Statistics
| Branch: | Tag: | Revision:

amiro-blt / Target / Modules / PowerManagement_1-1 / Boot / lib / stdperiphlib / STM32F4xx_StdPeriph_Driver / src / stm32f4xx_tim.c @ 367c0652

History | View | Annotate | Download (121.81 KB)

1
/**
2
  ******************************************************************************
3
  * @file    stm32f4xx_tim.c
4
  * @author  MCD Application Team
5
  * @version V1.1.0
6
  * @date    11-January-2013
7
  * @brief   This file provides firmware functions to manage the following 
8
  *          functionalities of the TIM peripheral:
9
  *            + TimeBase management
10
  *            + Output Compare management
11
  *            + Input Capture management
12
  *            + Advanced-control timers (TIM1 and TIM8) specific features  
13
  *            + Interrupts, DMA and flags management
14
  *            + Clocks management
15
  *            + Synchronization management
16
  *            + Specific interface management
17
  *            + Specific remapping management      
18
  *              
19
  @verbatim   
20
 ===============================================================================
21
                   #####  How to use this driver #####
22
 ===============================================================================
23
    [..]
24
    This driver provides functions to configure and program the TIM 
25
    of all STM32F4xx devices.
26
    These functions are split in 9 groups: 
27
     
28
      (#) TIM TimeBase management: this group includes all needed functions 
29
          to configure the TM Timebase unit:
30
        (++) Set/Get Prescaler
31
        (++) Set/Get Autoreload  
32
        (++) Counter modes configuration
33
        (++) Set Clock division  
34
        (++) Select the One Pulse mode
35
        (++) Update Request Configuration
36
        (++) Update Disable Configuration
37
        (++) Auto-Preload Configuration 
38
        (++) Enable/Disable the counter     
39
                   
40
      (#) TIM Output Compare management: this group includes all needed 
41
          functions to configure the Capture/Compare unit used in Output 
42
          compare mode: 
43
        (++) Configure each channel, independently, in Output Compare mode
44
        (++) Select the output compare modes
45
        (++) Select the Polarities of each channel
46
        (++) Set/Get the Capture/Compare register values
47
        (++) Select the Output Compare Fast mode 
48
        (++) Select the Output Compare Forced mode  
49
        (++) Output Compare-Preload Configuration 
50
        (++) Clear Output Compare Reference
51
        (++) Select the OCREF Clear signal
52
        (++) Enable/Disable the Capture/Compare Channels    
53
                     
54
      (#) TIM Input Capture management: this group includes all needed 
55
          functions to configure the Capture/Compare unit used in 
56
          Input Capture mode:
57
        (++) Configure each channel in input capture mode
58
        (++) Configure Channel1/2 in PWM Input mode
59
        (++) Set the Input Capture Prescaler
60
        (++) Get the Capture/Compare values      
61
                     
62
      (#) Advanced-control timers (TIM1 and TIM8) specific features
63
        (++) Configures the Break input, dead time, Lock level, the OSSI,
64
             the OSSR State and the AOE(automatic output enable)
65
        (++) Enable/Disable the TIM peripheral Main Outputs
66
        (++) Select the Commutation event
67
        (++) Set/Reset the Capture Compare Preload Control bit
68
                                
69
      (#) TIM interrupts, DMA and flags management
70
        (++) Enable/Disable interrupt sources
71
        (++) Get flags status
72
        (++) Clear flags/ Pending bits
73
        (++) Enable/Disable DMA requests 
74
        (++) Configure DMA burst mode
75
        (++) Select CaptureCompare DMA request  
76
                
77
      (#) TIM clocks management: this group includes all needed functions 
78
          to configure the clock controller unit:
79
        (++) Select internal/External clock
80
        (++) Select the external clock mode: ETR(Mode1/Mode2), TIx or ITRx
81
           
82
      (#) TIM synchronization management: this group includes all needed 
83
          functions to configure the Synchronization unit:
84
        (++) Select Input Trigger  
85
        (++) Select Output Trigger  
86
        (++) Select Master Slave Mode 
87
        (++) ETR Configuration when used as external trigger   
88
       
89
      (#) TIM specific interface management, this group includes all 
90
          needed functions to use the specific TIM interface:
91
        (++) Encoder Interface Configuration
92
        (++) Select Hall Sensor   
93
           
94
      (#) TIM specific remapping management includes the Remapping 
95
          configuration of specific timers               
96
     
97
  @endverbatim    
98
  ******************************************************************************
99
  * @attention
100
  *
101
  * <h2><center>&copy; COPYRIGHT 2013 STMicroelectronics</center></h2>
102
  *
103
  * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
104
  * You may not use this file except in compliance with the License.
105
  * You may obtain a copy of the License at:
106
  *
107
  *        http://www.st.com/software_license_agreement_liberty_v2
108
  *
109
  * Unless required by applicable law or agreed to in writing, software 
110
  * distributed under the License is distributed on an "AS IS" BASIS, 
111
  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
112
  * See the License for the specific language governing permissions and
113
  * limitations under the License.
114
  *
115
  ******************************************************************************
116
  */
117

    
118
/* Includes ------------------------------------------------------------------*/
119
#include "stm32f4xx_tim.h"
120
#include "stm32f4xx_rcc.h"
121

    
122
/** @addtogroup STM32F4xx_StdPeriph_Driver
123
  * @{
124
  */
125

    
126
/** @defgroup TIM 
127
  * @brief TIM driver modules
128
  * @{
129
  */
130

    
131
/* Private typedef -----------------------------------------------------------*/
132
/* Private define ------------------------------------------------------------*/
133

    
134
/* ---------------------- TIM registers bit mask ------------------------ */
135
#define SMCR_ETR_MASK      ((uint16_t)0x00FF) 
136
#define CCMR_OFFSET        ((uint16_t)0x0018)
137
#define CCER_CCE_SET       ((uint16_t)0x0001)  
138
#define        CCER_CCNE_SET      ((uint16_t)0x0004) 
139
#define CCMR_OC13M_MASK    ((uint16_t)0xFF8F)
140
#define CCMR_OC24M_MASK    ((uint16_t)0x8FFF) 
141

    
142
/* Private macro -------------------------------------------------------------*/
143
/* Private variables ---------------------------------------------------------*/
144
/* Private function prototypes -----------------------------------------------*/
145
static void TI1_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
146
                       uint16_t TIM_ICFilter);
147
static void TI2_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
148
                       uint16_t TIM_ICFilter);
149
static void TI3_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
150
                       uint16_t TIM_ICFilter);
151
static void TI4_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
152
                       uint16_t TIM_ICFilter);
153

