amiro-blt / Target / Source / ARMCM3_STM32 / flash.c @ 1da30dfc
History | View | Annotate | Download (35.515 KB)
1 |
/************************************************************************************//** |
---|---|
2 |
* \file Source\ARMCM3_STM32\flash.c
|
3 |
* \brief Bootloader flash driver source file.
|
4 |
* \ingroup Target_ARMCM3_STM32
|
5 |
* \internal
|
6 |
*----------------------------------------------------------------------------------------
|
7 |
* C O P Y R I G H T
|
8 |
*----------------------------------------------------------------------------------------
|
9 |
* Copyright (c) 2011 by Feaser http://www.feaser.com All rights reserved
|
10 |
*
|
11 |
*----------------------------------------------------------------------------------------
|
12 |
* L I C E N S E
|
13 |
*----------------------------------------------------------------------------------------
|
14 |
* This file is part of OpenBLT. OpenBLT is free software: you can redistribute it and/or
|
15 |
* modify it under the terms of the GNU General Public License as published by the Free
|
16 |
* Software Foundation, either version 3 of the License, or (at your option) any later
|
17 |
* version.
|
18 |
*
|
19 |
* OpenBLT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
|
20 |
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
21 |
* PURPOSE. See the GNU General Public License for more details.
|
22 |
*
|
23 |
* You should have received a copy of the GNU General Public License along with OpenBLT.
|
24 |
* If not, see <http://www.gnu.org/licenses/>.
|
25 |
*
|
26 |
* A special exception to the GPL is included to allow you to distribute a combined work
|
27 |
* that includes OpenBLT without being obliged to provide the source code for any
|
28 |
* proprietary components. The exception text is included at the bottom of the license
|
29 |
* file <license.html>.
|
30 |
*
|
31 |
* \endinternal
|
32 |
****************************************************************************************/
|
33 |
|
34 |
/****************************************************************************************
|
35 |
* Include files
|
36 |
****************************************************************************************/
|
37 |
#include "boot.h" /* bootloader generic header */ |
38 |
|
39 |
|
40 |
/****************************************************************************************
|
41 |
* Macro definitions
|
42 |
****************************************************************************************/
|
43 |
/** \brief Value for an invalid flash sector. */
|
44 |
#define FLASH_INVALID_SECTOR (0xff) |
45 |
/** \brief Value for an invalid flash address. */
|
46 |
#define FLASH_INVALID_ADDRESS (0xffffffff) |
47 |
/** \brief Standard size of a flash block for writing. */
|
48 |
#define FLASH_WRITE_BLOCK_SIZE (512) |
49 |
/** \brief Total numbers of sectors in array flashLayout[]. */
|
50 |
#define FLASH_TOTAL_SECTORS (sizeof(flashLayout)/sizeof(flashLayout[0])) |
51 |
#if (BOOT_NVM_SIZE_KB > 128) |
52 |
/** \brief Number of bytes to erase per erase operation. */
|
53 |
#define FLASH_ERASE_BLOCK_SIZE (0x800) |
54 |
#else
|
55 |
/** \brief Number of bytes to erase per erase operation. */
|
56 |
#define FLASH_ERASE_BLOCK_SIZE (0x400) |
57 |
#endif
|
58 |
/** \brief Macro for accessing the flash control registers. */
|
59 |
#define FLASH ((tFlashRegs *) (blt_int32u)0x40022000) |
60 |
/** \brief Offset into the user program's vector table where the checksum is located. */
|
61 |
#define FLASH_VECTOR_TABLE_CS_OFFSET (0x150) |
62 |
#define FLASH_KEY1 ((blt_int32u)0x45670123) |
63 |
#define FLASH_KEY2 ((blt_int32u)0xCDEF89AB) |
64 |
#define FLASH_LOCK_BIT ((blt_int32u)0x00000080) |
65 |
#define FLASH_EOP_BIT ((blt_int32u)0x00000020) |
66 |
#define FLASH_PGERR_BIT ((blt_int32u)0x00000004) |
67 |
#define FLASH_WRPRTERR_BIT ((blt_int32u)0x00000010) |
68 |
#define FLASH_BSY_BIT ((blt_int32u)0x00000001) |
69 |
#define FLASH_PER_BIT ((blt_int32u)0x00000002) |
70 |
#define FLASH_STRT_BIT ((blt_int32u)0x00000040) |
71 |
#define FLASH_PG_BIT ((blt_int32u)0x00000001) |
72 |
|
73 |
|
74 |
/****************************************************************************************
|
75 |
* Type definitions
|
76 |
****************************************************************************************/
|
77 |
/** \brief Flash sector descriptor type. */
|
78 |
typedef struct |
79 |
{ |
80 |
blt_addr sector_start; /**< sector start address */
|
81 |
blt_int32u sector_size; /**< sector size in bytes */
|
82 |
blt_int8u sector_num; /**< sector number */
|
83 |
} tFlashSector; |
84 |
|
85 |
/** \brief Structure type for grouping flash block information.
|
86 |
* \details Programming is done per block of max FLASH_WRITE_BLOCK_SIZE. for this a
|
87 |
* flash block manager is implemented in this driver. this flash block manager
|
88 |
* depends on this flash block info structure. It holds the base address of
|
89 |
* the flash block and the data that should be programmed into the flash
|
90 |
* block. The .base_addr must be a multiple of FLASH_WRITE_BLOCK_SIZE.
