Statistics
| Branch: | Tag: | Revision:

humotion / src / server / neck_motion_generator.cpp @ 50784a28

History | View | Annotate | Download (9.37 KB)

1
/*
2
* This file is part of humotion
3
*
4
* Copyright(c) sschulz <AT> techfak.uni-bielefeld.de
5
* http://opensource.cit-ec.de/projects/humotion
6
*
7
* This file may be licensed under the terms of the
8
* GNU Lesser General Public License Version 3 (the ``LGPL''),
9
* or (at your option) any later version.
10
*
11
* Software distributed under the License is distributed
12
* on an ``AS IS'' basis, WITHOUT WARRANTY OF ANY KIND, either
13
* express or implied. See the LGPL for the specific language
14
* governing rights and limitations.
15
*
16
* You should have received a copy of the LGPL along with this
17
* program. If not, go to http://www.gnu.org/licenses/lgpl.html
18
* or write to the Free Software Foundation, Inc.,
19
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
20
*
21
* The development of this software was supported by the
22
* Excellence Cluster EXC 277 Cognitive Interaction Technology.
23
* The Excellence Cluster EXC 277 is a grant of the Deutsche
24
* Forschungsgemeinschaft (DFG) in the context of the German
25
* Excellence Initiative.
26
*/
27

    
28
#include "server/neck_motion_generator.h"
29
#include "server/gaze_motion_generator.h"
30
#include "server/server.h"
31
#include <cmath>
32

    
33
using namespace std;
34
using namespace humotion;
35
using namespace humotion::server;
36

    
37
const float NeckMotionGenerator::CONST_GUITTON87_A = 4.39/2.0; // / 2.0;
38
const float NeckMotionGenerator::CONST_GUITTON87_B = 106.0/2.0; // /2.0;
39

    
40
//healthy adult human: 12-15 breaths/min (see "Ganong's review of medical physiology")
41
//total: 60/12-15 = 3-5s
42
//inhale 1.5-2s
43
//exhale 1.5-2s
44
//pause      2s
45
const float NeckMotionGenerator::CONST_BREATH_PERIOD = 1500.0+1500.0+1500.0; //given in ms
46
const float NeckMotionGenerator::CONST_BREATH_AMPLITUDE = 1.0; //degrees
47

    
48

    
49
//! constructor
50
NeckMotionGenerator::NeckMotionGenerator(JointInterface *j) : GazeMotionGenerator(j, 3, 1.0/Server::MOTION_UPDATERATE){
51
    breath_time = 0.0;
52
}
53

    
54

    
55
//! destructor
56
NeckMotionGenerator::~NeckMotionGenerator(){
57
}
58

    
59
//! get a breath offset angle
60
//! @return float of breath offset value
61
float NeckMotionGenerator::get_breath_offset(){
62
    //we want to have a constant acceleration -> triangular wave as speeds -> (x<0.5)? 2*x*x:  1- 2*(1-x)**2 = 4x - 2x**2 - 1
63
    float breath_offset = 0.0;
64
    float breath_time_normalized = (breath_time * 3)/CONST_BREATH_PERIOD; //0...1 -> move up, 1..2 -> return, 2..3 -> still
65

    
66
    if (breath_time_normalized <= 0.5){
67
        //accelerated motion:
68
        breath_offset = CONST_BREATH_AMPLITUDE * (2.0 * pow(breath_time_normalized, 2));
69
    }else if (breath_time_normalized <= 1.0){
70
        //deaccelerate:
71
        breath_offset = CONST_BREATH_AMPLITUDE * (1.0 - 2.0 * pow(1.0 - breath_time_normalized, 2));
72
    }else if (breath_time_normalized <= 1.5){
73
        //accelerate again:
74
        breath_offset = CONST_BREATH_AMPLITUDE * (1.0 - (2.0 * pow(breath_time_normalized-1, 2)));
75
    }else if (breath_time_normalized <= 2.0){
76
        breath_offset = CONST_BREATH_AMPLITUDE * (2.0 * pow(2.0 - breath_time_normalized, 2));
77
    }else if (breath_time_normalized <= 3.0){
78
        //pause for some time
79
        breath_offset = 0;
80
    }
81

