Statistics
| Branch: | Revision:

adafruit_bno055 / utility / vector.h @ 3cae40b9

History | View | Annotate | Download (4.745 KB)

1
/*
2
    Inertial Measurement Unit Maths Library
3
    Copyright (C) 2013-2014  Samuel Cowen
4
    www.camelsoftware.com
5

6
    This program is free software: you can redistribute it and/or modify
7
    it under the terms of the GNU General Public License as published by
8
    the Free Software Foundation, either version 3 of the License, or
9
    (at your option) any later version.
10

11
    This program is distributed in the hope that it will be useful,
12
    but WITHOUT ANY WARRANTY; without even the implied warranty of
13
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
    GNU General Public License for more details.
15

16
    You should have received a copy of the GNU General Public License
17
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
18
*/
19

    
20
#ifndef IMUMATH_VECTOR_HPP
21
#define IMUMATH_VECTOR_HPP
22

    
23
#include <string.h>
24
#include <stdint.h>
25
#include <math.h>
26

    
27

    
28
namespace imu
29
{
30

    
31
template <uint8_t N> class Vector
32
{
33
public:
34
    Vector()
35
    {
36
        memset(p_vec, 0, sizeof(double)*N);
37
    }
38

    
39
    Vector(double a)
40
    {
41
        memset(p_vec, 0, sizeof(double)*N);
42
        p_vec[0] = a;
43
    }
44

    
45
    Vector(double a, double b)
46
    {
47
        memset(p_vec, 0, sizeof(double)*N);
48
        p_vec[0] = a;
49
        p_vec[1] = b;
50
    }
51

    
52
    Vector(double a, double b, double c)
53
    {
54
        memset(p_vec, 0, sizeof(double)*N);
55
        p_vec[0] = a;
56
        p_vec[1] = b;
57
        p_vec[2] = c;
58
    }
59

    
60
    Vector(double a, double b, double c, double d)
61
    {
62
        memset(p_vec, 0, sizeof(double)*N);
63
        p_vec[0] = a;
64
        p_vec[1] = b;
65
        p_vec[2] = c;
66
        p_vec[3] = d;
67
    }
68

    
69
    Vector(const Vector<N> &v)
70
    {
71
        for (int x = 0; x < N; x++)
72
            p_vec[x] = v.p_vec[x];
73
    }
74

    
75
    ~Vector()
76
    {
77
    }
78

    
79
    uint8_t n() { return N; }
80

    
81
    double magnitude() const
82
    {
83
        double res = 0;
84
        for (int i = 0; i < N; i++)
85
            res += p_vec[i] * p_vec[i];
86

    
87
        return sqrt(res);
88
    }
89

    
90
    void normalize()
91
    {
92
        double mag = magnitude();
93
        if (isnan(mag) || mag == 0.0)
94
            return;
95

    
96
        for (int i = 0; i < N; i++)
97
            p_vec[i] /= mag;
98
    }
99

    
100
    double dot(const Vector& v) const
101
    {
102
        double ret = 0;
103
        for (int i = 0; i < N; i++)
104
            ret += p_vec[i] * v.p_vec[i];
105

    
106
        return ret;
107
    }
108

    
109
    // The cross product is only valid for vectors with 3 dimensions,
110
    // with the exception of higher dimensional stuff that is beyond
111
    // the intended scope of this library.
112
    // Only a definition for N==3 is given below this class, using
113
    // cross() with another value for N will result in a link error.
114
    Vector cross(const Vector& v) const;
115

    
116
    Vector scale(double scalar) const
117
    {
118
        Vector ret;
119
        for(int i = 0; i < N; i++)
120
            ret.p_vec[i] = p_vec[i] * scalar;
121
        return ret;
122
    }
123

    
124
    Vector invert() const
125
    {
126
        Vector ret;
127
        for(int i = 0; i < N; i++)
128
            ret.p_vec[i] = -p_vec[i];
129
        return ret;
130
    }
131

    
132
    Vector& operator=(const Vector& v)
133
    {
134
        for (int x = 0; x < N; x++ )
135
            p_vec[x] = v.p_vec[x];
136
        return *this;
137
    }
138

    
139
    double& operator [](int n)
140
    {
141
        return p_vec[n];
142
    }
143

    
144
    double operator [](int n) const
145
    {
146
        return p_vec[n];
147
    }
148

    
149
    double& operator ()(int n)
150
    {
151
        return p_vec[n];
152
    }
153

    
154
    double operator ()(int n) const
155
    {
156
        return p_vec[n];
157
    }
158

    
159
    Vector operator+(const Vector& v) const
160
    {
161
        Vector ret;
162
        for(int i = 0; i < N; i++)
163
            ret.p_vec[i] = p_vec[i] + v.p_vec[i];
164
        return ret;
165
    }
166

    
167
    Vector operator-(const Vector& v) const
168
    {
169
        Vector ret;
170
        for(int i = 0; i < N; i++)
171
            ret.p_vec[i] = p_vec[i] - v.p_vec[i];
172
        return ret;
173
    }
174

    
175
    Vector operator * (double scalar) const
176
    {
177
        return scale(scalar);
178
    }
179

    
180
    Vector operator / (double scalar) const
181
    {
182
        Vector ret;
183
        for(int i = 0; i < N; i++)
184
            ret.p_vec[i] = p_vec[i] / scalar;
185
        return ret;
186
    }
187

    
188
    void toDegrees()
189
    {
190
        for(int i = 0; i < N; i++)
191
            p_vec[i] *= 57.2957795131; //180/pi
192
    }
193

    
194
    void toRadians()
195
    {
196
        for(int i = 0; i < N; i++)
197
            p_vec[i] *= 0.01745329251;  //pi/180
198
    }
199

    
200
    double& x() { return p_vec[0]; }
201
    double& y() { return p_vec[1]; }
202
    double& z() { return p_vec[2]; }
203
    double x() const { return p_vec[0]; }
204
    double y() const { return p_vec[1]; }
205
    double z() const { return p_vec[2]; }
206

    
207

    
208
private:
209
    double p_vec[N];
210
};
211

    
212

    
213
template <>
214
inline Vector<3> Vector<3>::cross(const Vector& v) const
215
{
216
    return Vector(
217
        p_vec[1] * v.p_vec[2] - p_vec[2] * v.p_vec[1],
218
        p_vec[2] * v.p_vec[0] - p_vec[0] * v.p_vec[2],
219
        p_vec[0] * v.p_vec[1] - p_vec[1] * v.p_vec[0]
220
    );
221
}
222

    
223
} // namespace
224

    
225
#endif