|
91 |
*/
|
92 |
typedef struct |
93 |
{ |
94 |
blt_addr base_addr; |
95 |
blt_int8u data[FLASH_WRITE_BLOCK_SIZE]; |
96 |
} tFlashBlockInfo; |
97 |
|
98 |
/** \brief Flash controller register layout type. */
|
99 |
typedef struct |
100 |
{ |
101 |
volatile blt_int32u ACR; /**< flash access control register */ |
102 |
volatile blt_int32u KEYR; /**< FPEC key register */ |
103 |
volatile blt_int32u OPTKEYR; /**< flash OPTKEY register */ |
104 |
volatile blt_int32u SR; /**< flash status register */ |
105 |
volatile blt_int32u CR; /**< flash control register */ |
106 |
volatile blt_int32u AR; /**< flash address register */ |
107 |
volatile blt_int32u RESERVED;
|
108 |
volatile blt_int32u OBR; /**< option byte register */ |
109 |
volatile blt_int32u WRPR; /**< write protection register */ |
110 |
} tFlashRegs; |
111 |
|
112 |
|
113 |
/****************************************************************************************
|
114 |
* Function prototypes
|
115 |
****************************************************************************************/
|
116 |
static blt_bool FlashInitBlock(tFlashBlockInfo *block, blt_addr address);
|
117 |
static tFlashBlockInfo *FlashSwitchBlock(tFlashBlockInfo *block, blt_addr base_addr);
|
118 |
static blt_bool FlashAddToBlock(tFlashBlockInfo *block, blt_addr address,
|
119 |
blt_int8u *data, blt_int32u len); |
120 |
static blt_bool FlashWriteBlock(tFlashBlockInfo *block);
|
121 |
static blt_bool FlashEraseSectors(blt_int8u first_sector, blt_int8u last_sector);
|
122 |
static void FlashUnlock(void); |
123 |
static void FlashLock(void); |
124 |
static blt_int8u FlashGetSector(blt_addr address);
|
125 |
static blt_addr FlashGetSectorBaseAddr(blt_int8u sector);
|
126 |
static blt_addr FlashGetSectorSize(blt_int8u sector);
|
127 |
|
128 |
|
129 |
/****************************************************************************************
|
130 |
* Local constant declarations
|
131 |
****************************************************************************************/
|
132 |
/** \brief Array wit the layout of the flash memory.
|
133 |
* \details Also controls what part of the flash memory is reserved for the bootloader.
|
134 |
* If the bootloader size changes, the reserved sectors for the bootloader
|
135 |
* might need adjustment to make sure the bootloader doesn't get overwritten.
|
136 |
* The current flash layout does not reflect the minimum sector size of the
|
137 |
* physical flash (1 - 2kb), because this would make the table quit long and
|
138 |
* a waste of ROM. The minimum sector size is only really needed when erasing
|
139 |
* the flash. This can still be done in combination with macro
|
140 |
* FLASH_ERASE_BLOCK_SIZE.
|
141 |
*/
|
142 |
static const tFlashSector flashLayout[] = |
143 |
{ |
144 |
/* space is reserved for a bootloader configuration with all supported communication
|
145 |
* interfaces enabled. when for example only UART is needed, than the space required
|
146 |
* for the bootloader can be made a lot smaller here.
|
147 |
*/
|
148 |
/* { 0x08000000, 0x02000, 0}, flash sector 0 - reserved for bootloader */
|
149 |
/* { 0x08002000, 0x02000, 1}, flash sector 1 - reserved for bootloader */
|
150 |
/* { 0x08004000, 0x02000, 2}, flash sector 2 - reserved for bootloader */
|
151 |
{ 0x08006000, 0x02000, 3}, /* flash sector 3 - 8kb */ |
152 |
#if (BOOT_NVM_SIZE_KB > 32) |
153 |
{ 0x08008000, 0x02000, 4}, /* flash sector 4 - 8kb */ |
154 |
{ 0x0800A000, 0x02000, 5}, /* flash sector 5 - 8kb */ |
155 |
{ 0x0800C000, 0x02000, 6}, /* flash sector 6 - 8kb */ |
156 |
{ 0x0800E000, 0x02000, 7}, /* flash sector 7 - 8kb */ |
157 |
#endif
|
158 |
#if (BOOT_NVM_SIZE_KB > 64) |
159 |
{ 0x08010000, 0x02000, 8}, /* flash sector 8 - 8kb */ |
160 |
{ 0x08012000, 0x02000, 9}, /* flash sector 9 - 8kb */ |
161 |
{ 0x08014000, 0x02000, 10}, /* flash sector 10 - 8kb */ |
162 |
{ 0x08016000, 0x02000, 11}, /* flash sector 11 - 8kb */ |
163 |
{ 0x08018000, 0x02000, 12}, /* flash sector 12 - 8kb */ |
164 |
{ 0x0801A000, 0x02000, 13}, /* flash sector 13 - 8kb */ |
165 |
{ 0x0801C000, 0x02000, 14}, /* flash sector 14 - 8kb */ |
166 |
{ 0x0801E000, 0x02000, 15}, /* flash sector 15 - 8kb */ |
167 |
#endif
|
168 |
#if (BOOT_NVM_SIZE_KB > 128) |
169 |
{ 0x08020000, 0x08000, 16}, /* flash sector 16 - 32kb */ |
170 |
{ 0x08028000, 0x08000, 17}, /* flash sector 17 - 32kb */ |
171 |
{ 0x08030000, 0x08000, 18}, /* flash sector 18 - 32kb */ |
172 |
{ 0x08038000, 0x08000, 19}, /* flash sector 19 - 32kb */ |
173 |
#endif
|
174 |
#if (BOOT_NVM_SIZE_KB > 256) |
175 |
{ 0x08040000, 0x08000, 20}, /* flash sector 20 - 32kb */ |
176 |
{ 0x08048000, 0x08000, 21}, /* flash sector 21 - 32kb */ |
177 |
{ 0x08050000, 0x08000, 22}, /* flash sector 22 - 32kb */ |
178 |
{ 0x08058000, 0x08000, 23}, /* flash sector 23 - 32kb */ |
179 |
{ 0x08060000, 0x08000, 24}, /* flash sector 24 - 32kb */ |