    
154
/* Private functions ---------------------------------------------------------*/
155

    
156
/** @defgroup TIM_Private_Functions
157
  * @{
158
  */
159

    
160
/** @defgroup TIM_Group1 TimeBase management functions
161
 *  @brief   TimeBase management functions 
162
 *
163
@verbatim   
164
 ===============================================================================
165
                     ##### TimeBase management functions #####
166
 ===============================================================================  
167
  
168
     
169
            ##### TIM Driver: how to use it in Timing(Time base) Mode #####
170
 ===============================================================================
171
    [..] 
172
    To use the Timer in Timing(Time base) mode, the following steps are mandatory:
173
       
174
      (#) Enable TIM clock using RCC_APBxPeriphClockCmd(RCC_APBxPeriph_TIMx, ENABLE) function
175
                    
176
      (#) Fill the TIM_TimeBaseInitStruct with the desired parameters.
177
       
178
      (#) Call TIM_TimeBaseInit(TIMx, &TIM_TimeBaseInitStruct) to configure the Time Base unit
179
          with the corresponding configuration
180
          
181
      (#) Enable the NVIC if you need to generate the update interrupt. 
182
          
183
      (#) Enable the corresponding interrupt using the function TIM_ITConfig(TIMx, TIM_IT_Update) 
184
       
185
      (#) Call the TIM_Cmd(ENABLE) function to enable the TIM counter.
186
             
187
       -@- All other functions can be used separately to modify, if needed,
188
           a specific feature of the Timer. 
189

190
@endverbatim
191
  * @{
192
  */
193
  
194
/**
195
  * @brief  Deinitializes the TIMx peripheral registers to their default reset values.
196
  * @param  TIMx: where x can be 1 to 14 to select the TIM peripheral.
197
  * @retval None
198

199
  */
200
void TIM_DeInit(TIM_TypeDef* TIMx)
201
{
202
  /* Check the parameters */
203
  assert_param(IS_TIM_ALL_PERIPH(TIMx)); 
204
 
205
  if (TIMx == TIM1)
206
  {
207
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM1, ENABLE);
208
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM1, DISABLE);  
209
  } 
210
  else if (TIMx == TIM2) 
211
  {     
212
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM2, ENABLE);
213
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM2, DISABLE);
214
  }  
215
  else if (TIMx == TIM3)
216
  { 
217
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM3, ENABLE);
218
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM3, DISABLE);
219
  }  
220
  else if (TIMx == TIM4)
221
  { 
222
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM4, ENABLE);
223
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM4, DISABLE);
224
  }  
225
  else if (TIMx == TIM5)
226
  {      
227
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM5, ENABLE);
228
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM5, DISABLE);
229
  }  
230
  else if (TIMx == TIM6)  
231
  {    
232
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM6, ENABLE);
233
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM6, DISABLE);
234
  }  
235
  else if (TIMx == TIM7)
236
  {      
237
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM7, ENABLE);
238
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM7, DISABLE);
239
  }  
240
  else if (TIMx == TIM8)
241
  {      
242
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM8, ENABLE);
243
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM8, DISABLE);  
244
  }  
245
  else if (TIMx == TIM9)
246
  {      
247
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM9, ENABLE);
248
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM9, DISABLE);  
249
   }  
250
  else if (TIMx == TIM10)
251
  {      
252
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM10, ENABLE);
253
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM10, DISABLE);  
254
  }  
255
  else if (TIMx == TIM11) 
256
  {     
257
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM11, ENABLE);
258
    RCC_APB2PeriphResetCmd(RCC_APB2Periph_TIM11, DISABLE);  
259
  }  
260
  else if (TIMx == TIM12)
261
  {      
262
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM12, ENABLE);
263
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM12, DISABLE);  
264
  }  
265
  else if (TIMx == TIM13) 
266
  {       
267
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM13, ENABLE);
268
    RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM13, DISABLE);  
269
  }  
270
  else
271
  { 
272
    if (TIMx == TIM14) 
273
    {     
274
      RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM14, ENABLE);
275
      RCC_APB1PeriphResetCmd(RCC_APB1Periph_TIM14, DISABLE); 
276
    }   
277
  }
278
}
279

    
280
/**
281
  * @brief  Initializes the TIMx Time Base Unit peripheral according to 
282
  *         the specified parameters in the TIM_TimeBaseInitStruct.
283
  * @param  TIMx: where x can be  1 to 14 to select the TIM peripheral.
284
  * @param  TIM_TimeBaseInitStruct: pointer to a TIM_TimeBaseInitTypeDef structure
285
  *         that contains the configuration information for the specified TIM peripheral.
286
  * @retval None
287
  */
288
void TIM_TimeBaseInit(TIM_TypeDef* TIMx, TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct)
289
{
290
  uint16_t tmpcr1 = 0;
291

    
292
  /* Check the parameters */
293
  assert_param(IS_TIM_ALL_PERIPH(TIMx)); 
294
  assert_param(IS_TIM_COUNTER_MODE(TIM_TimeBaseInitStruct->TIM_CounterMode));
295
  assert_param(IS_TIM_CKD_DIV(TIM_TimeBaseInitStruct->TIM_ClockDivision));
296

    
297
  tmpcr1 = TIMx->CR1;  
298

    
299
  if((TIMx == TIM1) || (TIMx == TIM8)||
300
     (TIMx == TIM2) || (TIMx == TIM3)||
301
     (TIMx == TIM4) || (TIMx == TIM5)) 
302
  {
303
    /* Select the Counter Mode */
304
    tmpcr1 &= (uint16_t)(~(TIM_CR1_DIR | TIM_CR1_CMS));
305
    tmpcr1 |= (uint32_t)TIM_TimeBaseInitStruct->TIM_CounterMode;
306
  }
307
 
308
  if((TIMx != TIM6) && (TIMx != TIM7))
309
  {
310
    /* Set the clock division */
311
    tmpcr1 &=  (uint16_t)(~TIM_CR1_CKD);
312
    tmpcr1 |= (uint32_t)TIM_TimeBaseInitStruct->TIM_ClockDivision;
313
  }
314

    
315
  TIMx->CR1 = tmpcr1;
316

    
317
  /* Set the Autoreload value */
318
  TIMx->ARR = TIM_TimeBaseInitStruct->TIM_Period ;
319
 
