Revision 013997fb
client/python/hlrc_client/simple-robot-gaze.py | ||
---|---|---|
1 |
#!/usr/bin/python |
|
2 |
|
|
3 |
__author__ = 'fl@techfak' |
|
4 |
|
|
5 |
# STD IMPORTS |
|
6 |
import sys |
|
7 |
import time |
|
8 |
import signal |
|
9 |
import logging |
|
10 |
import operator |
|
11 |
|
|
12 |
# HLRC |
|
13 |
from hlrc_client import * |
|
14 |
|
|
15 |
# ROS IMPORTS |
|
16 |
import rospy |
|
17 |
import roslib |
|
18 |
from std_msgs.msg import Header |
|
19 |
from std_msgs.msg import String |
|
20 |
from people_msgs.msg import Person |
|
21 |
from people_msgs.msg import People |
|
22 |
|
|
23 |
|
|
24 |
class RobotDriver(): |
|
25 |
""" |
|
26 |
This class holds the robot controller. |
|
27 |
Provides better encapsulation though... |
|
28 |
""" |
|
29 |
def __init__(self, _mw, _outscope): |
|
30 |
print(">>> Initializing Robot Controller") |
|
31 |
self.mw = _mw |
|
32 |
self.outscope = _outscope |
|
33 |
self.robot_controller = RobotController(self.mw, self.outscope, logging.INFO) |
|
34 |
|
|
35 |
|
|
36 |
class GazeController(): |
|
37 |
""" |
|
38 |
The GazeController receives person messages (ROS) and derives |
|
39 |
the nearest person identified. Based on this, the robot's |
|
40 |
joint angle target's are derived using the transformation |
|
41 |
class below |
|
42 |
""" |
|
43 |
def __init__(self, _robot_controller, _affine_transform, _inscope): |
|
44 |
print(">>> Initializing Gaze Controller") |
|
45 |
self.run = True |
|
46 |
self.inscope = _inscope |
|
47 |
self.rc = _robot_controller |
|
48 |
self.at = _affine_transform |
|
49 |
self.nearest_person_x = 0.0 |
|
50 |
self.nearest_person_y = 0.0 |
|
51 |
signal.signal(signal.SIGINT, self.signal_handler) |
|
52 |
|
|
53 |
def signal_handler(self, signal, frame): |
|
54 |
print ">>> ROS is about to exit (signal %s)..." % str(signal) |
|
55 |
self.run = False |
|
56 |
|
|
57 |
def people_callback(self, ros_data): |
|
58 |
# Determine the nearest person |
|
59 |
idx = -1 |
|
60 |
max_distance = {} |
|
61 |
for person in ros_data.people: |
|
62 |
idx += 1 |
|
63 |
max_distance[str(idx)] = person.position.z |
|
64 |
print ">> Persons found {idx, distance}: ", max_distance |
|
65 |
sort = sorted(max_distance.items(), key=operator.itemgetter(1), reverse=True) |
|
66 |
print ">> Nearest Face: ", sort |
|
67 |
print ">> Index: ", sort[0][0] |
|
68 |
print ">> Distance in pixels: ", sort[0][1] |
|
69 |
self.nearest_person_x = ros_data.people[int(sort[0][0])].position.x |
|
70 |
self.nearest_person_y = ros_data.people[int(sort[0][0])].position.y |
|
71 |
print ">> Position in pixels x:", self.nearest_person_x |
|
72 |
print ">> Position in pixels y:", self.nearest_person_y |
|
73 |
point = [self.nearest_person_x, self.nearest_person_y] |
|
74 |
# Derive coordinate mapping |
|
75 |
angles = self.at.derive_mapping_coords(point) |
|
76 |
print "----------------" |
|
77 |
if angles is not None: |