180 |
{ 0x08068000, 0x08000, 25}, /* flash sector 25 - 32kb */ |
181 |
{ 0x08070000, 0x08000, 26}, /* flash sector 26 - 32kb */ |
182 |
{ 0x08078000, 0x08000, 27}, /* flash sector 27 - 32kb */ |
183 |
#endif
|
184 |
#if (BOOT_NVM_SIZE_KB > 512) |
185 |
#error "BOOT_NVM_SIZE_KB > 512 is currently not supported." |
186 |
#endif
|
187 |
}; |
188 |
|
189 |
|
190 |
/****************************************************************************************
|
191 |
* Local data declarations
|
192 |
****************************************************************************************/
|
193 |
/** \brief Local variable with information about the flash block that is currently
|
194 |
* being operated on.
|
195 |
* \details The smallest amount of flash that can be programmed is
|
196 |
* FLASH_WRITE_BLOCK_SIZE. A flash block manager is implemented in this driver
|
197 |
* and stores info in this variable. Whenever new data should be flashed, it
|
198 |
* is first added to a RAM buffer, which is part of this variable. Whenever
|
199 |
* the RAM buffer, which has the size of a flash block, is full or data needs
|
200 |
* to be written to a different block, the contents of the RAM buffer are
|
201 |
* programmed to flash. The flash block manager requires some software
|
202 |
* overhead, yet results is faster flash programming because data is first
|
203 |
* harvested, ideally until there is enough to program an entire flash block,
|
204 |
* before the flash device is actually operated on.
|
205 |
*/
|
206 |
static tFlashBlockInfo blockInfo;
|
207 |
|
208 |
/** \brief Local variable with information about the flash boot block.
|
209 |
* \details The first block of the user program holds the vector table, which on the
|
210 |
* STM32 is also the where the checksum is written to. Is it likely that
|
211 |
* the vector table is first flashed and then, at the end of the programming
|
212 |
* sequence, the checksum. This means that this flash block need to be written
|
213 |
* to twice. Normally this is not a problem with flash memory, as long as you
|
214 |
* write the same values to those bytes that are not supposed to be changed
|
215 |
* and the locations where you do write to are still in the erased 0xFF state.
|
216 |
* Unfortunately, writing twice to flash this way, does not work reliably on
|
217 |
* all micros. This is why we need to have an extra block, the bootblock,
|
218 |
* placed under the management of the block manager. This way is it possible
|
219 |
* to implement functionality so that the bootblock is only written to once
|
220 |
* at the end of the programming sequence.
|
221 |
*/
|
222 |
static tFlashBlockInfo bootBlockInfo;
|
223 |
|
224 |
|
225 |
/************************************************************************************//** |
226 |
** \brief Initializes the flash driver.
|
227 |
** \return none.
|
228 |
**
|
229 |
****************************************************************************************/
|
230 |
void FlashInit(void) |
231 |
{ |
232 |
/* init the flash block info structs by setting the address to an invalid address */
|
233 |
blockInfo.base_addr = FLASH_INVALID_ADDRESS; |
234 |
bootBlockInfo.base_addr = FLASH_INVALID_ADDRESS; |
235 |
} /*** end of FlashInit ***/
|
236 |
|
237 |
|
238 |
/************************************************************************************//** |
239 |
** \brief Writes the data to flash through a flash block manager. Note that this
|
240 |
** function also checks that no data is programmed outside the flash
|
241 |
** memory region, so the bootloader can never be overwritten.
|
242 |
** \param addr Start address.
|
243 |
** \param len Length in bytes.
|
244 |
** \param data Pointer to the data buffer.
|
245 |
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
|
246 |
**
|
247 |
****************************************************************************************/
|
248 |
blt_bool FlashWrite(blt_addr addr, blt_int32u len, blt_int8u *data) |
249 |
{ |
250 |
blt_addr base_addr; |
251 |
|
252 |
/* make sure the addresses are within the flash device */
|
253 |
if ( (FlashGetSector(addr) == FLASH_INVALID_SECTOR) || \
|
254 |
(FlashGetSector(addr+len-1) == FLASH_INVALID_SECTOR) )
|
255 |
{ |
256 |
return BLT_FALSE;
|
257 |
} |
258 |
|
259 |
/* if this is the bootblock, then let the boot block manager handle it */
|
260 |
base_addr = (addr/FLASH_WRITE_BLOCK_SIZE)*FLASH_WRITE_BLOCK_SIZE; |
261 |
if (base_addr == flashLayout[0].sector_start) |
262 |
{ |
263 |
/* let the boot block manager handle it */
|
264 |
return FlashAddToBlock(&bootBlockInfo, addr, data, len);
|
265 |
} |
266 |
/* let the block manager handle it */
|
267 |
return FlashAddToBlock(&blockInfo, addr, data, len);
|
268 |
} /*** end of FlashWrite ***/
|
269 |
|
270 |
|
271 |
/************************************************************************************//** |