320
  /* Set the Prescaler value */
321
  TIMx->PSC = TIM_TimeBaseInitStruct->TIM_Prescaler;
322
    
323
  if ((TIMx == TIM1) || (TIMx == TIM8))  
324
  {
325
    /* Set the Repetition Counter value */
326
    TIMx->RCR = TIM_TimeBaseInitStruct->TIM_RepetitionCounter;
327
  }
328

    
329
  /* Generate an update event to reload the Prescaler 
330
     and the repetition counter(only for TIM1 and TIM8) value immediatly */
331
  TIMx->EGR = TIM_PSCReloadMode_Immediate;          
332
}
333

    
334
/**
335
  * @brief  Fills each TIM_TimeBaseInitStruct member with its default value.
336
  * @param  TIM_TimeBaseInitStruct : pointer to a TIM_TimeBaseInitTypeDef
337
  *         structure which will be initialized.
338
  * @retval None
339
  */
340
void TIM_TimeBaseStructInit(TIM_TimeBaseInitTypeDef* TIM_TimeBaseInitStruct)
341
{
342
  /* Set the default configuration */
343
  TIM_TimeBaseInitStruct->TIM_Period = 0xFFFFFFFF;
344
  TIM_TimeBaseInitStruct->TIM_Prescaler = 0x0000;
345
  TIM_TimeBaseInitStruct->TIM_ClockDivision = TIM_CKD_DIV1;
346
  TIM_TimeBaseInitStruct->TIM_CounterMode = TIM_CounterMode_Up;
347
  TIM_TimeBaseInitStruct->TIM_RepetitionCounter = 0x0000;
348
}
349

    
350
/**
351
  * @brief  Configures the TIMx Prescaler.
352
  * @param  TIMx: where x can be  1 to 14 to select the TIM peripheral.
353
  * @param  Prescaler: specifies the Prescaler Register value
354
  * @param  TIM_PSCReloadMode: specifies the TIM Prescaler Reload mode
355
  *          This parameter can be one of the following values:
356
  *            @arg TIM_PSCReloadMode_Update: The Prescaler is loaded at the update event.
357
  *            @arg TIM_PSCReloadMode_Immediate: The Prescaler is loaded immediatly.
358
  * @retval None
359
  */
360
void TIM_PrescalerConfig(TIM_TypeDef* TIMx, uint16_t Prescaler, uint16_t TIM_PSCReloadMode)
361
{
362
  /* Check the parameters */
363
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
364
  assert_param(IS_TIM_PRESCALER_RELOAD(TIM_PSCReloadMode));
365
  /* Set the Prescaler value */
366
  TIMx->PSC = Prescaler;
367
  /* Set or reset the UG Bit */
368
  TIMx->EGR = TIM_PSCReloadMode;
369
}
370

    
371
/**
372
  * @brief  Specifies the TIMx Counter Mode to be used.
373
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
374
  * @param  TIM_CounterMode: specifies the Counter Mode to be used
375
  *          This parameter can be one of the following values:
376
  *            @arg TIM_CounterMode_Up: TIM Up Counting Mode
377
  *            @arg TIM_CounterMode_Down: TIM Down Counting Mode
378
  *            @arg TIM_CounterMode_CenterAligned1: TIM Center Aligned Mode1
379
  *            @arg TIM_CounterMode_CenterAligned2: TIM Center Aligned Mode2
380
  *            @arg TIM_CounterMode_CenterAligned3: TIM Center Aligned Mode3
381
  * @retval None
382
  */
383
void TIM_CounterModeConfig(TIM_TypeDef* TIMx, uint16_t TIM_CounterMode)
384
{
385
  uint16_t tmpcr1 = 0;
386

    
387
  /* Check the parameters */
388
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
389
  assert_param(IS_TIM_COUNTER_MODE(TIM_CounterMode));
390

    
391
  tmpcr1 = TIMx->CR1;
392

    
393
  /* Reset the CMS and DIR Bits */
394
  tmpcr1 &= (uint16_t)~(TIM_CR1_DIR | TIM_CR1_CMS);
395

    
396
  /* Set the Counter Mode */
397
  tmpcr1 |= TIM_CounterMode;
398

    
399
  /* Write to TIMx CR1 register */
400
  TIMx->CR1 = tmpcr1;
401
}
402

    
403
/**
404
  * @brief  Sets the TIMx Counter Register value
405
  * @param  TIMx: where x can be 1 to 14 to select the TIM peripheral.
406
  * @param  Counter: specifies the Counter register new value.
407
  * @retval None
408
  */
409
void TIM_SetCounter(TIM_TypeDef* TIMx, uint32_t Counter)
410
{
411
  /* Check the parameters */
412
   assert_param(IS_TIM_ALL_PERIPH(TIMx));
413

    
414
  /* Set the Counter Register value */
415
  TIMx->CNT = Counter;
416
}
417

    
418
/**
419
  * @brief  Sets the TIMx Autoreload Register value
420
  * @param  TIMx: where x can be 1 to 14 to select the TIM peripheral.
421
  * @param  Autoreload: specifies the Autoreload register new value.
422
  * @retval None
423
  */
424
void TIM_SetAutoreload(TIM_TypeDef* TIMx, uint32_t Autoreload)
425
{
426
  /* Check the parameters */
427
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
428
  
429
  /* Set the Autoreload Register value */
430
  TIMx->ARR = Autoreload;
431
}
432

    
433
/**
434
  * @brief  Gets the TIMx Counter value.
435
  * @param  TIMx: where x can be 1 to 14 to select the TIM peripheral.
436
  * @retval Counter Register value
437
  */
438
uint32_t TIM_GetCounter(TIM_TypeDef* TIMx)
439
{
440
  /* Check the parameters */
441
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
442

    
443
  /* Get the Counter Register value */
444
  return TIMx->CNT;
445
}
446

    
447
/**
448
  * @brief  Gets the TIMx Prescaler value.
449
  * @param  TIMx: where x can be 1 to 14 to select the TIM peripheral.
450
  * @retval Prescaler Register value.
451
  */
452
uint16_t TIM_GetPrescaler(TIM_TypeDef* TIMx)
453
{
454
  /* Check the parameters */
455
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
456

    
457
  /* Get the Prescaler Register value */
458
  return TIMx->PSC;
459
}
460

    
461
/**
462
  * @brief  Enables or Disables the TIMx Update event.
463
  * @param  TIMx: where x can be 1 to 14 to select the TIM peripheral.
464
  * @param  NewState: new state of the TIMx UDIS bit
465
  *          This parameter can be: ENABLE or DISABLE.
466
  * @retval None
467
  */
468
void TIM_UpdateDisableConfig(TIM_TypeDef* TIMx, FunctionalState NewState)
469
{
470
  /* Check the parameters */
471
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
472
  assert_param(IS_FUNCTIONAL_STATE(NewState));
473