|
78 |
# Set the robot gaze |
|
79 |
g = RobotGaze() |
|
80 |
g.gaze_type = RobotGaze.GAZETARGET_ABSOLUTE |
|
81 |
g.pan = angles[0] |
|
82 |
g.tilt = angles[1] |
|
83 |
print ">> Sending Gaze Type:", g |
|
84 |
self.rc.robot_controller.set_gaze_target(g, False) |
|
85 |
|
|
86 |
def run_subscriber(self): |
|
87 |
print(">>> Initializing Gaze Subscriber") |
|
88 |
person_subscriber = rospy.Subscriber(self.inscope, People, self.people_callback, queue_size=1) |
|
89 |
while self.run: |
|
90 |
time.sleep(1) |
|
91 |
person_subscriber.unregister() |
|
92 |
print ">>> Deactivating ROS Subscriber" |
|
93 |
|
|
94 |
def derive_gaze_angle(self): |
|
95 |
pass |
|
96 |
|
|
97 |
|
|
98 |
class AffineTransform: |
|
99 |
""" |
|
100 |
Derives the transformation between screen |
|
101 |
coordinates in pixels and joint axis angles in degree. |
|
102 |
""" |
|
103 |
def __init__(self): |
|
104 |
print(">>> Initializing Affine Transform") |
|
105 |
# Target ---> The ones you want to map to |
|
106 |
self.target0 = [1.0, 1.0] |
|
107 |
self.target1 = [1.0, 1.0] |
|
108 |
self.target2 = [1.0, 1.0] |
|
109 |
self.target3 = [1.0, 1.0] |
|
110 |
|
|
111 |
# Origin ---> The ones that are mapped to [target0, target1, target2, target3] |
|
112 |
self.origin0 = [1.0, 1.0] |
|
113 |
self.origin1 = [1.0, 1.0] |
|
114 |
self.origin2 = [1.0, 1.0] |
|
115 |
self.origin3 = [1.0, 1.0] |
|
116 |
|
|
117 |
# Divider |
|
118 |
self.divider = 1.0 |
|
119 |
|
|
120 |
# Calculated and mapped Coordinates |
|
121 |
mappedCoords = [1.0, 1.0] |
|
122 |
|
|
123 |
# Affine transformation coefficients |
|
124 |
self.An = 1.0 |
|
125 |
self.Bn = 1.0 |
|
126 |
self.Cn = 1.0 |
|
127 |
self.Dn = 1.0 |
|
128 |
self.En = 1.0 |
|
129 |
self.Fn = 1.0 |
|
130 |
|
|
131 |
# Test coord |
|
132 |
self.test = [1.0, 1.0] |
|
133 |
|
|
134 |
def set_coords(self): |
|
135 |
|
|
136 |
# This is the target coordinate system |
|
137 |
# Upper left corner |
|
138 |
self.target0[0] = -45.0 |
|
139 |
self.target0[1] = 45.0 |
|
140 |
|
|
141 |
# Lower left corner |
|
142 |
self.target1[0] = -45.0 |
|
143 |
self.target1[1] = -45.0 |
|
144 |
|
|
145 |
# Upper right corner |
|
146 |
self.target2[0] = 45.0 |
|
147 |
self.target2[1] = 45.0 |
|
148 |
|
|
149 |
# Lower right corner |
|
150 |
self.target3[0] = 45.0 |
|
151 |
self.target3[1] = -45.0 |
|
152 |
|
|
153 |
# This is the origin system, is mapped to [t0,t1,t2,t3] |
|
154 |
# Upper left corner |
|
155 |
self.origin0[0] = 0.0 |
|
156 |
self.origin0[1] = 0.0 |
|
157 |
|
|
158 |
# Lower left corner |
|
159 |
self.origin1[0] = 0.0 |
|
160 |
self.origin1[1] = 240.0 |
|
161 |
|
|
162 |
# Upper right corner |
|
163 |
self.origin2[0] = 320.0 |
|
164 |
self.origin2[1] = 0.0 |
|
165 |
|
|
166 |
# Lower right corner |
|
167 |
self.origin3[0] = 320.0 |
|
168 |
self.origin3[1] = 240.0 |
|
169 |
|
|
170 |
# And finally the test coordinate |
|
171 |
self.test[0] = 512.0 |