272 |
** \brief Erases the flash memory. Note that this function also checks that no
|
273 |
** data is erased outside the flash memory region, so the bootloader can
|
274 |
** never be erased.
|
275 |
** \param addr Start address.
|
276 |
** \param len Length in bytes.
|
277 |
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
|
278 |
**
|
279 |
****************************************************************************************/
|
280 |
blt_bool FlashErase(blt_addr addr, blt_int32u len) |
281 |
{ |
282 |
blt_int8u first_sector; |
283 |
blt_int8u last_sector; |
284 |
|
285 |
/* obtain the first and last sector number */
|
286 |
first_sector = FlashGetSector(addr); |
287 |
last_sector = FlashGetSector(addr+len-1);
|
288 |
/* check them */
|
289 |
if ( (first_sector == FLASH_INVALID_SECTOR) || (last_sector == FLASH_INVALID_SECTOR) )
|
290 |
{ |
291 |
return BLT_FALSE;
|
292 |
} |
293 |
/* erase the sectors */
|
294 |
return FlashEraseSectors(first_sector, last_sector);
|
295 |
} /*** end of FlashErase ***/
|
296 |
|
297 |
|
298 |
/************************************************************************************//** |
299 |
** \brief Writes a checksum of the user program to non-volatile memory. This is
|
300 |
** performed once the entire user program has been programmed. Through
|
301 |
** the checksum, the bootloader can check if the programming session
|
302 |
** was completed, which indicates that a valid user programming is
|
303 |
** present and can be started.
|
304 |
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
|
305 |
**
|
306 |
****************************************************************************************/
|
307 |
blt_bool FlashWriteChecksum(void)
|
308 |
{ |
309 |
blt_int32u signature_checksum = 0;
|
310 |
|
311 |
/* for the STM32 target we defined the checksum as the Two's complement value of the
|
312 |
* sum of the first 7 exception addresses.
|
313 |
*
|
314 |
* Layout of the vector table:
|
315 |
* 0x08000000 Initial stack pointer
|
316 |
* 0x08000004 Reset Handler
|
317 |
* 0x08000008 NMI Handler
|
318 |
* 0x0800000C Hard Fault Handler
|
319 |
* 0x08000010 MPU Fault Handler
|
320 |
* 0x08000014 Bus Fault Handler
|
321 |
* 0x08000018 Usage Fault Handler
|
322 |
*
|
323 |
* signature_checksum = Two's complement of (SUM(exception address values))
|
324 |
*
|
325 |
* the bootloader writes this 32-bit checksum value right after the vector table
|
326 |
* of the user program. note that this means one extra dummy entry must be added
|
327 |
* at the end of the user program's vector table to reserve storage space for the
|
328 |
* checksum.
|
329 |
*/
|
330 |
|
331 |
/* first check that the bootblock contains valid data. if not, this means the
|
332 |
* bootblock is not part of the reprogramming this time and therefore no
|
333 |
* new checksum needs to be written
|
334 |
*/
|
335 |
if (bootBlockInfo.base_addr == FLASH_INVALID_ADDRESS)
|
336 |
{ |
337 |
return BLT_TRUE;
|
338 |
} |
339 |
|
340 |
/* compute the checksum. note that the user program's vectors are not yet written
|
341 |
* to flash but are present in the bootblock data structure at this point.
|
342 |
*/
|
343 |
signature_checksum += *((blt_int32u*)(&bootBlockInfo.data[0+0x00])); |
344 |
signature_checksum += *((blt_int32u*)(&bootBlockInfo.data[0+0x04])); |
345 |
signature_checksum += *((blt_int32u*)(&bootBlockInfo.data[0+0x08])); |
346 |
signature_checksum += *((blt_int32u*)(&bootBlockInfo.data[0+0x0C])); |
347 |
signature_checksum += *((blt_int32u*)(&bootBlockInfo.data[0+0x10])); |
348 |
signature_checksum += *((blt_int32u*)(&bootBlockInfo.data[0+0x14])); |
349 |
signature_checksum += *((blt_int32u*)(&bootBlockInfo.data[0+0x18])); |
350 |
signature_checksum = ~signature_checksum; /* one's complement */
|
351 |
signature_checksum += 1; /* two's complement */ |
352 |
|
353 |
/* write the checksum */
|
354 |
return FlashWrite(flashLayout[0].sector_start+FLASH_VECTOR_TABLE_CS_OFFSET, |
355 |
sizeof(blt_addr), (blt_int8u*)&signature_checksum);
|
356 |
} /*** end of FlashWriteChecksum ***/
|
357 |
|
358 |
|
359 |
/************************************************************************************//** |