    
474
  if (NewState != DISABLE)
475
  {
476
    /* Set the Update Disable Bit */
477
    TIMx->CR1 |= TIM_CR1_UDIS;
478
  }
479
  else
480
  {
481
    /* Reset the Update Disable Bit */
482
    TIMx->CR1 &= (uint16_t)~TIM_CR1_UDIS;
483
  }
484
}
485

    
486
/**
487
  * @brief  Configures the TIMx Update Request Interrupt source.
488
  * @param  TIMx: where x can be 1 to 14 to select the TIM peripheral.
489
  * @param  TIM_UpdateSource: specifies the Update source.
490
  *          This parameter can be one of the following values:
491
  *            @arg TIM_UpdateSource_Global: Source of update is the counter
492
  *                 overflow/underflow or the setting of UG bit, or an update
493
  *                 generation through the slave mode controller.
494
  *            @arg TIM_UpdateSource_Regular: Source of update is counter overflow/underflow.
495
  * @retval None
496
  */
497
void TIM_UpdateRequestConfig(TIM_TypeDef* TIMx, uint16_t TIM_UpdateSource)
498
{
499
  /* Check the parameters */
500
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
501
  assert_param(IS_TIM_UPDATE_SOURCE(TIM_UpdateSource));
502

    
503
  if (TIM_UpdateSource != TIM_UpdateSource_Global)
504
  {
505
    /* Set the URS Bit */
506
    TIMx->CR1 |= TIM_CR1_URS;
507
  }
508
  else
509
  {
510
    /* Reset the URS Bit */
511
    TIMx->CR1 &= (uint16_t)~TIM_CR1_URS;
512
  }
513
}
514

    
515
/**
516
  * @brief  Enables or disables TIMx peripheral Preload register on ARR.
517
  * @param  TIMx: where x can be 1 to 14 to select the TIM peripheral.
518
  * @param  NewState: new state of the TIMx peripheral Preload register
519
  *          This parameter can be: ENABLE or DISABLE.
520
  * @retval None
521
  */
522
void TIM_ARRPreloadConfig(TIM_TypeDef* TIMx, FunctionalState NewState)
523
{
524
  /* Check the parameters */
525
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
526
  assert_param(IS_FUNCTIONAL_STATE(NewState));
527

    
528
  if (NewState != DISABLE)
529
  {
530
    /* Set the ARR Preload Bit */
531
    TIMx->CR1 |= TIM_CR1_ARPE;
532
  }
533
  else
534
  {
535
    /* Reset the ARR Preload Bit */
536
    TIMx->CR1 &= (uint16_t)~TIM_CR1_ARPE;
537
  }
538
}
539

    
540
/**
541
  * @brief  Selects the TIMx's One Pulse Mode.
542
  * @param  TIMx: where x can be 1 to 14 to select the TIM peripheral.
543
  * @param  TIM_OPMode: specifies the OPM Mode to be used.
544
  *          This parameter can be one of the following values:
545
  *            @arg TIM_OPMode_Single
546
  *            @arg TIM_OPMode_Repetitive
547
  * @retval None
548
  */
549
void TIM_SelectOnePulseMode(TIM_TypeDef* TIMx, uint16_t TIM_OPMode)
550
{
551
  /* Check the parameters */
552
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
553
  assert_param(IS_TIM_OPM_MODE(TIM_OPMode));
554

    
555
  /* Reset the OPM Bit */
556
  TIMx->CR1 &= (uint16_t)~TIM_CR1_OPM;
557

    
558
  /* Configure the OPM Mode */
559
  TIMx->CR1 |= TIM_OPMode;
560
}
561

    
562
/**
563
  * @brief  Sets the TIMx Clock Division value.
564
  * @param  TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
565
  * @param  TIM_CKD: specifies the clock division value.
566
  *          This parameter can be one of the following value:
567
  *            @arg TIM_CKD_DIV1: TDTS = Tck_tim
568
  *            @arg TIM_CKD_DIV2: TDTS = 2*Tck_tim
569
  *            @arg TIM_CKD_DIV4: TDTS = 4*Tck_tim
570
  * @retval None
571
  */
572
void TIM_SetClockDivision(TIM_TypeDef* TIMx, uint16_t TIM_CKD)
573
{
574
  /* Check the parameters */
575
  assert_param(IS_TIM_LIST1_PERIPH(TIMx));
576
  assert_param(IS_TIM_CKD_DIV(TIM_CKD));
577

    
578
  /* Reset the CKD Bits */
579
  TIMx->CR1 &= (uint16_t)(~TIM_CR1_CKD);
580

    
581
  /* Set the CKD value */
582
  TIMx->CR1 |= TIM_CKD;
583
}
584

    
585
/**
586
  * @brief  Enables or disables the specified TIM peripheral.
587
  * @param  TIMx: where x can be 1 to 14 to select the TIMx peripheral.
588
  * @param  NewState: new state of the TIMx peripheral.
589
  *          This parameter can be: ENABLE or DISABLE.
590
  * @retval None
591
  */
592
void TIM_Cmd(TIM_TypeDef* TIMx, FunctionalState NewState)
593
{
594
  /* Check the parameters */
595
  assert_param(IS_TIM_ALL_PERIPH(TIMx)); 
596
  assert_param(IS_FUNCTIONAL_STATE(NewState));
597
  
598
  if (NewState != DISABLE)
599
  {
600
    /* Enable the TIM Counter */
601
    TIMx->CR1 |= TIM_CR1_CEN;
602
  }
603
  else
604
  {
605
    /* Disable the TIM Counter */
606
    TIMx->CR1 &= (uint16_t)~TIM_CR1_CEN;
607
  }
608
}
609
/**
610
  * @}
611
  */
612

    
613
/** @defgroup TIM_Group2 Output Compare management functions
614
 *  @brief    Output Compare management functions 
615
 *
616
@verbatim   
617
 ===============================================================================
618
              ##### Output Compare management functions #####
619
 ===============================================================================  
620
   
621
      
622
        ##### TIM Driver: how to use it in Output Compare Mode #####
623
 ===============================================================================
624
    [..] 
625
    To use the Timer in Output Compare mode, the following steps are mandatory:
626
       
