humotion / src / server / neck_motion_generator.cpp @ fe5a9426
History | View | Annotate | Download (7.72 KB)
1 |
/*
|
---|---|
2 |
* This file is part of humotion
|
3 |
*
|
4 |
* Copyright(c) sschulz <AT> techfak.uni-bielefeld.de
|
5 |
* http://opensource.cit-ec.de/projects/humotion
|
6 |
*
|
7 |
* This file may be licensed under the terms of the
|
8 |
* GNU Lesser General Public License Version 3 (the ``LGPL''),
|
9 |
* or (at your option) any later version.
|
10 |
*
|
11 |
* Software distributed under the License is distributed
|
12 |
* on an ``AS IS'' basis, WITHOUT WARRANTY OF ANY KIND, either
|
13 |
* express or implied. See the LGPL for the specific language
|
14 |
* governing rights and limitations.
|
15 |
*
|
16 |
* You should have received a copy of the LGPL along with this
|
17 |
* program. If not, go to http://www.gnu.org/licenses/lgpl.html
|
18 |
* or write to the Free Software Foundation, Inc.,
|
19 |
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
20 |
*
|
21 |
* The development of this software was supported by the
|
22 |
* Excellence Cluster EXC 277 Cognitive Interaction Technology.
|
23 |
* The Excellence Cluster EXC 277 is a grant of the Deutsche
|
24 |
* Forschungsgemeinschaft (DFG) in the context of the German
|
25 |
* Excellence Initiative.
|
26 |
*/
|
27 |
|
28 |
#include "server/neck_motion_generator.h" |
29 |
#include "server/gaze_motion_generator.h" |
30 |
#include "server/server.h" |
31 |
#include <cmath> |
32 |
|
33 |
using namespace std; |
34 |
using namespace humotion; |
35 |
using namespace humotion::server; |
36 |
|
37 |
const float NeckMotionGenerator::CONST_GUITTON87_A = 4.39/2.0; // / 2.0; |
38 |
const float NeckMotionGenerator::CONST_GUITTON87_B = 106.0/2.0; // /2.0; |
39 |
|
40 |
//healthy adult human: 12-15 breaths/min (see "Ganong's review of medical physiology")
|
41 |
//total: 60/12-15 = 3-5s
|
42 |
//inhale 1.5-2s
|
43 |
//exhale 1.5-2s
|
44 |
//pause 2s
|
45 |
const float NeckMotionGenerator::CONST_BREATH_PERIOD = 1500.0+1500.0+1500.0; //given in ms |
46 |
const float NeckMotionGenerator::CONST_BREATH_AMPLITUDE = 1.0; //degrees |
47 |
|
48 |
|
49 |
//! constructor
|
50 |
NeckMotionGenerator::NeckMotionGenerator(JointInterface *j) : GazeMotionGenerator(j, 3, 1.0/Server::MOTION_UPDATERATE){ |
51 |
breath_time = 0.0; |
52 |
} |
53 |
|
54 |
|
55 |
//! destructor
|
56 |
NeckMotionGenerator::~NeckMotionGenerator(){ |
57 |
} |
58 |
|
59 |
//! get a breath offset angle
|
60 |
//! @return float of breath offset value
|
61 |
float NeckMotionGenerator::get_breath_offset(){
|
62 |
//we want to have a constant acceleration -> triangular wave as speeds -> (x<0.5)? 2*x*x: 1- 2*(1-x)**2 = 4x - 2x**2 - 1
|
63 |
float breath_offset = 0.0; |
64 |
float breath_time_normalized = (breath_time * 3)/CONST_BREATH_PERIOD; //0...1 -> move up, 1..2 -> return, 2..3 -> still |
65 |
|
66 |
if (breath_time_normalized <= 0.5){ |
67 |
//accelerated motion:
|
68 |
breath_offset = CONST_BREATH_AMPLITUDE * (2.0 * pow(breath_time_normalized, 2)); |
69 |
}else if (breath_time_normalized <= 1.0){ |
70 |
//deaccelerate:
|
71 |
breath_offset = CONST_BREATH_AMPLITUDE * (1.0 - 2.0 * pow(1.0 - breath_time_normalized, 2)); |
72 |
}else if (breath_time_normalized <= 1.5){ |
73 |
//accelerate again:
|
74 |
breath_offset = CONST_BREATH_AMPLITUDE * (1.0 - (2.0 * pow(breath_time_normalized-1, 2))); |
75 |
}else if (breath_time_normalized <= 2.0){ |
76 |
breath_offset = CONST_BREATH_AMPLITUDE * (2.0 * pow(2.0 - breath_time_normalized, 2)); |
77 |
}else if (breath_time_normalized <= 3.0){ |
78 |
//pause for some time
|
79 |
breath_offset = 0;
|
80 |
} |
81 |
|
82 |
//fetch next time
|
83 |
breath_time += 1000.0/Server::MOTION_UPDATERATE; |
84 |
if (breath_time >= CONST_BREATH_PERIOD){
|
85 |
breath_time -= CONST_BREATH_PERIOD; |
86 |
} |
87 |
|
88 |
return breath_offset;
|
89 |
} |
90 |
|
91 |
|
92 |
//! calculate joint targets
|
93 |
void NeckMotionGenerator::calculate_targets(){
|
94 |
//fetch current angles:
|
95 |
float neck_pan_now = get_current_position(JointInterface::ID_NECK_PAN);
|
96 |
float neck_tilt_now = get_current_position(JointInterface::ID_NECK_TILT);
|
97 |
float neck_roll_now = get_current_position(JointInterface::ID_NECK_ROLL);
|
98 |
|
99 |
//reached target?