|
172 |
self.test[1] = 384.0 |
|
173 |
|
|
174 |
def calculate_divider(self): |
|
175 |
result = ((self.origin0[0] - self.origin2[0]) * (self.origin1[1] - self.origin2[1])) - \ |
|
176 |
((self.origin1[0] - self.origin2[0]) * (self.origin0[1] - self.origin2[1])) |
|
177 |
|
|
178 |
if result == 0.0: |
|
179 |
print(">> Divider is ZERO - Check your Coordinates?") |
|
180 |
sys.exit(1) |
|
181 |
else: |
|
182 |
self.divider = result |
|
183 |
print(">> Divider " + str(self.divider)) |
|
184 |
self.calculateAn() |
|
185 |
self.calculateBn() |
|
186 |
self.calculateCn() |
|
187 |
self.calculateDn() |
|
188 |
self.calculateEn() |
|
189 |
self.calculateFn() |
|
190 |
|
|
191 |
return result |
|
192 |
|
|
193 |
def calculateAn(self): |
|
194 |
result = ((self.target0[0] - self.target2[0]) * (self.origin1[1] - self.origin2[1])) - \ |
|
195 |
((self.target1[0] - self.target2[0]) * (self.origin0[1] - self.origin2[1])) |
|
196 |
self.An = result |
|
197 |
print(">> An " + str(self.An)) |
|
198 |
return result |
|
199 |
|
|
200 |
def calculateBn(self): |
|
201 |
result = ((self.origin0[0] - self.origin2[0]) * (self.target1[0] - self.target2[0])) - \ |
|
202 |
((self.target0[0] - self.target2[0]) * (self.origin1[0] - self.origin2[0])) |
|
203 |
self.Bn = result |
|
204 |
print(">> Bn " + str(self.Bn)) |
|
205 |
return result |
|
206 |
|
|
207 |
def calculateCn(self): |
|
208 |
result = (self.origin2[0] * self.target1[0] - self.origin1[0] * self.target2[0]) * self.origin0[1] + \ |
|
209 |
(self.origin0[0] * self.target2[0] - self.origin2[0] * self.target0[0]) * self.origin1[1] + \ |
|
210 |
(self.origin1[0] * self.target0[0] - self.origin0[0] * self.target1[0]) * self.origin2[1] |
|
211 |
self.Cn = result |
|
212 |
print(">> Cn " + str(self.Cn)) |
|
213 |
return result |
|
214 |
|
|
215 |
def calculateDn(self): |
|
216 |
result = ((self.target0[1] - self.target2[1]) * (self.origin1[1] - self.origin2[1])) - \ |
|
217 |
((self.target1[1] - self.target2[1]) * (self.origin0[1] - self.origin2[1])) |
|
218 |
self.Dn = result |
|
219 |
print(">> Dn " + str(self.Dn)) |
|
220 |
return result |
|
221 |
|
|
222 |
def calculateEn(self): |
|
223 |
result = ((self.origin0[0] - self.origin2[0]) * (self.target1[1] - self.target2[1])) - \ |
|
224 |
((self.target0[1] - self.target2[1]) * (self.origin1[0] - self.origin2[0])) |
|
225 |
self.En = result |
|
226 |
print(">> En " + str(self.En)) |
|
227 |
return result |
|
228 |
|
|
229 |
def calculateFn(self): |
|
230 |
result = (self.origin2[0] * self.target1[1] - self.origin1[0] * self.target2[1]) * self.origin0[1] + \ |
|
231 |
(self.origin0[0] * self.target2[1] - self.origin2[0] * self.target0[1]) * self.origin1[1] + \ |
|
232 |
(self.origin1[0] * self.target0[1] - self.origin0[0] * self.target1[1]) * self.origin2[1] |
|
233 |
self.Fn = result |
|
234 |
print(">> Fn " + str(self.Fn)) |
|
235 |
return result |
|
236 |
