Statistics
| Branch: | Tag: | Revision:

humotion / src / server / neck_motion_generator.cpp @ 0c8d22a5

History | View | Annotate | Download (9.338 KB)

1
/*
2
* This file is part of humotion
3
*
4
* Copyright(c) sschulz <AT> techfak.uni-bielefeld.de
5
* http://opensource.cit-ec.de/projects/humotion
6
*
7
* This file may be licensed under the terms of the
8
* GNU Lesser General Public License Version 3 (the ``LGPL''),
9
* or (at your option) any later version.
10
*
11
* Software distributed under the License is distributed
12
* on an ``AS IS'' basis, WITHOUT WARRANTY OF ANY KIND, either
13
* express or implied. See the LGPL for the specific language
14
* governing rights and limitations.
15
*
16
* You should have received a copy of the LGPL along with this
17
* program. If not, go to http://www.gnu.org/licenses/lgpl.html
18
* or write to the Free Software Foundation, Inc.,
19
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
20
*
21
* The development of this software was supported by the
22
* Excellence Cluster EXC 277 Cognitive Interaction Technology.
23
* The Excellence Cluster EXC 277 is a grant of the Deutsche
24
* Forschungsgemeinschaft (DFG) in the context of the German
25
* Excellence Initiative.
26
*/
27

    
28
#include <cmath>
29

    
30
#include "humotion/server/gaze_motion_generator.h"
31
#include "humotion/server/neck_motion_generator.h"
32
#include "humotion/server/server.h"
33

    
34
using humotion::server::NeckMotionGenerator;
35

    
36
const float NeckMotionGenerator::CONST_GUITTON87_A = 4.39/2.0;
37
const float NeckMotionGenerator::CONST_GUITTON87_B = 106.0/2.0;
38

    
39
// healthy adult human: 12-15 breaths/min (see "Ganong's review of medical physiology")
40
// total: 60/12-15 = 3-5s
41
// inhale 1.5-2s
42
// exhale 1.5-2s
43
// pause      2s
44
const float NeckMotionGenerator::CONST_BREATH_PERIOD = 1500.0+1500.0+1500.0;  // given in ms
45
const float NeckMotionGenerator::CONST_BREATH_AMPLITUDE = 1.0;  // degrees
46

    
47

    
48
//! constructor
49
NeckMotionGenerator::NeckMotionGenerator(JointInterface *j) :
50
    GazeMotionGenerator(j, 3, 1.0/Server::MOTION_UPDATERATE) {
51
    breath_time = 0.0;
52
}
53

    
54

    
55
//! destructor
56
NeckMotionGenerator::~NeckMotionGenerator() {
57
}
58

    
59
//! get a breath offset angle
60
//! @return float of breath offset value
61
float NeckMotionGenerator::get_breath_offset() {
62
    // we want to have a constant acceleration
63
    // -> triangular wave as speeds -> (x<0.5)? 2*x*x:  1- 2*(1-x)**2 = 4x - 2x**2 - 1
64
    float breath_offset = 0.0;
65
    // 0...1 -> move up, 1..2 -> return, 2..3 -> still
66
    float breath_time_normalized = (breath_time * 3)/CONST_BREATH_PERIOD;
67

    
68
    if (breath_time_normalized <= 0.5) {
69
        // accelerated motion
70
        breath_offset = CONST_BREATH_AMPLITUDE * (2.0 * pow(breath_time_normalized, 2));
71
    } else if (breath_time_normalized <= 1.0) {
72
        // deaccelerate
73
        breath_offset = CONST_BREATH_AMPLITUDE * (1.0 - 2.0 * pow(1.0 - breath_time_normalized, 2));
74
    } else if (breath_time_normalized <= 1.5) {
75
        // accelerate again
76
        breath_offset = CONST_BREATH_AMPLITUDE * (1.0 - (2.0 * pow(breath_time_normalized-1, 2)));
77
    } else if (breath_time_normalized <= 2.0) {
78
        breath_offset = CONST_BREATH_AMPLITUDE * (2.0 * pow(2.0 - breath_time_normalized, 2));
79
    } else if (breath_time_normalized <= 3.0) {
80
        // pause for some time
81
        breath_offset = 0;
82
    }
83

