humotion / src / server / neck_motion_generator.cpp @ 51a1f01d
History | View | Annotate | Download (10.455 KB)
1 |
/*
|
---|---|
2 |
* This file is part of humotion
|
3 |
*
|
4 |
* Copyright(c) sschulz <AT> techfak.uni-bielefeld.de
|
5 |
* http://opensource.cit-ec.de/projects/humotion
|
6 |
*
|
7 |
* This file may be licensed under the terms of the
|
8 |
* GNU Lesser General Public License Version 3 (the ``LGPL''),
|
9 |
* or (at your option) any later version.
|
10 |
*
|
11 |
* Software distributed under the License is distributed
|
12 |
* on an ``AS IS'' basis, WITHOUT WARRANTY OF ANY KIND, either
|
13 |
* express or implied. See the LGPL for the specific language
|
14 |
* governing rights and limitations.
|
15 |
*
|
16 |
* You should have received a copy of the LGPL along with this
|
17 |
* program. If not, go to http://www.gnu.org/licenses/lgpl.html
|
18 |
* or write to the Free Software Foundation, Inc.,
|
19 |
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
20 |
*
|
21 |
* The development of this software was supported by the
|
22 |
* Excellence Cluster EXC 277 Cognitive Interaction Technology.
|
23 |
* The Excellence Cluster EXC 277 is a grant of the Deutsche
|
24 |
* Forschungsgemeinschaft (DFG) in the context of the German
|
25 |
* Excellence Initiative.
|
26 |
*/
|
27 |
|
28 |
#include <cmath> |
29 |
|
30 |
#include "humotion/server/gaze_motion_generator.h" |
31 |
#include "humotion/server/neck_motion_generator.h" |
32 |
#include "humotion/server/server.h" |
33 |
|
34 |
using humotion::server::NeckMotionGenerator;
|
35 |
using humotion::server::Config;
|
36 |
|
37 |
//! constructor
|
38 |
NeckMotionGenerator::NeckMotionGenerator(JointInterface *j, Config *cfg) : |
39 |
GazeMotionGenerator(j, cfg, 3, 1.0/Server::MOTION_UPDATERATE) { |
40 |
breath_time_ = 0.0; |
41 |
} |
42 |
|
43 |
|
44 |
//! destructor
|
45 |
NeckMotionGenerator::~NeckMotionGenerator() { |
46 |
} |
47 |
|
48 |
//! get a breath offset angle
|
49 |
//! @return float of breath offset value
|
50 |
float NeckMotionGenerator::get_breath_offset() {
|
51 |
// we want to have a constant acceleration
|
52 |
// -> triangular wave as speeds -> (x<0.5)? 2*x*x: 1- 2*(1-x)**2 = 4x - 2x**2 - 1
|
53 |
float breath_offset = 0.0; |
54 |
|
55 |
// 0...1 -> move up, 1..2 -> return, 2..3 -> still
|
56 |
float breath_time_normalized = (breath_time_ * 3)/config->breath_period; |
57 |
|
58 |
if (breath_time_normalized <= 0.5) { |
59 |
// accelerated motion
|
60 |
breath_offset = config->breath_amplitude * (2.0 * pow(breath_time_normalized, 2)); |
61 |
} else if (breath_time_normalized <= 1.0) { |
62 |
// deaccelerate
|
63 |
breath_offset = config->breath_amplitude * (1.0 - 2.0 |
64 |
* pow(1.0 - breath_time_normalized, 2)); |
65 |
} else if (breath_time_normalized <= 1.5) { |
66 |
// accelerate again
|
67 |
breath_offset = config->breath_amplitude * (1.0 - (2.0 * pow(breath_time_normalized-1, 2))); |
68 |
} else if (breath_time_normalized <= 2.0) { |
69 |
breath_offset = config->breath_amplitude * (2.0 * pow(2.0 - breath_time_normalized, 2)); |
70 |
} else if (breath_time_normalized <= 3.0) { |
71 |
// pause for some time
|
72 |
breath_offset = 0;
|
73 |
} |
74 |
|
75 |
// fetch next time
|
76 |
breath_time_ += 1.0/Server::MOTION_UPDATERATE; |
77 |
|
78 |
if (breath_time_ >= config->breath_period) {
|
79 |
breath_time_ -= config->breath_period; |
80 |
} |
81 |
|
82 |
return breath_offset;
|
83 |
} |
84 |
|
85 |
|
86 |
//! calculate joint targets
|
87 |
void NeckMotionGenerator::calculate_targets() {
|
88 |
// fetch current dataset
|
89 |
float neck_pan_now, neck_tilt_now, neck_roll_now;
|
90 |
float neck_pan_speed, neck_tilt_speed, neck_roll_speed;
|
91 |
|
92 |
humotion::Timestamp neck_pan_ts = get_timestamped_state(JointInterface::ID_NECK_PAN, |
93 |
&neck_pan_now, |
94 |
&neck_pan_speed); |
95 |
|
96 |
humotion::Timestamp neck_tilt_ts = get_timestamped_state(JointInterface::ID_NECK_TILT, |
97 |
&neck_tilt_now, |
98 |
&neck_tilt_speed); |
99 |
|
100 |
humotion::Timestamp neck_roll_ts = get_timestamped_state(JointInterface::ID_NECK_ROLL, |
101 |
&neck_roll_now, |
102 |
&neck_roll_speed); |
103 |
|
104 |
// reached target?
