |
|
|
982 |
// Select page 0 to read sensors
|
|
983 |
writeByte(BNO055_ADDRESS, BNO055_PAGE_ID, 0x00);
|
|
984 |
// Select BNO055 system operation mode as NDOF for calibration
|
|
985 |
writeByte(BNO055_ADDRESS, BNO055_OPR_MODE, CONFIGMODE );
|
|
986 |
delay(25);
|
|
987 |
writeByte(BNO055_ADDRESS, BNO055_OPR_MODE, NDOF );
|
|
988 |
|
|
989 |
// In NDF fusion mode, mag data is in 16 LSB/microTesla, ODR is 20 Hz in forced mode
|
|
990 |
sample_count = 256;
|
|
991 |
for (ii = 0; ii < sample_count; ii++) {
|
|
992 |
int16_t mag_temp[3] = {0, 0, 0};
|
|
993 |
readBytes(BNO055_ADDRESS, BNO055_MAG_DATA_X_LSB, 6, &data[0]); // Read the six raw data registers into data array
|
|
994 |
mag_temp[0] = (int16_t) (((int16_t)data[1] << 8) | data[0]) ; // Form signed 16-bit integer for each sample in FIFO
|
|
995 |
mag_temp[1] = (int16_t) (((int16_t)data[3] << 8) | data[2]) ;
|
|
996 |
mag_temp[2] = (int16_t) (((int16_t)data[5] << 8) | data[4]) ;
|
|
997 |
for (int jj = 0; jj < 3; jj++) {
|
|
998 |
if (mag_temp[jj] > mag_max[jj]) mag_max[jj] = mag_temp[jj];
|
|
999 |
if (mag_temp[jj] < mag_min[jj]) mag_min[jj] = mag_temp[jj];
|
|
1000 |
}
|
|
1001 |
delay(55); // at 20 Hz ODR, new mag data is available every 50 ms
|
|
1002 |
}
|
|
1003 |
|
|
1004 |
// Serial.println("mag x min/max:"); Serial.println(mag_max[0]); Serial.println(mag_min[0]);
|
|
1005 |
// Serial.println("mag y min/max:"); Serial.println(mag_max[1]); Serial.println(mag_min[1]);
|
|
1006 |
// Serial.println("mag z min/max:"); Serial.println(mag_max[2]); Serial.println(mag_min[2]);
|
|
1007 |
|
|
1008 |
mag_bias[0] = (mag_max[0] + mag_min[0]) / 2; // get average x mag bias in counts
|
|
1009 |
mag_bias[1] = (mag_max[1] + mag_min[1]) / 2; // get average y mag bias in counts
|
|
1010 |
mag_bias[2] = (mag_max[2] + mag_min[2]) / 2; // get average z mag bias in counts
|
|
1011 |
|
|
1012 |
dest1[0] = (float) mag_bias[0] / 1.6; // save mag biases in mG for use in main program
|
|
1013 |
dest1[1] = (float) mag_bias[1] / 1.6; // mag data is 1.6 LSB/mg
|
|
1014 |
dest1[2] = (float) mag_bias[2] / 1.6;
|
|
1015 |
|
|
1016 |
// Return to config mode to write mag biases in offset register
|
|
1017 |
// This offset register is only used while in fusion mode when magnetometer sensitivity is 16 LSB/microTesla
|
|
1018 |
writeByte(BNO055_ADDRESS, BNO055_OPR_MODE, CONFIGMODE );
|
|
1019 |
delay(25);
|
|
1020 |
|
|
1021 |
//write biases to accelerometer offset registers as 16 LSB/microTesla
|
|
1022 |
writeByte(BNO055_ADDRESS, BNO055_MAG_OFFSET_X_LSB, (int16_t)mag_bias[0] & 0xFF);
|
|
1023 |
writeByte(BNO055_ADDRESS, BNO055_MAG_OFFSET_X_MSB, ((int16_t)mag_bias[0] >> 8) & 0xFF);
|
|
1024 |
writeByte(BNO055_ADDRESS, BNO055_MAG_OFFSET_Y_LSB, (int16_t)mag_bias[1] & 0xFF);
|
|
1025 |
writeByte(BNO055_ADDRESS, BNO055_MAG_OFFSET_Y_MSB, ((int16_t)mag_bias[1] >> 8) & 0xFF);
|
|
1026 |
writeByte(BNO055_ADDRESS, BNO055_MAG_OFFSET_Z_LSB, (int16_t)mag_bias[2] & 0xFF);
|
|
1027 |
writeByte(BNO055_ADDRESS, BNO055_MAG_OFFSET_Z_MSB, ((int16_t)mag_bias[2] >> 8) & 0xFF);
|
|
1028 |
|
|
1029 |