|
100 |
float goal_diff = fabs(get_current_gaze().distance_pt_abs(requested_gaze_state));
|
101 |
float target_diff = fabs(requested_gaze_state.distance_pt_abs(previous_neck_target));
|
102 |
|
103 |
//printf("GOAL DIFF = %f TARGET DIFF = %f\n",goal_diff,target_diff);
|
104 |
//get_current_gaze().dump();
|
105 |
//requested_gaze_state.dump();
|
106 |
|
107 |
//check if new target
|
108 |
//close to goal?
|
109 |
if ( (neck_saccade_active) && (goal_diff < 1.0)){ |
110 |
neck_saccade_reached_goal = true;
|
111 |
} |
112 |
|
113 |
if (neck_saccade_active){
|
114 |
previous_neck_target = requested_gaze_state; |
115 |
} |
116 |
|
117 |
//if we get a new target now, we can stop the neck saccade
|
118 |
if (target_diff > .1){ |
119 |
if (neck_saccade_reached_goal){
|
120 |
// joint_interface->neck_saccade_done();
|
121 |
neck_saccade_active = false;
|
122 |
neck_saccade_reached_goal = false;
|
123 |
} |
124 |
} |
125 |
|
126 |
if (neck_saccade_requested){
|
127 |
neck_saccade_active = true;
|
128 |
} |
129 |
|
130 |
//check if this is a small or big saccade:
|
131 |
if (neck_saccade_active || neck_saccade_omr){
|
132 |
//full saccade with neck motion -> update neck target
|
133 |
requested_neck_state = requested_gaze_state; |
134 |
} |
135 |
|
136 |
//get targets: this is the sum of stored neck target and up-to-date offset:
|
137 |
float neck_pan_target = requested_neck_state.pan + requested_gaze_state.pan_offset;
|
138 |
float neck_tilt_target = requested_neck_state.tilt + requested_gaze_state.tilt_offset;
|
139 |
//roll is always equal to requested gaze (not neck) state
|
140 |
float neck_roll_target = requested_gaze_state.roll + requested_gaze_state.roll_offset;
|
141 |
|
142 |
//add breath wave to tilt:
|
143 |
neck_tilt_target += get_breath_offset(); |
144 |
|
145 |
//pass parameters to reflexxes api:
|
146 |
setup_neckmotion(0, neck_pan_target, neck_pan_now);
|
147 |
setup_neckmotion(1, neck_tilt_target, neck_tilt_now);
|
148 |
setup_neckmotion(2, neck_roll_target, neck_roll_now);
|
149 |
|
150 |
//call reflexxes to handle profile calculation:
|
151 |
reflexxes_calculate_profile(); |
152 |
|
153 |
//tell the joint if about the new values:
|
154 |
joint_interface->set_target_position(JointInterface::ID_NECK_PAN, reflexxes_position_output->NewPositionVector->VecData[0]);
|
155 |
joint_interface->set_target_position(JointInterface::ID_NECK_TILT, reflexxes_position_output->NewPositionVector->VecData[1]);
|
156 |
joint_interface->set_target_position(JointInterface::ID_NECK_ROLL, reflexxes_position_output->NewPositionVector->VecData[2]);
|
157 |
} |
158 |
|
159 |
//! publish targets to motor boards:
|
160 |
void NeckMotionGenerator::publish_targets(){
|
161 |
//publish values if there is an active gaze input within the last timerange
|
162 |
if (gaze_target_input_active()){
|
163 |
joint_interface->publish_target_position(JointInterface::ID_NECK_PAN); |
164 |
joint_interface->publish_target_position(JointInterface::ID_NECK_TILT); |
165 |
joint_interface->publish_target_position(JointInterface::ID_NECK_ROLL); |
166 |
} |
167 |
} |
168 |
|
169 |
|
170 |
//! set up neck motion profile
|
171 |
//! this will use speed and acceleration calc formulas from literature:
|
172 |
//! \param dof id of joint
|
173 |
//! \param target angle
|
174 |
//! \param current angle
|
175 |
void NeckMotionGenerator::setup_neckmotion(int dof, float target, float now){ |
176 |
//get distance to target:
|
177 |
float distance_abs = fabs(target - now);
|
178 |
|
179 |
//get max speed: according to [guitton87] there is a relation between distance_abs and v_max_head:
|
180 |
//v_max = 4.39 * d_total + 106.0 (in degrees)
|
181 |
float max_speed = (CONST_GUITTON87_A * distance_abs + CONST_GUITTON87_B);
|
182 |
|
183 |
//max accel: assuming linear acceleration we have
|
184 |
// v ^
|
185 |
// | / \
|
186 |
// | / \
|
187 |
// |/_____\___> t
|
188 |
//
|
189 |
// d_total = 2 * 1/2 * a * (t_total/2)^2 = 1/4 * a * t_total^2
|
190 |
// as we use linear accel we have
|
191 |
// v_max = a * t_total/2 --> t_total = 2*v_max / a
|
192 |
// combine both
|
193 |
// d_total = 1/4 * a * 4 * vmax^2 / a^2 = v_max^2 / a
|
194 |
// d_total = a * 2 * d_total / (v_max^2)
|
195 |
// and therefore
|
196 |
// a = v_max^2 / d_total
|
197 |
float max_accel = 0.0; |
198 |
if (distance_abs > 0.0){ |
199 |
max_accel = pow(max_speed, 2) / distance_abs;
|
200 |
} |
201 |
|
202 |
//limit maximum acceleration to reduce noise FIXME!
|
203 |
if (max_accel>1000){ |
204 |
max_accel = 1000;
|
205 |
} |
206 |
|
207 |
///printf("MAX SPEED %4.2f / max accel %4.2f\n",max_speed, max_accel);
|
208 |
|
209 |
//feed reflexxes api with data
|
210 |
reflexxes_set_input(dof, target, max_speed, max_accel); |
211 |
} |