|
|
237 |
def derive_mapping_coords(self, point): |
|
238 |
# r->x = ((matrixPtr->An * ad->x) + (matrixPtr->Bn * ad->y) + matrixPtr->Cn) / matrixPtr->Divider |
|
239 |
# r->y = ((matrixPtr->Dn * ad->x) + (matrixPtr->En * ad->y) + matrixPtr->Fn) / matrixPtr->Divider |
|
240 |
if self.divider != 0.0: |
|
241 |
x = ((self.An * point[0]) + (self.Bn * point[1]) + self.Cn) / self.divider |
|
242 |
y = ((self.Dn * point[0]) + (self.En * point[1]) + self.Fn) / self.divider |
|
243 |
result = [x, y] |
|
244 |
# print ">> Current Coordinate (Face):", point |
|
245 |
print ">> x-pixels were mapped to angle: %s \n>> y-pixels were mapped to angle: %s" % (str(x), str(y)) |
|
246 |
return result |
|
247 |
else: |
|
248 |
return None |
|
249 |
|
|
250 |
|
|
251 |
def runner(arguments): |
|
252 |
if len(arguments) != 3: |
|
253 |
print(">>> Usage: simple-robot-gaze.py <inscope 'persons_scope'> <outscope 'gaze_target_scope'>\n\n") |
|
254 |
sys.exit(1) |
|
255 |
|
|
256 |
rd = RobotDriver("ROS", sys.argv[2]) |
|
257 |
at = AffineTransform() |
|
258 |
at.set_coords() |
|
259 |
at.calculate_divider() |
|
260 |
gc = GazeController(rd, at, sys.argv[1]) |
|
261 |
gc.run_subscriber() |
|
262 |
|
|
263 |
if __name__ == '__main__': |
|
264 |
runner(sys.argv) |
|
265 |
|
client/python/hlrc_client/simple_robot_gaze.py | ||
---|---|---|
1 |
#!/usr/bin/python |
|
2 |
|
|
3 |
__author__ = 'fl@techfak' |
|
4 |
|
|
5 |
# STD IMPORTS |
|
6 |
import sys |
|
7 |
import time |
|
8 |
import signal |
|
9 |
import logging |
|
10 |
import operator |
|
11 |
|
|
12 |
# HLRC |
|
13 |
from hlrc_client import * |
|
14 |
|
|
15 |
# ROS IMPORTS |
|
16 |
import rospy |
|
17 |
import roslib |
|
18 |
from std_msgs.msg import Header |
|
19 |
from std_msgs.msg import String |
|
20 |
from people_msgs.msg import Person |
|
21 |
from people_msgs.msg import People |
|
22 |
|
|
23 |
|
|
24 |
class RobotDriver(): |
|
25 |
""" |
|
26 |
This class holds the robot controller. |
|
27 |
Provides better encapsulation though... |
|
28 |
""" |
|
29 |
def __init__(self, _mw, _outscope): |
|
30 |
print(">>> Initializing Robot Controller") |
|
31 |
self.mw = _mw |
|
32 |
self.outscope = _outscope |
|
33 |
self.robot_controller = RobotController(self.mw, self.outscope, logging.INFO) |
|
34 |
|
|
35 |
|
|
36 |
class GazeController(): |
|
37 |
""" |
|
38 |
The GazeController receives person messages (ROS) and derives |
|
39 |
the nearest person identified. Based on this, the robot's |
|
40 |
joint angle target's are derived using the transformation |
|
41 |
class below |
|
42 |
""" |
|
43 |
def __init__(self, _robot_controller, _affine_transform, _inscope): |
|
44 |
print(">>> Initializing Gaze Controller") |
|
45 |
self.run = True |
|
46 |
self.inscope = _inscope |
|
47 |
self.rc = _robot_controller |
|
48 |
self.at = _affine_transform |
|
49 |
self.nearest_person_x = 0.0 |
|
50 |
self.nearest_person_y = 0.0 |