360 |
** \brief Verifies the checksum, which indicates that a valid user program is
|
361 |
** present and can be started.
|
362 |
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
|
363 |
**
|
364 |
****************************************************************************************/
|
365 |
blt_bool FlashVerifyChecksum(void)
|
366 |
{ |
367 |
blt_int32u signature_checksum = 0;
|
368 |
|
369 |
/* verify the checksum based on how it was written by CpuWriteChecksum() */
|
370 |
signature_checksum += *((blt_int32u*)(flashLayout[0].sector_start));
|
371 |
signature_checksum += *((blt_int32u*)(flashLayout[0].sector_start+0x04)); |
372 |
signature_checksum += *((blt_int32u*)(flashLayout[0].sector_start+0x08)); |
373 |
signature_checksum += *((blt_int32u*)(flashLayout[0].sector_start+0x0C)); |
374 |
signature_checksum += *((blt_int32u*)(flashLayout[0].sector_start+0x10)); |
375 |
signature_checksum += *((blt_int32u*)(flashLayout[0].sector_start+0x14)); |
376 |
signature_checksum += *((blt_int32u*)(flashLayout[0].sector_start+0x18)); |
377 |
signature_checksum += *((blt_int32u*)(flashLayout[0].sector_start+FLASH_VECTOR_TABLE_CS_OFFSET));
|
378 |
/* sum should add up to an unsigned 32-bit value of 0 */
|
379 |
if (signature_checksum == 0) |
380 |
{ |
381 |
/* checksum okay */
|
382 |
return BLT_TRUE;
|
383 |
} |
384 |
/* checksum incorrect */
|
385 |
return BLT_FALSE;
|
386 |
} /*** end of FlashVerifyChecksum ***/
|
387 |
|
388 |
|
389 |
/************************************************************************************//** |
390 |
** \brief Finalizes the flash driver operations. There could still be data in
|
391 |
** the currently active block that needs to be flashed.
|
392 |
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
|
393 |
**
|
394 |
****************************************************************************************/
|
395 |
blt_bool FlashDone(void)
|
396 |
{ |
397 |
/* check if there is still data waiting to be programmed in the boot block */
|
398 |
if (bootBlockInfo.base_addr != FLASH_INVALID_ADDRESS)
|
399 |
{ |
400 |
if (FlashWriteBlock(&bootBlockInfo) == BLT_FALSE)
|
401 |
{ |
402 |
return BLT_FALSE;
|
403 |
} |
404 |
} |
405 |
|
406 |
/* check if there is still data waiting to be programmed */
|
407 |
if (blockInfo.base_addr != FLASH_INVALID_ADDRESS)
|
408 |
{ |
409 |
if (FlashWriteBlock(&blockInfo) == BLT_FALSE)
|
410 |
{ |
411 |
return BLT_FALSE;
|
412 |
} |
413 |
} |
414 |
/* still here so all is okay */
|
415 |
return BLT_TRUE;
|
416 |
} /*** end of FlashDone ***/
|
417 |
|
418 |
|
419 |
/************************************************************************************//** |
420 |
** \brief Obtains the base address of the flash memory available to the user program.
|
421 |
** This is basically the first address in the flashLayout table.
|
422 |
** \return Base address.
|
423 |
**
|
424 |
****************************************************************************************/
|
425 |
blt_addr FlashGetUserProgBaseAddress(void)
|
426 |
{ |
427 |
return flashLayout[0].sector_start; |
428 |
} /*** end of FlashGetUserProgBaseAddress ***/
|
429 |
|
430 |
|
431 |
/************************************************************************************//** |
432 |
** \brief Copies data currently in flash to the block->data and sets the
|
433 |
** base address.
|
434 |
** \param block Pointer to flash block info structure to operate on.
|
435 |
** \param address Base address of the block data.
|
436 |
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
|
437 |
**
|
438 |
****************************************************************************************/
|
439 |
static blt_bool FlashInitBlock(tFlashBlockInfo *block, blt_addr address)
|
440 |
{ |
441 |
/* check address alignment */
|
442 |
if ((address % FLASH_WRITE_BLOCK_SIZE) != 0) |
443 |
{ |
444 |
return BLT_FALSE;
|
445 |
} |
446 |
/* make sure that we are initializing a new block and not the same one */
|
447 |
if (block->base_addr == address)
|
448 |
{ |
449 |
/* block already initialized, so nothing to do */
|
450 |
return BLT_TRUE;
|
451 |
} |
452 |
/* set the base address and copies the current data from flash */
|
453 |
block->base_addr = address; |
454 |
CpuMemCopy((blt_addr)block->data, address, FLASH_WRITE_BLOCK_SIZE); |
455 |
return BLT_TRUE;
|
456 |
} /*** end of FlashInitBlock ***/
|
457 |
|
458 |
|
459 |
/************************************************************************************//** |
460 |
** \brief Switches blocks by programming the current one and initializing the
|
461 |
** next.
|
462 |
** \param block Pointer to flash block info structure to operate on.
|
463 |
** \param base_addr Base address of the next block.
|
464 |
** \return The pointer of the block info struct that is no being used, or a NULL
|
465 |
** pointer in case of error.
|
466 |
**
|
467 |
****************************************************************************************/
|
468 |
static tFlashBlockInfo *FlashSwitchBlock(tFlashBlockInfo *block, blt_addr base_addr)
|
469 |
{ |
470 |
/* check if a switch needs to be made away from the boot block. in this case the boot
|
471 |
* block shouldn't be written yet, because this is done at the end of the programming
|
472 |
* session by FlashDone(), this is right after the checksum was written.