    
84
    // fetch next time
85
    breath_time += 1000.0/Server::MOTION_UPDATERATE;
86
    if (breath_time >= CONST_BREATH_PERIOD) {
87
        breath_time -= CONST_BREATH_PERIOD;
88
    }
89

    
90
    return breath_offset;
91
}
92

    
93

    
94
//! calculate joint targets
95
void NeckMotionGenerator::calculate_targets() {
96
    // fetch current dataset
97
    float neck_pan_now, neck_tilt_now, neck_roll_now;
98
    float neck_pan_speed, neck_tilt_speed, neck_roll_speed;
99

    
100
    humotion::Timestamp neck_pan_ts = get_timestamped_state(JointInterface::ID_NECK_PAN,
101
                                                            &neck_pan_now,
102
                                                            &neck_pan_speed);
103

    
104
    humotion::Timestamp neck_tilt_ts = get_timestamped_state(JointInterface::ID_NECK_TILT,
105
                                                            &neck_tilt_now,
106
                                                            &neck_tilt_speed);
107

    
108
    humotion::Timestamp neck_roll_ts = get_timestamped_state(JointInterface::ID_NECK_ROLL,
109
                                                            &neck_roll_now,
110
                                                            &neck_roll_speed);
111

    
112
    // reached target?
113
    float goal_diff   = fabs(get_current_gaze().distance_pt_abs(requested_gaze_state));
114
    float target_diff = fabs(requested_gaze_state.distance_pt_abs(previous_neck_target));
115

    
116
    // printf("GOAL DIFF = %f TARGET DIFF = %f\n",goal_diff,target_diff);
117
    // get_current_gaze().dump();
118
    // requested_gaze_state.dump();
119

    
120
    // check if new target
121
    // close to goal?
122
    if ( (neck_saccade_active) && (goal_diff < 1.0) ) {
123
        neck_saccade_reached_goal = true;
124
    }
125

    
126
    if (neck_saccade_active) {
127
        previous_neck_target = requested_gaze_state;
128
    }
129

    
130
    // if we get a new target now, we can stop the neck saccade
131
    if (target_diff > .1) {
132
        if (neck_saccade_reached_goal) {
133
            // joint_interface->neck_saccade_done();
134
            neck_saccade_active = false;
135
            neck_saccade_reached_goal = false;
136
        }
137
    }
138

    
139
    if (neck_saccade_requested) {
140
        neck_saccade_active = true;
141
    }
142

    
143
    // check if this is a small or big saccade
144
    if (neck_saccade_active || neck_saccade_omr) {
145
        // full saccade with neck motion -> update neck target
146
        requested_neck_state = requested_gaze_state;
147
    }
148

    
149
    // get targets: this is the sum of stored neck target and up-to-date offset:
150
    float neck_pan_target  = requested_neck_state.pan  + requested_gaze_state.pan_offset;
151
    float neck_tilt_target = requested_neck_state.tilt + requested_gaze_state.tilt_offset;
152
    // roll is always equal to requested gaze (not neck) state
153
    float neck_roll_target = requested_gaze_state.roll + requested_gaze_state.roll_offset;
154

    
155
    // add breath wave to tilt
156
    neck_tilt_target += get_breath_offset();
157

    
158
    // pass parameters to reflexxes api
159
    setup_neckmotion(0, neck_pan_target,  neck_pan_now,  neck_pan_speed,  neck_pan_ts);
160
    setup_neckmotion(1, neck_tilt_target, neck_tilt_now, neck_tilt_speed, neck_tilt_ts);
161
    setup_neckmotion(2, neck_roll_target, neck_roll_now, neck_roll_speed, neck_roll_ts);
162