627
      (#) Enable TIM clock using RCC_APBxPeriphClockCmd(RCC_APBxPeriph_TIMx, ENABLE) 
628
          function
629
       
630
      (#) Configure the TIM pins by configuring the corresponding GPIO pins
631
       
632
      (#) Configure the Time base unit as described in the first part of this driver, 
633
        (++) if needed, else the Timer will run with the default configuration:
634
            Autoreload value = 0xFFFF
635
        (++) Prescaler value = 0x0000
636
        (++) Counter mode = Up counting
637
        (++) Clock Division = TIM_CKD_DIV1
638
          
639
      (#) Fill the TIM_OCInitStruct with the desired parameters including:
640
        (++) The TIM Output Compare mode: TIM_OCMode
641
        (++) TIM Output State: TIM_OutputState
642
        (++) TIM Pulse value: TIM_Pulse
643
        (++) TIM Output Compare Polarity : TIM_OCPolarity
644
       
645
      (#) Call TIM_OCxInit(TIMx, &TIM_OCInitStruct) to configure the desired 
646
          channel with the corresponding configuration
647
       
648
      (#) Call the TIM_Cmd(ENABLE) function to enable the TIM counter.
649
       
650
      -@- All other functions can be used separately to modify, if needed,
651
          a specific feature of the Timer. 
652
          
653
      -@- In case of PWM mode, this function is mandatory:
654
          TIM_OCxPreloadConfig(TIMx, TIM_OCPreload_ENABLE); 
655
              
656
      -@- If the corresponding interrupt or DMA request are needed, the user should:
657
        (+@) Enable the NVIC (or the DMA) to use the TIM interrupts (or DMA requests). 
658
        (+@) Enable the corresponding interrupt (or DMA request) using the function 
659
             TIM_ITConfig(TIMx, TIM_IT_CCx) (or TIM_DMA_Cmd(TIMx, TIM_DMA_CCx))   
660

661
@endverbatim
662
  * @{
663
  */
664

    
665
/**
666
  * @brief  Initializes the TIMx Channel1 according to the specified parameters in
667
  *         the TIM_OCInitStruct.
668
  * @param  TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
669
  * @param  TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure that contains
670
  *         the configuration information for the specified TIM peripheral.
671
  * @retval None
672
  */
673
void TIM_OC1Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
674
{
675
  uint16_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
676
   
677
  /* Check the parameters */
678
  assert_param(IS_TIM_LIST1_PERIPH(TIMx)); 
679
  assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
680
  assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
681
  assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));   
682

    
683
  /* Disable the Channel 1: Reset the CC1E Bit */
684
  TIMx->CCER &= (uint16_t)~TIM_CCER_CC1E;
685
  
686
  /* Get the TIMx CCER register value */
687
  tmpccer = TIMx->CCER;
688
  /* Get the TIMx CR2 register value */
689
  tmpcr2 =  TIMx->CR2;
690
  
691
  /* Get the TIMx CCMR1 register value */
692
  tmpccmrx = TIMx->CCMR1;
693
    
694
  /* Reset the Output Compare Mode Bits */
695
  tmpccmrx &= (uint16_t)~TIM_CCMR1_OC1M;
696
  tmpccmrx &= (uint16_t)~TIM_CCMR1_CC1S;
697
  /* Select the Output Compare Mode */
698
  tmpccmrx |= TIM_OCInitStruct->TIM_OCMode;
699
  
700
  /* Reset the Output Polarity level */
701
  tmpccer &= (uint16_t)~TIM_CCER_CC1P;
702
  /* Set the Output Compare Polarity */
703
  tmpccer |= TIM_OCInitStruct->TIM_OCPolarity;
704
  
705
  /* Set the Output State */
706
  tmpccer |= TIM_OCInitStruct->TIM_OutputState;
707
    
708
  if((TIMx == TIM1) || (TIMx == TIM8))
709
  {
710
    assert_param(IS_TIM_OUTPUTN_STATE(TIM_OCInitStruct->TIM_OutputNState));
711
    assert_param(IS_TIM_OCN_POLARITY(TIM_OCInitStruct->TIM_OCNPolarity));
712
    assert_param(IS_TIM_OCNIDLE_STATE(TIM_OCInitStruct->TIM_OCNIdleState));
713
    assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
714
    
715
    /* Reset the Output N Polarity level */
716
    tmpccer &= (uint16_t)~TIM_CCER_CC1NP;
717
    /* Set the Output N Polarity */
718
    tmpccer |= TIM_OCInitStruct->TIM_OCNPolarity;
719
    /* Reset the Output N State */
720
    tmpccer &= (uint16_t)~TIM_CCER_CC1NE;
721
    
722
    /* Set the Output N State */
723
    tmpccer |= TIM_OCInitStruct->TIM_OutputNState;
724
    /* Reset the Output Compare and Output Compare N IDLE State */
725
    tmpcr2 &= (uint16_t)~TIM_CR2_OIS1;
726
    tmpcr2 &= (uint16_t)~TIM_CR2_OIS1N;
727
    /* Set the Output Idle state */
728
    tmpcr2 |= TIM_OCInitStruct->TIM_OCIdleState;
729
    /* Set the Output N Idle state */
730
    tmpcr2 |= TIM_OCInitStruct->TIM_OCNIdleState;
731
  }
732
  /* Write to TIMx CR2 */
733
  TIMx->CR2 = tmpcr2;
734
  
735
  /* Write to TIMx CCMR1 */
736
  TIMx->CCMR1 = tmpccmrx;
737
  
738
  /* Set the Capture Compare Register value */
739
  TIMx->CCR1 = TIM_OCInitStruct->TIM_Pulse;
740
  
741
  /* Write to TIMx CCER */
742
  TIMx->CCER = tmpccer;
743
}
744

    
745
/**
746
  * @brief  Initializes the TIMx Channel2 according to the specified parameters 
747
  *         in the TIM_OCInitStruct.
748
  * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM 
749
  *         peripheral.
750
  * @param  TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure that contains
751
  *         the configuration information for the specified TIM peripheral.
752
  * @retval None
753
  */
754
void TIM_OC2Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
755
{
756
  uint16_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
757
   
758
  /* Check the parameters */
759
  assert_param(IS_TIM_LIST2_PERIPH(TIMx)); 
760
  assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
761
  assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
762
  assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));   
763

    
764
  /* Disable the Channel 2: Reset the CC2E Bit */
765
  TIMx->CCER &= (uint16_t)~TIM_CCER_CC2E;
766
  