|
473 |
*/
|
474 |
if (block == &bootBlockInfo)
|
475 |
{ |
476 |
/* switch from the boot block to the generic block info structure */
|
477 |
block = &blockInfo; |
478 |
} |
479 |
/* check if a switch back into the bootblock is needed. in this case the generic block
|
480 |
* doesn't need to be written here yet.
|
481 |
*/
|
482 |
else if (base_addr == flashLayout[0].sector_start) |
483 |
{ |
484 |
/* switch from the generic block to the boot block info structure */
|
485 |
block = &bootBlockInfo; |
486 |
base_addr = flashLayout[0].sector_start;
|
487 |
} |
488 |
else
|
489 |
{ |
490 |
/* need to switch to a new block, so program the current one and init the next */
|
491 |
if (FlashWriteBlock(block) == BLT_FALSE)
|
492 |
{ |
493 |
return BLT_NULL;
|
494 |
} |
495 |
} |
496 |
|
497 |
/* initialize tne new block when necessary */
|
498 |
if (FlashInitBlock(block, base_addr) == BLT_FALSE)
|
499 |
{ |
500 |
return BLT_NULL;
|
501 |
} |
502 |
|
503 |
/* still here to all is okay */
|
504 |
return block;
|
505 |
} /*** end of FlashSwitchBlock ***/
|
506 |
|
507 |
|
508 |
/************************************************************************************//** |
509 |
** \brief Programming is done per block. This function adds data to the block
|
510 |
** that is currently collecting data to be written to flash. If the
|
511 |
** address is outside of the current block, the current block is written
|
512 |
** to flash an a new block is initialized.
|
513 |
** \param block Pointer to flash block info structure to operate on.
|
514 |
** \param address Flash destination address.
|
515 |
** \param data Pointer to the byte array with data.
|
516 |
** \param len Number of bytes to add to the block.
|
517 |
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
|
518 |
**
|
519 |
****************************************************************************************/
|
520 |
static blt_bool FlashAddToBlock(tFlashBlockInfo *block, blt_addr address,
|
521 |
blt_int8u *data, blt_int32u len) |
522 |
{ |
523 |
blt_addr current_base_addr; |
524 |
blt_int8u *dst; |
525 |
blt_int8u *src; |
526 |
|
527 |
/* determine the current base address */
|
528 |
current_base_addr = (address/FLASH_WRITE_BLOCK_SIZE)*FLASH_WRITE_BLOCK_SIZE; |
529 |
|
530 |
/* make sure the blockInfo is not uninitialized */
|
531 |
if (block->base_addr == FLASH_INVALID_ADDRESS)
|
532 |
{ |
533 |
/* initialize the blockInfo struct for the current block */
|
534 |
if (FlashInitBlock(block, current_base_addr) == BLT_FALSE)
|
535 |
{ |
536 |
return BLT_FALSE;
|
537 |
} |
538 |
} |
539 |
|
540 |
/* check if the new data fits in the current block */
|
541 |
if (block->base_addr != current_base_addr)
|
542 |
{ |
543 |
/* need to switch to a new block, so program the current one and init the next */
|
544 |
block = FlashSwitchBlock(block, current_base_addr); |
545 |
if (block == BLT_NULL)
|
546 |
{ |
547 |
return BLT_FALSE;
|
548 |
} |
549 |
} |
550 |
|
551 |
/* add the data to the current block, but check for block overflow */
|
552 |
dst = &(block->data[address - block->base_addr]); |
553 |
src = data; |
554 |
do
|
555 |
{ |
556 |
/* keep the watchdog happy */
|
557 |
CopService(); |
558 |
/* buffer overflow? */
|
559 |
if ((blt_addr)(dst-&(block->data[0])) >= FLASH_WRITE_BLOCK_SIZE) |
560 |
{ |
561 |
/* need to switch to a new block, so program the current one and init the next */
|
562 |
block = FlashSwitchBlock(block, current_base_addr+FLASH_WRITE_BLOCK_SIZE); |
563 |
if (block == BLT_NULL)
|
564 |
{ |
565 |
return BLT_FALSE;
|
566 |
} |
567 |
/* reset destination pointer */
|
568 |
dst = &(block->data[0]);
|
569 |
} |
570 |
/* write the data to the buffer */
|
571 |
*dst = *src; |
572 |
/* update pointers */
|
573 |
dst++; |
574 |
src++; |
575 |
/* decrement byte counter */
|
576 |
len--; |
577 |
} |
578 |
while (len > 0); |
579 |
/* still here so all is good */
|
580 |
return BLT_TRUE;
|
581 |
} /*** end of FlashAddToBlock ***/
|
582 |
|
583 |
|
584 |
/************************************************************************************//** |