|
51 |
signal.signal(signal.SIGINT, self.signal_handler) |
|
52 |
|
|
53 |
def signal_handler(self, signal, frame): |
|
54 |
print ">>> ROS is about to exit (signal %s)..." % str(signal) |
|
55 |
self.run = False |
|
56 |
|
|
57 |
def people_callback(self, ros_data): |
|
58 |
# Determine the nearest person |
|
59 |
idx = -1 |
|
60 |
max_distance = {} |
|
61 |
for person in ros_data.people: |
|
62 |
idx += 1 |
|
63 |
max_distance[str(idx)] = person.position.z |
|
64 |
print ">> Persons found {idx, distance}: ", max_distance |
|
65 |
sort = sorted(max_distance.items(), key=operator.itemgetter(1), reverse=True) |
|
66 |
print ">> Nearest Face: ", sort |
|
67 |
print ">> Index: ", sort[0][0] |
|
68 |
print ">> Distance in pixels: ", sort[0][1] |
|
69 |
self.nearest_person_x = ros_data.people[int(sort[0][0])].position.x |
|
70 |
self.nearest_person_y = ros_data.people[int(sort[0][0])].position.y |
|
71 |
print ">> Position in pixels x:", self.nearest_person_x |
|
72 |
print ">> Position in pixels y:", self.nearest_person_y |
|
73 |
point = [self.nearest_person_x, self.nearest_person_y] |
|
74 |
# Derive coordinate mapping |
|
75 |
angles = self.at.derive_mapping_coords(point) |
|
76 |
print "----------------" |
|
77 |
if angles is not None: |
|
78 |
# Set the robot gaze |
|
79 |
g = RobotGaze() |
|
80 |
g.gaze_type = RobotGaze.GAZETARGET_ABSOLUTE |
|
81 |
g.pan = angles[0] |
|
82 |
g.tilt = angles[1] |
|
83 |
print ">> Sending Gaze Type:", g |
|
84 |
self.rc.robot_controller.set_gaze_target(g, False) |
|
85 |
|
|
86 |
def run_subscriber(self): |
|
87 |
print(">>> Initializing Gaze Subscriber") |
|
88 |
person_subscriber = rospy.Subscriber(self.inscope, People, self.people_callback, queue_size=1) |
|
89 |
while self.run: |
|
90 |
time.sleep(1) |
|
91 |
person_subscriber.unregister() |
|
92 |
print ">>> Deactivating ROS Subscriber" |
|
93 |
|
|
94 |
def derive_gaze_angle(self): |
|
95 |
pass |
|
96 |
|
|
97 |
|
|
98 |
class AffineTransform: |
|
99 |
""" |
|
100 |
Derives the transformation between screen |
|
101 |
coordinates in pixels and joint axis angles in degree. |
|
102 |
""" |
|
103 |
def __init__(self): |
|
104 |
print(">>> Initializing Affine Transform") |
|
105 |
# Target ---> The ones you want to map to |
|
106 |
self.target0 = [1.0, 1.0] |
|
107 |
self.target1 = [1.0, 1.0] |
|
108 |
self.target2 = [1.0, 1.0] |
|
109 |
self.target3 = [1.0, 1.0] |
|
110 |
|
|
111 |
# Origin ---> The ones that are mapped to [target0, target1, target2, target3] |
|
112 |
self.origin0 = [1.0, 1.0] |
|
113 |
self.origin1 = [1.0, 1.0] |
|
114 |
self.origin2 = [1.0, 1.0] |
|
115 |
self.origin3 = [1.0, 1.0] |
|
116 |
|
|
117 |
# Divider |
|
118 |
self.divider = 1.0 |
|
119 |
|
|
120 |
# Calculated and mapped Coordinates |
|
121 |
mappedCoords = [1.0, 1.0] |
|
122 |
|
|
123 |
# Affine transformation coefficients |
|
124 |
self.An = 1.0 |
|
125 |
self.Bn = 1.0 |
|