    
82
    //fetch next time
83
    breath_time += 1000.0/Server::MOTION_UPDATERATE;
84
    if (breath_time >= CONST_BREATH_PERIOD){
85
        breath_time -= CONST_BREATH_PERIOD;
86
    }
87

    
88
    return breath_offset;
89
}
90

    
91

    
92
//! calculate joint targets
93
void NeckMotionGenerator::calculate_targets(){
94
    //fetch current dataset:
95
    float neck_pan_now, neck_tilt_now, neck_roll_now;
96
    float neck_pan_speed, neck_tilt_speed, neck_roll_speed;
97

    
98
    humotion::Timestamp neck_pan_ts = get_timestamped_state(JointInterface::ID_NECK_PAN,
99
                                                            &neck_pan_now,
100
                                                            &neck_pan_speed);
101

    
102
    humotion::Timestamp neck_tilt_ts = get_timestamped_state(JointInterface::ID_NECK_TILT,
103
                                                            &neck_tilt_now,
104
                                                            &neck_tilt_speed);
105

    
106
    humotion::Timestamp neck_roll_ts = get_timestamped_state(JointInterface::ID_NECK_ROLL,
107
                                                            &neck_roll_now,
108
                                                            &neck_roll_speed);
109

    
110
    //reached target?
111
    float goal_diff   = fabs(get_current_gaze().distance_pt_abs(requested_gaze_state));
112
    float target_diff = fabs(requested_gaze_state.distance_pt_abs(previous_neck_target));
113

    
114
    //printf("GOAL DIFF = %f TARGET DIFF = %f\n",goal_diff,target_diff);
115
    //get_current_gaze().dump();
116
    //requested_gaze_state.dump();
117

    
118
    //check if new target
119
    //close to goal?
120
    if ( (neck_saccade_active) && (goal_diff < 1.0)){
121
        neck_saccade_reached_goal = true;
122
    }
123

    
124
    if (neck_saccade_active){
125
        previous_neck_target = requested_gaze_state;
126
    }
127

    
128
    //if we get a new target now, we can stop the neck saccade
129
    if (target_diff > .1){
130
        if (neck_saccade_reached_goal){
131
            // joint_interface->neck_saccade_done();
132
            neck_saccade_active = false;
133
            neck_saccade_reached_goal = false;
134
        }
135
    }
136

    
137
    if (neck_saccade_requested){
138
        neck_saccade_active = true;
139
    }
140

    
141
    //check if this is a small or big saccade:
142
    if (neck_saccade_active || neck_saccade_omr){
143
        //full saccade with neck motion -> update neck target
144
        requested_neck_state = requested_gaze_state;
145
    }
146

    
147
    //get targets: this is the sum of stored neck target and up-to-date offset:
148
    float neck_pan_target  = requested_neck_state.pan  + requested_gaze_state.pan_offset;
149
    float neck_tilt_target = requested_neck_state.tilt + requested_gaze_state.tilt_offset;
150
    //roll is always equal to requested gaze (not neck) state
151
    float neck_roll_target = requested_gaze_state.roll + requested_gaze_state.roll_offset;
152

    
153
    //add breath wave to tilt:
154
    neck_tilt_target += get_breath_offset();
155

    
156
    //pass parameters to reflexxes api:
157
    setup_neckmotion(0, neck_pan_target,  neck_pan_now,  neck_pan_speed,  neck_pan_ts);
158
    setup_neckmotion(1, neck_tilt_target, neck_tilt_now, neck_tilt_speed, neck_tilt_ts);
159
    setup_neckmotion(2, neck_roll_target, neck_roll_now, neck_roll_speed, neck_roll_ts);
160