585 |
** \brief Programs FLASH_WRITE_BLOCK_SIZE bytes to flash from the block->data
|
586 |
** array.
|
587 |
** \param block Pointer to flash block info structure to operate on.
|
588 |
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
|
589 |
**
|
590 |
****************************************************************************************/
|
591 |
static blt_bool FlashWriteBlock(tFlashBlockInfo *block)
|
592 |
{ |
593 |
blt_int8u sector_num; |
594 |
blt_bool result = BLT_TRUE; |
595 |
blt_addr prog_addr; |
596 |
blt_int32u prog_data; |
597 |
blt_int32u word_cnt; |
598 |
|
599 |
/* check that address is actually within flash */
|
600 |
sector_num = FlashGetSector(block->base_addr); |
601 |
if (sector_num == FLASH_INVALID_SECTOR)
|
602 |
{ |
603 |
return BLT_FALSE;
|
604 |
} |
605 |
/* unlock the flash array */
|
606 |
FlashUnlock(); |
607 |
/* check that the flash peripheral is not busy */
|
608 |
if ((FLASH->SR & FLASH_BSY_BIT) == FLASH_BSY_BIT)
|
609 |
{ |
610 |
/* lock the flash array again */
|
611 |
FlashLock(); |
612 |
/* could not perform erase operation */
|
613 |
return BLT_FALSE;
|
614 |
} |
615 |
/* set the program bit to indicate that we are about to program data */
|
616 |
FLASH->CR |= FLASH_PG_BIT; |
617 |
/* program all words in the block one by one */
|
618 |
for (word_cnt=0; word_cnt<(FLASH_WRITE_BLOCK_SIZE/sizeof(blt_int32u)); word_cnt++) |
619 |
{ |
620 |
prog_addr = block->base_addr + (word_cnt * sizeof(blt_int32u));
|
621 |
prog_data = *(volatile blt_int32u*)(&block->data[word_cnt * sizeof(blt_int32u)]); |
622 |
/* program the first half word */
|
623 |
*(volatile blt_int16u*)prog_addr = (blt_int16u)prog_data;
|
624 |
/* wait for the program operation to complete */
|
625 |
while ((FLASH->SR & FLASH_BSY_BIT) == FLASH_BSY_BIT)
|
626 |
{ |
627 |
/* keep the watchdog happy */
|
628 |
CopService(); |
629 |
} |
630 |
/* program the second half word */
|
631 |
*(volatile blt_int16u*)(prog_addr+2) = (blt_int16u)(prog_data >> 16); |
632 |
/* wait for the program operation to complete */
|
633 |
while ((FLASH->SR & FLASH_BSY_BIT) == FLASH_BSY_BIT)
|
634 |
{ |
635 |
/* keep the watchdog happy */
|
636 |
CopService(); |
637 |
} |
638 |
/* verify that the written data is actually there */
|
639 |
if (*(volatile blt_int32u*)prog_addr != prog_data) |
640 |
{ |
641 |
result = BLT_FALSE; |
642 |
break;
|
643 |
} |
644 |
} |
645 |
/* reset the program bit to indicate that we are done programming data */
|
646 |
FLASH->CR &= ~FLASH_PG_BIT; |
647 |
/* lock the flash array */
|
648 |
FlashLock(); |
649 |
/* still here so all is okay */
|
650 |
return result;
|
651 |
} /*** end of FlashWriteBlock ***/
|
652 |
|
653 |
|
654 |
/************************************************************************************//** |
655 |
** \brief Erases the flash sectors from first_sector up until last_sector.
|
656 |
** \param first_sector First flash sector number.
|
657 |
** \param last_sector Last flash sector number.
|
658 |
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
|
659 |
**
|
660 |
****************************************************************************************/
|
661 |
static blt_bool FlashEraseSectors(blt_int8u first_sector, blt_int8u last_sector)
|
662 |
{ |
663 |
blt_int16u nr_of_blocks; |
664 |
blt_int16u block_cnt; |
665 |
blt_addr start_addr; |
666 |
blt_addr end_addr; |
667 |
|
668 |
/* validate the sector numbers */
|
669 |
if (first_sector > last_sector)
|
670 |
{ |
671 |
return BLT_FALSE;
|
672 |
} |
673 |
if ( (first_sector < flashLayout[0].sector_num) || \ |
674 |
(last_sector > flashLayout[FLASH_TOTAL_SECTORS-1].sector_num) )
|
675 |
{ |
676 |
return BLT_FALSE;
|
677 |
} |
678 |
/* unlock the flash array */
|
679 |
FlashUnlock(); |
680 |
/* check that the flash peripheral is not busy */
|
681 |
if ((FLASH->SR & FLASH_BSY_BIT) == FLASH_BSY_BIT)
|
682 |
{ |
683 |
/* lock the flash array again */
|
684 |
FlashLock(); |
685 |
/* could not perform erase operation */
|
686 |
return BLT_FALSE;
|
687 |
} |
688 |
/* set the page erase bit to indicate that we are about to erase a block */
|
689 |
FLASH->CR |= FLASH_PER_BIT; |
690 |
|
691 |
/* determine how many blocks need to be erased */
|
692 |
start_addr = FlashGetSectorBaseAddr(first_sector); |
693 |
end_addr = FlashGetSectorBaseAddr(last_sector) + FlashGetSectorSize(last_sector) - 1;
|
694 |
nr_of_blocks = (end_addr - start_addr + 1) / FLASH_ERASE_BLOCK_SIZE;
|
695 |
|
696 |
/* erase all blocks one by one */
|
697 |
for (block_cnt=0; block_cnt<nr_of_blocks; block_cnt++) |
698 |
{ |
699 |
/* store an address of the block that is to be erased to select the block */
|
700 |
FLASH->AR = start_addr + (block_cnt * FLASH_ERASE_BLOCK_SIZE); |
701 |
/* start the block erase operation */
|
702 |
FLASH->CR |= FLASH_STRT_BIT; |
703 |
/* wait for the erase operation to complete */
|
704 |
while ((FLASH->SR & FLASH_BSY_BIT) == FLASH_BSY_BIT)
|
705 |
{ |
706 |
/* keep the watchdog happy */
|
707 |
CopService(); |
708 |
} |
709 |
} |
710 |
/* reset the page erase bit because we're all done erasing */
|
711 |
FLASH->CR &= ~FLASH_PER_BIT; |
712 |
/* lock the flash array */
|
713 |
FlashLock(); |
714 |
/* still here so all went okay */
|
715 |
return BLT_TRUE;
|
716 |
} /*** end of FlashEraseSectors ***/
|
717 |
|
718 |
|
719 |
/************************************************************************************//** |