|
105 |
float goal_diff = fabs(get_current_gaze().distance_pt_abs(requested_gaze_state_));
|
106 |
float target_diff = fabs(requested_gaze_state_.distance_pt_abs(previous_neck_target_));
|
107 |
|
108 |
// printf("GOAL DIFF = %f TARGET DIFF = %f\n",goal_diff,target_diff);
|
109 |
// get_current_gaze().dump();
|
110 |
// requested_gaze_state.dump();
|
111 |
|
112 |
// check if new target
|
113 |
// close to goal?
|
114 |
if ( (neck_saccade_active_) && (goal_diff < 1.0) ) { |
115 |
neck_saccade_reached_goal_ = true;
|
116 |
} |
117 |
|
118 |
if (neck_saccade_active_) {
|
119 |
previous_neck_target_ = requested_gaze_state_; |
120 |
} |
121 |
|
122 |
// if we get a new target now, we can stop the neck saccade
|
123 |
if (target_diff > .1) { |
124 |
if (neck_saccade_reached_goal_) {
|
125 |
// joint_interface->neck_saccade_done();
|
126 |
neck_saccade_active_ = false;
|
127 |
neck_saccade_reached_goal_ = false;
|
128 |
} |
129 |
} |
130 |
|
131 |
if (neck_saccade_requested) {
|
132 |
neck_saccade_active_ = true;
|
133 |
} |
134 |
|
135 |
// check if this is a small or big saccade
|
136 |
if (neck_saccade_active_ || neck_saccade_omr) {
|
137 |
// full saccade with neck motion -> update neck target
|
138 |
requested_neck_state_ = requested_gaze_state_; |
139 |
} |
140 |
|
141 |
// get targets: this is the sum of stored neck target and up-to-date offset:
|
142 |
float neck_pan_target = requested_neck_state_.pan + requested_gaze_state_.pan_offset;
|
143 |
float neck_tilt_target = requested_neck_state_.tilt + requested_gaze_state_.tilt_offset;
|
144 |
|
145 |
// roll is always equal to requested gaze (not neck) state
|
146 |
float neck_roll_target = requested_gaze_state_.roll + requested_gaze_state_.roll_offset;
|
147 |
|
148 |
// add breath wave to tilt
|
149 |
neck_tilt_target += get_breath_offset(); |
150 |
|
151 |
//neck_roll_target = 0.0;
|
152 |
//printf("%f %f %f %f ROLL\n", neck_pan_target, neck_roll_target, neck_roll_now, neck_roll_speed);
|
153 |
|
154 |
// pass parameters to reflexxes api
|
155 |
setup_neckmotion(0, neck_pan_target, neck_pan_now, neck_pan_speed, neck_pan_ts);
|
156 |
setup_neckmotion(1, neck_tilt_target, neck_tilt_now, neck_tilt_speed, neck_tilt_ts);
|
157 |
setup_neckmotion(2, neck_roll_target, neck_roll_now, neck_roll_speed, neck_roll_ts);
|
158 |
|
159 |
|
160 |
// call reflexxes to handle profile calculation
|
161 |
reflexxes_calculate_profile(); |
162 |
|
163 |
// tell the joint if about the new values
|
164 |
joint_interface_->set_target(JointInterface::ID_NECK_PAN, |
165 |
reflexxes_position_output->NewPositionVector->VecData[0],
|
166 |
reflexxes_position_output->NewVelocityVector->VecData[0]);
|
167 |
|
168 |
joint_interface_->set_target(JointInterface::ID_NECK_TILT, |
169 |
reflexxes_position_output->NewPositionVector->VecData[1],
|
170 |
reflexxes_position_output->NewVelocityVector->VecData[1]);
|
171 |
|
172 |
joint_interface_->set_target(JointInterface::ID_NECK_ROLL, |
173 |
reflexxes_position_output->NewPositionVector->VecData[2],
|
174 |
reflexxes_position_output->NewVelocityVector->VecData[2]);
|
175 |
|
176 |
//printf("%f %f %f RRR\n", );
|
177 |
|
178 |
/*printf("\n%f %f %f %f %f DBG\n",
|
179 |
neck_pan_now, neck_pan_target,
|
180 |
reflexxes_position_output->NewPositionVector->VecData[0],
|
181 |
joint_interface_->get_ts_speed(JointInterface::ID_NECK_PAN).get_newest_value(),
|
182 |
reflexxes_position_output->NewVelocityVector->VecData[0]
|
183 |
);*/
|
184 |
|
185 |
/*printf("\n%f %f %f %f %f #GAZELOG\n",
|
186 |
boost::get_system_time().time_of_day().total_milliseconds()/1000.0,
|