// Check that offsets were properly written to offset registers
|
|
1030 |
// Serial.println("Average magnetometer bias = ");
|
|
1031 |
// Serial.println((int16_t)((int16_t)readByte(BNO055_ADDRESS, BNO055_MAG_OFFSET_X_MSB) << 8 | readByte(BNO055_ADDRESS, BNO055_MAG_OFFSET_X_LSB)));
|
|
1032 |
// Serial.println((int16_t)((int16_t)readByte(BNO055_ADDRESS, BNO055_MAG_OFFSET_Y_MSB) << 8 | readByte(BNO055_ADDRESS, BNO055_MAG_OFFSET_Y_LSB)));
|
|
1033 |
// Serial.println((int16_t)((int16_t)readByte(BNO055_ADDRESS, BNO055_MAG_OFFSET_Z_MSB) << 8 | readByte(BNO055_ADDRESS, BNO055_MAG_OFFSET_Z_LSB)));
|
|
1034 |
// Select BNO055 system operation mode
|
|
1035 |
writeByte(BNO055_ADDRESS, BNO055_OPR_MODE, OPRMode );
|
|
1036 |
|
|
1037 |
Serial.println("Mag Calibration done!");
|
|
1038 |
}
|
|
1039 |
|
|
1040 |
// I2C communication with the MS5637 is a little different from that with the BNO055 and most other sensors
|
|
1041 |
// For the MS5637, we write commands, and the MS5637 sends data in response, rather than directly reading
|
|
1042 |
// MS5637 registers
|
|
1043 |
|
|
1044 |
// I2C read/write functions for the BNO055 sensor
|
|
1045 |
|
|
1046 |
void writeByte(uint8_t address, uint8_t subAddress, uint8_t data)
|
|
1047 |
{
|
|
1048 |
Wire.beginTransmission(address); // Initialize the Tx buffer
|
|
1049 |
Wire.write(subAddress); // Put slave register address in Tx buffer
|
|
1050 |
Wire.write(data); // Put data in Tx buffer
|
|
1051 |
Wire.endTransmission(); // Send the Tx buffer
|
|
1052 |
}
|
|
1053 |
|
|
1054 |
uint8_t readByte(uint8_t address, uint8_t subAddress)
|
|
1055 |
{
|
|
1056 |
uint8_t data; // `data` will store the register data
|
|
1057 |
Wire.beginTransmission(address); // Initialize the Tx buffer
|
|
1058 |
Wire.write(subAddress); // Put slave register address in Tx buffer
|
|
1059 |
// Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive
|
|
1060 |
Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive
|
|
1061 |
// Wire.requestFrom(address, 1); // Read one byte from slave register address
|
|
1062 |
Wire.requestFrom(address, (size_t) 1); // Read one byte from slave register address
|
|
1063 |
data = Wire.read(); // Fill Rx buffer with result
|
|
1064 |
return data; // Return data read from slave register
|
|
1065 |
}
|
|
1066 |
|
|
1067 |
void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest)
|
|
1068 |
{
|
|
1069 |
Wire.beginTransmission(address); // Initialize the Tx buffer
|
|
1070 |
Wire.write(subAddress); // Put slave register address in Tx buffer
|
|
1071 |
// Wire.endTransmission(I2C_NOSTOP); // Send the Tx buffer, but send a restart to keep connection alive
|
|
1072 |
Wire.endTransmission(false); // Send the Tx buffer, but send a restart to keep connection alive
|
|
1073 |
uint8_t i = 0;
|
|
1074 |
// Wire.requestFrom(address, count); // Read bytes from slave register address
|
|
1075 |
Wire.requestFrom(address, (size_t) count); // Read bytes from slave register address
|
|
1076 |
while (Wire.available()) {
|
|
1077 |
dest[i++] = Wire.read();
|
|
1078 |
} // Put read results in the Rx buffer
|
|
1079 |
}
|
|
1080 |
|