    
161
    //call reflexxes to handle profile calculation:
162
    reflexxes_calculate_profile();
163

    
164
    //tell the joint if about the new values:
165
    joint_interface->set_target_position(JointInterface::ID_NECK_PAN,
166
                                         reflexxes_position_output->NewPositionVector->VecData[0],
167
                                         reflexxes_position_output->NewVelocityVector->VecData[0]);
168

    
169
    joint_interface->set_target_position(JointInterface::ID_NECK_TILT,
170
                                         reflexxes_position_output->NewPositionVector->VecData[1],
171
                                         reflexxes_position_output->NewVelocityVector->VecData[1]);
172

    
173
    joint_interface->set_target_position(JointInterface::ID_NECK_ROLL,
174
                                         reflexxes_position_output->NewPositionVector->VecData[2],
175
                                         reflexxes_position_output->NewVelocityVector->VecData[2]);
176

    
177
    printf("\n%f %f %f %f %f DBG\n",
178
            neck_pan_now, neck_pan_target,
179
            reflexxes_position_output->NewPositionVector->VecData[0],
180
            joint_interface->get_ts_speed(JointInterface::ID_NECK_PAN).get_newest_value(),
181
            reflexxes_position_output->NewVelocityVector->VecData[0]
182
            );
183
}
184

    
185
//! publish targets to motor boards:
186
void NeckMotionGenerator::publish_targets(){
187
    //publish values if there is an active gaze input within the last timerange
188
    if (gaze_target_input_active()){
189
        joint_interface->publish_target_position(JointInterface::ID_NECK_PAN);
190
        joint_interface->publish_target_position(JointInterface::ID_NECK_TILT);
191
        joint_interface->publish_target_position(JointInterface::ID_NECK_ROLL);
192
    }
193
}
194

    
195

    
196
//! set up neck motion profile
197
//! this will use speed and acceleration calc formulas from literature:
198
//! \param dof id of joint
199
//! \param target angle
200
//! \param current angle
201
void NeckMotionGenerator::setup_neckmotion(int dof, float target, float current_position,
202
                                           float current_speed, humotion::Timestamp timestamp){
203
    //get distance to target:
204
    float distance_abs = fabs(target - current_position);
205

    
206
    //get max speed: according to [guitton87] there is a relation between distance_abs and v_max_head:
207
    //v_max = 4.39 * d_total + 106.0 (in degrees)
208
    float max_speed = (CONST_GUITTON87_A * distance_abs + CONST_GUITTON87_B);
209

    
210
    //max accel:         assuming linear acceleration we have
211
    /* v ^
212
    *   |  / \
213
    *   | /   \
214
    *   |/_____\___> t
215
    */
216
    // d_total = 2 * 1/2 * a * (t_total/2)^2 = 1/4 * a * t_total^2
217
    // as we use linear accel we have
218
    // v_max = a * t_total/2  --> t_total = 2*v_max / a
219
    // combine both
220
    // d_total = 1/4 * a * 4 * vmax^2 / a^2 = v_max^2 / a
221
    // d_total = a * 2 * d_total / (v_max^2)
222
    // and therefore
223
    //  a = v_max^2 / d_total
224
    float max_accel = 0.0;
225
    if (distance_abs > 0.0){
226
        max_accel = pow(max_speed, 2) / distance_abs;
227
    }
228

    
229
    //smoother motion
230
    max_accel = max_accel * 0.7; //1.0; //0.7;
231

    
232
    //limit maximum acceleration to reduce noise FIXME!
233
    if (max_accel>1000){
234
        max_accel = 1000;
235
    }
236
    ///printf("MAX SPEED %4.2f / max accel %4.2f\n",max_speed, max_accel);
237

    
238
    //feed reflexxes api with data
239
    reflexxes_set_input(dof, target, current_position, current_speed, timestamp, max_speed, max_accel);
240
}