187 |
requested_gaze_state_.pan + requested_gaze_state_.pan_offset,
|
188 |
get_current_gaze().pan,
|
189 |
(get_current_position(JointInterface::ID_EYES_LEFT_LR) + get_current_position(JointInterface::ID_EYES_RIGHT_LR))/2.0,
|
190 |
get_current_position(JointInterface::ID_NECK_PAN));*/
|
191 |
|
192 |
// store debug data:
|
193 |
store_debug_data("neck/neck_pan_now", neck_pan_now);
|
194 |
store_debug_data("neck/neck_tilt_now", neck_tilt_now);
|
195 |
store_debug_data("neck/neck_pan_target", neck_pan_target);
|
196 |
store_debug_data("neck/neck_tilt_target", neck_tilt_target);
|
197 |
|
198 |
store_debug_data("neck/gaze_target_pan", requested_gaze_state_.pan);
|
199 |
store_debug_data("neck/gaze_target_tilt", requested_gaze_state_.tilt);
|
200 |
|
201 |
store_debug_data("neck/output_pan", reflexxes_position_output->NewPositionVector->VecData[0]); |
202 |
store_debug_data("neck/output_tilt", reflexxes_position_output->NewPositionVector->VecData[1]); |
203 |
} |
204 |
|
205 |
//! publish targets to motor boards:
|
206 |
void NeckMotionGenerator::publish_targets() {
|
207 |
// publish values if there is an active gaze input within the last timerange
|
208 |
if (gaze_target_input_active()) {
|
209 |
joint_interface_->publish_target(JointInterface::ID_NECK_PAN); |
210 |
joint_interface_->publish_target(JointInterface::ID_NECK_TILT); |
211 |
joint_interface_->publish_target(JointInterface::ID_NECK_ROLL); |
212 |
} |
213 |
} |
214 |
|
215 |
|
216 |
//! set up neck motion profile
|
217 |
//! this will use speed and acceleration calc formulas from literature:
|
218 |
//! \param dof id of joint
|
219 |
//! \param target angle
|
220 |
//! \param current angle
|
221 |
void NeckMotionGenerator::setup_neckmotion(int dof, float target, float current_position, |
222 |
float current_velocity, humotion::Timestamp timestamp) {
|
223 |
// get distance to target
|
224 |
float distance_abs = fabs(target - current_position);
|
225 |
|
226 |
|
227 |
// get max speed: according to the equation Hmax from [guitton87] there is a linear relation
|
228 |
// between distance_abs and v_max_head:
|
229 |
// v_max = 4.39 * d_total + 106.0 (in degrees)
|
230 |
float max_velocity = 4.39 * distance_abs + 106.0; |
231 |
|
232 |
// scale and limit max speed:
|
233 |
max_velocity = max_velocity * config->scale_velocity_neck; |
234 |
max_velocity = fmin(max_velocity, config->limit_velocity_neck); |
235 |
|
236 |
// max accel: assuming linear acceleration we have:
|
237 |
|
238 |
/* v ^ _
|
239 |
* | / \
|
240 |
* | / \
|
241 |
* |/_____\___> t
|
242 |
*/
|
243 |
// d_total = 2 * 1/2 * a * (t_total/2)^2 = 1/4 * a * t_total^2
|
244 |
// as we use linear accel we have
|
245 |
// v_max = a * t_total/2 --> t_total = 2*v_max / a
|
246 |
// combine both
|
247 |
// d_total = 1/4 * a * 4 * vmax^2 / a^2 = v_max^2 / a
|
248 |
// d_total = a * 2 * d_total / (v_max^2)
|
249 |
// and therefore
|
250 |
// a = v_max^2 / d_total
|
251 |
float max_accel = 1.0; |
252 |
|
253 |
if (distance_abs > 0.0) { |
254 |
max_accel = pow(max_velocity, 2) / distance_abs;
|
255 |
} |
256 |
|
257 |
// scale and limit acceleration
|
258 |
max_accel = max_accel * config->scale_acceleration_neck; |
259 |
max_accel = fmin(max_accel, config->limit_acceleration_neck); |
260 |
|
261 |
// printf("MAX SPEED %4.2f / max accel %4.2f\n",max_speed, max_accel);
|
262 |
// printf("%f %f %f ", distance_abs, max_velocity, max_accel);
|
263 |
|
264 |
// feed reflexxes api with data
|
265 |
reflexxes_set_input(dof, target, current_position, current_velocity, |
266 |
timestamp, max_velocity, max_accel); |
267 |
} |