    
163
    // call reflexxes to handle profile calculation
164
    reflexxes_calculate_profile();
165

    
166
    // tell the joint if about the new values
167
    joint_interface->set_target(JointInterface::ID_NECK_PAN,
168
                                reflexxes_position_output->NewPositionVector->VecData[0],
169
                                reflexxes_position_output->NewVelocityVector->VecData[0]);
170

    
171
    joint_interface->set_target(JointInterface::ID_NECK_TILT,
172
                                reflexxes_position_output->NewPositionVector->VecData[1],
173
                                reflexxes_position_output->NewVelocityVector->VecData[1]);
174

    
175
    joint_interface->set_target(JointInterface::ID_NECK_ROLL,
176
                                reflexxes_position_output->NewPositionVector->VecData[2],
177
                                reflexxes_position_output->NewVelocityVector->VecData[2]);
178

    
179
    /*printf("\n%f %f %f %f %f DBG\n",
180
            neck_pan_now, neck_pan_target,
181
            reflexxes_position_output->NewPositionVector->VecData[0],
182
            joint_interface->get_ts_speed(JointInterface::ID_NECK_PAN).get_newest_value(),
183
            reflexxes_position_output->NewVelocityVector->VecData[0]
184
            );*/
185
}
186

    
187
//! publish targets to motor boards:
188
void NeckMotionGenerator::publish_targets() {
189
    // publish values if there is an active gaze input within the last timerange
190
    if (gaze_target_input_active()) {
191
        joint_interface->publish_target(JointInterface::ID_NECK_PAN);
192
        joint_interface->publish_target(JointInterface::ID_NECK_TILT);
193
        joint_interface->publish_target(JointInterface::ID_NECK_ROLL);
194
    }
195
}
196

    
197

    
198
//! set up neck motion profile
199
//! this will use speed and acceleration calc formulas from literature:
200
//! \param dof id of joint
201
//! \param target angle
202
//! \param current angle
203
void NeckMotionGenerator::setup_neckmotion(int dof, float target, float current_position,
204
                                           float current_velocity, humotion::Timestamp timestamp) {
205
    // get distance to target
206
    float distance_abs = fabs(target - current_position);
207

    
208
    // get max speed: according to [guitton87] there is a relation
209
    // between distance_abs and v_max_head:
210
    // v_max = 4.39 * d_total + 106.0 (in degrees)
211
    float max_speed = (CONST_GUITTON87_A * distance_abs + CONST_GUITTON87_B);
212

    
213
    // max accel: assuming linear acceleration we have:
214
    /* v ^  _
215
    *   |  / \
216
    *   | /   \
217
    *   |/_____\___> t
218
    */
219
    // d_total = 2 * 1/2 * a * (t_total/2)^2 = 1/4 * a * t_total^2
220
    // as we use linear accel we have
221
    // v_max = a * t_total/2  --> t_total = 2*v_max / a
222
    // combine both
223
    // d_total = 1/4 * a * 4 * vmax^2 / a^2 = v_max^2 / a
224
    // d_total = a * 2 * d_total / (v_max^2)
225
    // and therefore
226
    // a = v_max^2 / d_total
227
    float max_accel = 0.0;
228
    if (distance_abs > 0.0) {
229
        max_accel = pow(max_speed, 2) / distance_abs;
230
    }
231

    
232
    // smoother motion
233
    max_accel = max_accel * 0.7;
234

    
235
    // limit maximum acceleration to reduce noise FIXME!
236
    if (max_accel > 1000) {
237
        max_accel = 1000;
238
    }
239
    // printf("MAX SPEED %4.2f / max accel %4.2f\n",max_speed, max_accel);
240

    
241
    // feed reflexxes api with data
242
    reflexxes_set_input(dof, target, current_position, current_velocity,
243
                        timestamp, max_speed, max_accel);
244
}