767
  /* Get the TIMx CCER register value */  
768
  tmpccer = TIMx->CCER;
769
  /* Get the TIMx CR2 register value */
770
  tmpcr2 =  TIMx->CR2;
771
  
772
  /* Get the TIMx CCMR1 register value */
773
  tmpccmrx = TIMx->CCMR1;
774
    
775
  /* Reset the Output Compare mode and Capture/Compare selection Bits */
776
  tmpccmrx &= (uint16_t)~TIM_CCMR1_OC2M;
777
  tmpccmrx &= (uint16_t)~TIM_CCMR1_CC2S;
778
  
779
  /* Select the Output Compare Mode */
780
  tmpccmrx |= (uint16_t)(TIM_OCInitStruct->TIM_OCMode << 8);
781
  
782
  /* Reset the Output Polarity level */
783
  tmpccer &= (uint16_t)~TIM_CCER_CC2P;
784
  /* Set the Output Compare Polarity */
785
  tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCPolarity << 4);
786
  
787
  /* Set the Output State */
788
  tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputState << 4);
789
    
790
  if((TIMx == TIM1) || (TIMx == TIM8))
791
  {
792
    assert_param(IS_TIM_OUTPUTN_STATE(TIM_OCInitStruct->TIM_OutputNState));
793
    assert_param(IS_TIM_OCN_POLARITY(TIM_OCInitStruct->TIM_OCNPolarity));
794
    assert_param(IS_TIM_OCNIDLE_STATE(TIM_OCInitStruct->TIM_OCNIdleState));
795
    assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
796
    
797
    /* Reset the Output N Polarity level */
798
    tmpccer &= (uint16_t)~TIM_CCER_CC2NP;
799
    /* Set the Output N Polarity */
800
    tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCNPolarity << 4);
801
    /* Reset the Output N State */
802
    tmpccer &= (uint16_t)~TIM_CCER_CC2NE;
803
    
804
    /* Set the Output N State */
805
    tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputNState << 4);
806
    /* Reset the Output Compare and Output Compare N IDLE State */
807
    tmpcr2 &= (uint16_t)~TIM_CR2_OIS2;
808
    tmpcr2 &= (uint16_t)~TIM_CR2_OIS2N;
809
    /* Set the Output Idle state */
810
    tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCIdleState << 2);
811
    /* Set the Output N Idle state */
812
    tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCNIdleState << 2);
813
  }
814
  /* Write to TIMx CR2 */
815
  TIMx->CR2 = tmpcr2;
816
  
817
  /* Write to TIMx CCMR1 */
818
  TIMx->CCMR1 = tmpccmrx;
819
  
820
  /* Set the Capture Compare Register value */
821
  TIMx->CCR2 = TIM_OCInitStruct->TIM_Pulse;
822
  
823
  /* Write to TIMx CCER */
824
  TIMx->CCER = tmpccer;
825
}
826

    
827
/**
828
  * @brief  Initializes the TIMx Channel3 according to the specified parameters
829
  *         in the TIM_OCInitStruct.
830
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
831
  * @param  TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure that contains
832
  *         the configuration information for the specified TIM peripheral.
833
  * @retval None
834
  */
835
void TIM_OC3Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
836
{
837
  uint16_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
838
   
839
  /* Check the parameters */
840
  assert_param(IS_TIM_LIST3_PERIPH(TIMx)); 
841
  assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
842
  assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
843
  assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));   
844

    
845
  /* Disable the Channel 3: Reset the CC2E Bit */
846
  TIMx->CCER &= (uint16_t)~TIM_CCER_CC3E;
847
  
848
  /* Get the TIMx CCER register value */
849
  tmpccer = TIMx->CCER;
850
  /* Get the TIMx CR2 register value */
851
  tmpcr2 =  TIMx->CR2;
852
  
853
  /* Get the TIMx CCMR2 register value */
854
  tmpccmrx = TIMx->CCMR2;
855
    
856
  /* Reset the Output Compare mode and Capture/Compare selection Bits */
857
  tmpccmrx &= (uint16_t)~TIM_CCMR2_OC3M;
858
  tmpccmrx &= (uint16_t)~TIM_CCMR2_CC3S;  
859
  /* Select the Output Compare Mode */
860
  tmpccmrx |= TIM_OCInitStruct->TIM_OCMode;
861
  
862
  /* Reset the Output Polarity level */
863
  tmpccer &= (uint16_t)~TIM_CCER_CC3P;
864
  /* Set the Output Compare Polarity */
865
  tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCPolarity << 8);
866
  
867
  /* Set the Output State */
868
  tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputState << 8);
869
    
870
  if((TIMx == TIM1) || (TIMx == TIM8))
871
  {
872
    assert_param(IS_TIM_OUTPUTN_STATE(TIM_OCInitStruct->TIM_OutputNState));
873
    assert_param(IS_TIM_OCN_POLARITY(TIM_OCInitStruct->TIM_OCNPolarity));
874
    assert_param(IS_TIM_OCNIDLE_STATE(TIM_OCInitStruct->TIM_OCNIdleState));
875
    assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
876
    
877
    /* Reset the Output N Polarity level */
878
    tmpccer &= (uint16_t)~TIM_CCER_CC3NP;
879
    /* Set the Output N Polarity */
880
    tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCNPolarity << 8);
881
    /* Reset the Output N State */
882
    tmpccer &= (uint16_t)~TIM_CCER_CC3NE;
883
    
884
    /* Set the Output N State */
885
    tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputNState << 8);
886
    /* Reset the Output Compare and Output Compare N IDLE State */
887
    tmpcr2 &= (uint16_t)~TIM_CR2_OIS3;
888
    tmpcr2 &= (uint16_t)~TIM_CR2_OIS3N;
889
    /* Set the Output Idle state */
890
    tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCIdleState << 4);
891
    /* Set the Output N Idle state */
892
    tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCNIdleState << 4);
893
  }
894
  /* Write to TIMx CR2 */
895
  TIMx->CR2 = tmpcr2;
896
  
897
  /* Write to TIMx CCMR2 */
898
  TIMx->CCMR2 = tmpccmrx;
899
  
900
  /* Set the Capture Compare Register value */
901
  TIMx->CCR3 = TIM_OCInitStruct->TIM_Pulse;
902
  