126 |
self.Cn = 1.0 |
|
127 |
self.Dn = 1.0 |
|
128 |
self.En = 1.0 |
|
129 |
self.Fn = 1.0 |
|
130 |
|
|
131 |
# Test coord |
|
132 |
self.test = [1.0, 1.0] |
|
133 |
|
|
134 |
def set_coords(self): |
|
135 |
|
|
136 |
# This is the target coordinate system |
|
137 |
# Upper left corner |
|
138 |
self.target0[0] = -45.0 |
|
139 |
self.target0[1] = 45.0 |
|
140 |
|
|
141 |
# Lower left corner |
|
142 |
self.target1[0] = -45.0 |
|
143 |
self.target1[1] = -45.0 |
|
144 |
|
|
145 |
# Upper right corner |
|
146 |
self.target2[0] = 45.0 |
|
147 |
self.target2[1] = 45.0 |
|
148 |
|
|
149 |
# Lower right corner |
|
150 |
self.target3[0] = 45.0 |
|
151 |
self.target3[1] = -45.0 |
|
152 |
|
|
153 |
# This is the origin system, is mapped to [t0,t1,t2,t3] |
|
154 |
# Upper left corner |
|
155 |
self.origin0[0] = 0.0 |
|
156 |
self.origin0[1] = 0.0 |
|
157 |
|
|
158 |
# Lower left corner |
|
159 |
self.origin1[0] = 0.0 |
|
160 |
self.origin1[1] = 240.0 |
|
161 |
|
|
162 |
# Upper right corner |
|
163 |
self.origin2[0] = 320.0 |
|
164 |
self.origin2[1] = 0.0 |
|
165 |
|
|
166 |
# Lower right corner |
|
167 |
self.origin3[0] = 320.0 |
|
168 |
self.origin3[1] = 240.0 |
|
169 |
|
|
170 |
# And finally the test coordinate |
|
171 |
self.test[0] = 512.0 |
|
172 |
self.test[1] = 384.0 |
|
173 |
|
|
174 |
def calculate_divider(self): |
|
175 |
result = ((self.origin0[0] - self.origin2[0]) * (self.origin1[1] - self.origin2[1])) - \ |
|
176 |
((self.origin1[0] - self.origin2[0]) * (self.origin0[1] - self.origin2[1])) |
|
177 |
|
|
178 |
if result == 0.0: |
|
179 |
print(">> Divider is ZERO - Check your Coordinates?") |
|
180 |
sys.exit(1) |
|
181 |
else: |
|
182 |
self.divider = result |
|
183 |
print(">> Divider " + str(self.divider)) |
|
184 |
self.calculateAn() |
|
185 |
self.calculateBn() |
|
186 |
self.calculateCn() |
|
187 |
self.calculateDn() |
|
188 |
self.calculateEn() |
|
189 |
self.calculateFn() |
|
190 |
|
|
191 |
return result |
|
192 |
|
|
193 |
def calculateAn(self): |
|
194 |
result = ((self.target0[0] - self.target2[0]) * (self.origin1[1] - self.origin2[1])) - \ |
|
195 |
((self.target1[0] - self.target2[0]) * (self.origin0[1] - self.origin2[1])) |
|
196 |
self.An = result |
|
197 |
print(">> An " + str(self.An)) |
|
198 |
return result |
|
199 |
|
|
200 |
def calculateBn(self): |
|
201 |
result = ((self.origin0[0] - self.origin2[0]) * (self.target1[0] - self.target2[0])) - \ |
|
202 |
((self.target0[0] - self.target2[0]) * (self.origin1[0] - self.origin2[0])) |
|
203 |
self.Bn = result |
|
204 |
print(">> Bn " + str(self.Bn)) |
|
205 |
return result |
|
206 |
|
|
207 |
def calculateCn(self): |
|
208 |
result = (self.origin2[0] * self.target1[0] - self.origin1[0] * self.target2[0]) * self.origin0[1] + \ |
|
209 |
(self.origin0[0] * self.target2[0] - self.origin2[0] * self.target0[0]) * self.origin1[1] + \ |
|
210 |