720 |
** \brief Unlocks the flash array so that erase and program operations can be
|
721 |
** performed.
|
722 |
** \return none.
|
723 |
**
|
724 |
****************************************************************************************/
|
725 |
static void FlashUnlock(void) |
726 |
{ |
727 |
/* authorize the FPEC to access bank 1 */
|
728 |
FLASH->KEYR = FLASH_KEY1; |
729 |
FLASH->KEYR = FLASH_KEY2; |
730 |
/* clear all possibly pending status flags */
|
731 |
FLASH->SR = (FLASH_EOP_BIT | FLASH_PGERR_BIT | FLASH_WRPRTERR_BIT); |
732 |
} /*** end of FlashUnlock ***/
|
733 |
|
734 |
|
735 |
/************************************************************************************//** |
736 |
** \brief Locks the flash array so that erase and program operations can no
|
737 |
** longer be performed.
|
738 |
** \return none.
|
739 |
**
|
740 |
****************************************************************************************/
|
741 |
static void FlashLock(void) |
742 |
{ |
743 |
/* set the lock bit to lock the FPEC */
|
744 |
FLASH->CR |= FLASH_LOCK_BIT; |
745 |
} /*** end of FlashLock ***/
|
746 |
|
747 |
|
748 |
/************************************************************************************//** |
749 |
** \brief Determines the flash sector the address is in.
|
750 |
** \param address Address in the flash sector.
|
751 |
** \return Flash sector number or FLASH_INVALID_SECTOR.
|
752 |
**
|
753 |
****************************************************************************************/
|
754 |
static blt_int8u FlashGetSector(blt_addr address)
|
755 |
{ |
756 |
blt_int8u sectorIdx; |
757 |
|
758 |
/* search through the sectors to find the right one */
|
759 |
for (sectorIdx = 0; sectorIdx < FLASH_TOTAL_SECTORS; sectorIdx++) |
760 |
{ |
761 |
/* keep the watchdog happy */
|
762 |
CopService(); |
763 |
/* is the address in this sector? */
|
764 |
if ( (address >= flashLayout[sectorIdx].sector_start) && \
|
765 |
(address < (flashLayout[sectorIdx].sector_start + \ |
766 |
flashLayout[sectorIdx].sector_size)) ) |
767 |
{ |
768 |
/* return the sector number */
|
769 |
return flashLayout[sectorIdx].sector_num;
|
770 |
} |
771 |
} |
772 |
/* still here so no valid sector found */
|
773 |
return FLASH_INVALID_SECTOR;
|
774 |
} /*** end of FlashGetSector ***/
|
775 |
|
776 |
|
777 |
/************************************************************************************//** |
778 |
** \brief Determines the flash sector base address.
|
779 |
** \param sector Sector to get the base address of.
|
780 |
** \return Flash sector base address or FLASH_INVALID_ADDRESS.
|
781 |
**
|
782 |
****************************************************************************************/
|
783 |
static blt_addr FlashGetSectorBaseAddr(blt_int8u sector)
|
784 |
{ |
785 |
blt_int8u sectorIdx; |
786 |
|
787 |
/* search through the sectors to find the right one */
|
788 |
for (sectorIdx = 0; sectorIdx < FLASH_TOTAL_SECTORS; sectorIdx++) |
789 |
{ |
790 |
/* keep the watchdog happy */
|
791 |
CopService(); |
792 |
if (flashLayout[sectorIdx].sector_num == sector)
|
793 |
{ |
794 |
return flashLayout[sectorIdx].sector_start;
|
795 |
} |
796 |
} |
797 |
/* still here so no valid sector found */
|
798 |
return FLASH_INVALID_ADDRESS;
|
799 |
} /*** end of FlashGetSectorBaseAddr ***/
|
800 |
|
801 |
|
802 |
/************************************************************************************//** |
803 |
** \brief Determines the flash sector size.
|
804 |
** \param sector Sector to get the size of.
|
805 |
** \return Flash sector size or 0.
|
806 |
**
|
807 |
****************************************************************************************/
|
808 |
static blt_addr FlashGetSectorSize(blt_int8u sector)
|
809 |
{ |
810 |
blt_int8u sectorIdx; |
811 |
|
812 |
/* search through the sectors to find the right one */
|
813 |
for (sectorIdx = 0; sectorIdx < FLASH_TOTAL_SECTORS; sectorIdx++) |
814 |
{ |
815 |
/* keep the watchdog happy */
|
816 |
CopService(); |
817 |
if (flashLayout[sectorIdx].sector_num == sector)
|
818 |
{ |
819 |
return flashLayout[sectorIdx].sector_size;
|
820 |
} |
821 |
} |
822 |
/* still here so no valid sector found */
|
823 |
return 0; |
824 |
} /*** end of FlashGetSectorSize ***/
|
825 |
|
826 |
|
827 |
/*********************************** end of flash.c ************************************/
|