903
  /* Write to TIMx CCER */
904
  TIMx->CCER = tmpccer;
905
}
906

    
907
/**
908
  * @brief  Initializes the TIMx Channel4 according to the specified parameters
909
  *         in the TIM_OCInitStruct.
910
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
911
  * @param  TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure that contains
912
  *         the configuration information for the specified TIM peripheral.
913
  * @retval None
914
  */
915
void TIM_OC4Init(TIM_TypeDef* TIMx, TIM_OCInitTypeDef* TIM_OCInitStruct)
916
{
917
  uint16_t tmpccmrx = 0, tmpccer = 0, tmpcr2 = 0;
918
   
919
  /* Check the parameters */
920
  assert_param(IS_TIM_LIST3_PERIPH(TIMx)); 
921
  assert_param(IS_TIM_OC_MODE(TIM_OCInitStruct->TIM_OCMode));
922
  assert_param(IS_TIM_OUTPUT_STATE(TIM_OCInitStruct->TIM_OutputState));
923
  assert_param(IS_TIM_OC_POLARITY(TIM_OCInitStruct->TIM_OCPolarity));   
924

    
925
  /* Disable the Channel 4: Reset the CC4E Bit */
926
  TIMx->CCER &= (uint16_t)~TIM_CCER_CC4E;
927
  
928
  /* Get the TIMx CCER register value */
929
  tmpccer = TIMx->CCER;
930
  /* Get the TIMx CR2 register value */
931
  tmpcr2 =  TIMx->CR2;
932
  
933
  /* Get the TIMx CCMR2 register value */
934
  tmpccmrx = TIMx->CCMR2;
935
    
936
  /* Reset the Output Compare mode and Capture/Compare selection Bits */
937
  tmpccmrx &= (uint16_t)~TIM_CCMR2_OC4M;
938
  tmpccmrx &= (uint16_t)~TIM_CCMR2_CC4S;
939
  
940
  /* Select the Output Compare Mode */
941
  tmpccmrx |= (uint16_t)(TIM_OCInitStruct->TIM_OCMode << 8);
942
  
943
  /* Reset the Output Polarity level */
944
  tmpccer &= (uint16_t)~TIM_CCER_CC4P;
945
  /* Set the Output Compare Polarity */
946
  tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OCPolarity << 12);
947
  
948
  /* Set the Output State */
949
  tmpccer |= (uint16_t)(TIM_OCInitStruct->TIM_OutputState << 12);
950
  
951
  if((TIMx == TIM1) || (TIMx == TIM8))
952
  {
953
    assert_param(IS_TIM_OCIDLE_STATE(TIM_OCInitStruct->TIM_OCIdleState));
954
    /* Reset the Output Compare IDLE State */
955
    tmpcr2 &=(uint16_t) ~TIM_CR2_OIS4;
956
    /* Set the Output Idle state */
957
    tmpcr2 |= (uint16_t)(TIM_OCInitStruct->TIM_OCIdleState << 6);
958
  }
959
  /* Write to TIMx CR2 */
960
  TIMx->CR2 = tmpcr2;
961
  
962
  /* Write to TIMx CCMR2 */  
963
  TIMx->CCMR2 = tmpccmrx;
964
    
965
  /* Set the Capture Compare Register value */
966
  TIMx->CCR4 = TIM_OCInitStruct->TIM_Pulse;
967
  
968
  /* Write to TIMx CCER */
969
  TIMx->CCER = tmpccer;
970
}
971

    
972
/**
973
  * @brief  Fills each TIM_OCInitStruct member with its default value.
974
  * @param  TIM_OCInitStruct: pointer to a TIM_OCInitTypeDef structure which will
975
  *         be initialized.
976
  * @retval None
977
  */
978
void TIM_OCStructInit(TIM_OCInitTypeDef* TIM_OCInitStruct)
979
{
980
  /* Set the default configuration */
981
  TIM_OCInitStruct->TIM_OCMode = TIM_OCMode_Timing;
982
  TIM_OCInitStruct->TIM_OutputState = TIM_OutputState_Disable;
983
  TIM_OCInitStruct->TIM_OutputNState = TIM_OutputNState_Disable;
984
  TIM_OCInitStruct->TIM_Pulse = 0x00000000;
985
  TIM_OCInitStruct->TIM_OCPolarity = TIM_OCPolarity_High;
986
  TIM_OCInitStruct->TIM_OCNPolarity = TIM_OCPolarity_High;
987
  TIM_OCInitStruct->TIM_OCIdleState = TIM_OCIdleState_Reset;
988
  TIM_OCInitStruct->TIM_OCNIdleState = TIM_OCNIdleState_Reset;
989
}
990

    
991
/**
992
  * @brief  Selects the TIM Output Compare Mode.
993
  * @note   This function disables the selected channel before changing the Output
994
  *         Compare Mode. If needed, user has to enable this channel using
995
  *         TIM_CCxCmd() and TIM_CCxNCmd() functions.
996
  * @param  TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
997
  * @param  TIM_Channel: specifies the TIM Channel
998
  *          This parameter can be one of the following values:
999
  *            @arg TIM_Channel_1: TIM Channel 1
1000
  *            @arg TIM_Channel_2: TIM Channel 2
1001
  *            @arg TIM_Channel_3: TIM Channel 3
1002
  *            @arg TIM_Channel_4: TIM Channel 4
1003
  * @param  TIM_OCMode: specifies the TIM Output Compare Mode.
1004
  *           This parameter can be one of the following values:
1005
  *            @arg TIM_OCMode_Timing
1006
  *            @arg TIM_OCMode_Active
1007
  *            @arg TIM_OCMode_Toggle
1008
  *            @arg TIM_OCMode_PWM1
1009
  *            @arg TIM_OCMode_PWM2
1010
  *            @arg TIM_ForcedAction_Active
1011
  *            @arg TIM_ForcedAction_InActive
1012
  * @retval None
1013
  */
1014
void TIM_SelectOCxM(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_OCMode)
1015
{
1016
  uint32_t tmp = 0;
1017
  uint16_t tmp1 = 0;
1018

    
1019
  /* Check the parameters */
1020
  assert_param(IS_TIM_LIST1_PERIPH(TIMx));
1021
  assert_param(IS_TIM_CHANNEL(TIM_Channel));
1022
  assert_param(IS_TIM_OCM(TIM_OCMode));
1023

    
1024
  tmp = (uint32_t) TIMx;
1025
  tmp += CCMR_OFFSET;
1026

    
1027
  tmp1 = CCER_CCE_SET << (uint16_t)TIM_Channel;
1028

    
1029
  /* Disable the Channel: Reset the CCxE Bit */
1030
  TIMx->CCER &= (uint16_t) ~tmp1;
1031