(self.origin1[0] * self.target0[0] - self.origin0[0] * self.target1[0]) * self.origin2[1] |
|
211 |
self.Cn = result |
|
212 |
print(">> Cn " + str(self.Cn)) |
|
213 |
return result |
|
214 |
|
|
215 |
def calculateDn(self): |
|
216 |
result = ((self.target0[1] - self.target2[1]) * (self.origin1[1] - self.origin2[1])) - \ |
|
217 |
((self.target1[1] - self.target2[1]) * (self.origin0[1] - self.origin2[1])) |
|
218 |
self.Dn = result |
|
219 |
print(">> Dn " + str(self.Dn)) |
|
220 |
return result |
|
221 |
|
|
222 |
def calculateEn(self): |
|
223 |
result = ((self.origin0[0] - self.origin2[0]) * (self.target1[1] - self.target2[1])) - \ |
|
224 |
((self.target0[1] - self.target2[1]) * (self.origin1[0] - self.origin2[0])) |
|
225 |
self.En = result |
|
226 |
print(">> En " + str(self.En)) |
|
227 |
return result |
|
228 |
|
|
229 |
def calculateFn(self): |
|
230 |
result = (self.origin2[0] * self.target1[1] - self.origin1[0] * self.target2[1]) * self.origin0[1] + \ |
|
231 |
(self.origin0[0] * self.target2[1] - self.origin2[0] * self.target0[1]) * self.origin1[1] + \ |
|
232 |
(self.origin1[0] * self.target0[1] - self.origin0[0] * self.target1[1]) * self.origin2[1] |
|
233 |
self.Fn = result |
|
234 |
print(">> Fn " + str(self.Fn)) |
|
235 |
return result |
|
236 |
|
|
237 |
def derive_mapping_coords(self, point): |
|
238 |
# r->x = ((matrixPtr->An * ad->x) + (matrixPtr->Bn * ad->y) + matrixPtr->Cn) / matrixPtr->Divider |
|
239 |
# r->y = ((matrixPtr->Dn * ad->x) + (matrixPtr->En * ad->y) + matrixPtr->Fn) / matrixPtr->Divider |
|
240 |
if self.divider != 0.0: |
|
241 |
x = ((self.An * point[0]) + (self.Bn * point[1]) + self.Cn) / self.divider |
|
242 |
y = ((self.Dn * point[0]) + (self.En * point[1]) + self.Fn) / self.divider |
|
243 |
result = [x, y] |
|
244 |
# print ">> Current Coordinate (Face):", point |
|
245 |
print ">> x-pixels were mapped to angle: %s \n>> y-pixels were mapped to angle: %s" % (str(x), str(y)) |
|
246 |
return result |
|
247 |
else: |
|
248 |
return None |
|
249 |
|
|
250 |
|
|
251 |
def runner(arguments): |
|
252 |
if len(arguments) != 3: |
|
253 |
print(">>> Usage: simple_robot_gaze.py <inscope 'persons_scope'> <outscope 'gaze_target_scope'>\n\n") |
|
254 |
sys.exit(1) |
|
255 |
|
|
256 |
rd = RobotDriver("ROS", sys.argv[2]) |
|
257 |
at = AffineTransform() |
|
258 |
at.set_coords() |
|
259 |
at.calculate_divider() |
|
260 |
gc = GazeController(rd, at, sys.argv[1]) |
|
261 |
gc.run_subscriber() |
|
262 |
|
|
263 |
if __name__ == '__main__': |
|
264 |
runner(sys.argv) |
|
265 |
|
client/python/setup.py | ||
---|---|---|
108 | 108 |
entry_points={ |
109 | 109 |
'console_scripts': [ |
110 | 110 |
'hlrc_test_gui=hlrc_client.hlrc_test_gui:main', |
111 |
'simple_robot_gaze=hlrc_client.simple-robot-gaze:main'
|
|
111 |
'simple_robot_gaze=hlrc_client.simple_robot_gaze:main'
|
|
112 | 112 |
], |
113 | 113 |
}, |
114 | 114 |
) |
Also available in: Unified diff