    
1032
  if((TIM_Channel == TIM_Channel_1) ||(TIM_Channel == TIM_Channel_3))
1033
  {
1034
    tmp += (TIM_Channel>>1);
1035

    
1036
    /* Reset the OCxM bits in the CCMRx register */
1037
    *(__IO uint32_t *) tmp &= CCMR_OC13M_MASK;
1038
   
1039
    /* Configure the OCxM bits in the CCMRx register */
1040
    *(__IO uint32_t *) tmp |= TIM_OCMode;
1041
  }
1042
  else
1043
  {
1044
    tmp += (uint16_t)(TIM_Channel - (uint16_t)4)>> (uint16_t)1;
1045

    
1046
    /* Reset the OCxM bits in the CCMRx register */
1047
    *(__IO uint32_t *) tmp &= CCMR_OC24M_MASK;
1048
    
1049
    /* Configure the OCxM bits in the CCMRx register */
1050
    *(__IO uint32_t *) tmp |= (uint16_t)(TIM_OCMode << 8);
1051
  }
1052
}
1053

    
1054
/**
1055
  * @brief  Sets the TIMx Capture Compare1 Register value
1056
  * @param  TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
1057
  * @param  Compare1: specifies the Capture Compare1 register new value.
1058
  * @retval None
1059
  */
1060
void TIM_SetCompare1(TIM_TypeDef* TIMx, uint32_t Compare1)
1061
{
1062
  /* Check the parameters */
1063
  assert_param(IS_TIM_LIST1_PERIPH(TIMx));
1064

    
1065
  /* Set the Capture Compare1 Register value */
1066
  TIMx->CCR1 = Compare1;
1067
}
1068

    
1069
/**
1070
  * @brief  Sets the TIMx Capture Compare2 Register value
1071
  * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM 
1072
  *         peripheral.
1073
  * @param  Compare2: specifies the Capture Compare2 register new value.
1074
  * @retval None
1075
  */
1076
void TIM_SetCompare2(TIM_TypeDef* TIMx, uint32_t Compare2)
1077
{
1078
  /* Check the parameters */
1079
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
1080

    
1081
  /* Set the Capture Compare2 Register value */
1082
  TIMx->CCR2 = Compare2;
1083
}
1084

    
1085
/**
1086
  * @brief  Sets the TIMx Capture Compare3 Register value
1087
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
1088
  * @param  Compare3: specifies the Capture Compare3 register new value.
1089
  * @retval None
1090
  */
1091
void TIM_SetCompare3(TIM_TypeDef* TIMx, uint32_t Compare3)
1092
{
1093
  /* Check the parameters */
1094
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
1095

    
1096
  /* Set the Capture Compare3 Register value */
1097
  TIMx->CCR3 = Compare3;
1098
}
1099

    
1100
/**
1101
  * @brief  Sets the TIMx Capture Compare4 Register value
1102
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
1103
  * @param  Compare4: specifies the Capture Compare4 register new value.
1104
  * @retval None
1105
  */
1106
void TIM_SetCompare4(TIM_TypeDef* TIMx, uint32_t Compare4)
1107
{
1108
  /* Check the parameters */
1109
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
1110

    
1111
  /* Set the Capture Compare4 Register value */
1112
  TIMx->CCR4 = Compare4;
1113
}
1114

    
1115
/**
1116
  * @brief  Forces the TIMx output 1 waveform to active or inactive level.
1117
  * @param  TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
1118
  * @param  TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
1119
  *          This parameter can be one of the following values:
1120
  *            @arg TIM_ForcedAction_Active: Force active level on OC1REF
1121
  *            @arg TIM_ForcedAction_InActive: Force inactive level on OC1REF.
1122
  * @retval None
1123
  */
1124
void TIM_ForcedOC1Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
1125
{
1126
  uint16_t tmpccmr1 = 0;
1127

    
1128
  /* Check the parameters */
1129
  assert_param(IS_TIM_LIST1_PERIPH(TIMx));
1130
  assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
1131
  tmpccmr1 = TIMx->CCMR1;
1132

    
1133
  /* Reset the OC1M Bits */
1134
  tmpccmr1 &= (uint16_t)~TIM_CCMR1_OC1M;
1135

    
1136
  /* Configure The Forced output Mode */
1137
  tmpccmr1 |= TIM_ForcedAction;
1138

    
1139
  /* Write to TIMx CCMR1 register */
1140
  TIMx->CCMR1 = tmpccmr1;
1141
}
1142

    
1143
/**
1144
  * @brief  Forces the TIMx output 2 waveform to active or inactive level.
1145
  * @param  TIMx: where x can be  1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM 
1146
  *         peripheral.
1147
  * @param  TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
1148
  *          This parameter can be one of the following values:
1149
  *            @arg TIM_ForcedAction_Active: Force active level on OC2REF
1150
  *            @arg TIM_ForcedAction_InActive: Force inactive level on OC2REF.
1151
  * @retval None
1152
  */
1153
void TIM_ForcedOC2Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
1154
{
1155
  uint16_t tmpccmr1 = 0;
1156

    
1157
  /* Check the parameters */
1158
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
1159
  assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
1160
  tmpccmr1 = TIMx->CCMR1;
1161

    
1162
  /* Reset the OC2M Bits */
1163
  tmpccmr1 &= (uint16_t)~TIM_CCMR1_OC2M;
1164

    
1165
  /* Configure The Forced output Mode */
1166
  tmpccmr1 |= (uint16_t)(TIM_ForcedAction << 8);
1167

    
1168
  /* Write to TIMx CCMR1 register */
1169
  TIMx->CCMR1 = tmpccmr1;
1170
}
1171

    
1172
/**
1173
  * @brief  Forces the TIMx output 3 waveform to active or inactive level.
1174
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
1175
  * @param  TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
1176
  *          This parameter can be one of the following values:
1177
  *            @arg TIM_ForcedAction_Active: Force active level on OC3REF
1178
  *            @arg TIM_ForcedAction_InActive: Force inactive level on OC3REF.
1179
  * @retval None
1180
  */
1181
void TIM_ForcedOC3Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
1182
{
1183
  uint16_t tmpccmr2 = 0;
1184

    
1185
  /* Check the parameters */
1186
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
1187
  assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
1188

    
1189
  tmpccmr2 = TIMx->CCMR2;
1190

    
1191
  /* Reset the OC1M Bits */
1192
  tmpccmr2 &= (uint16_t)~TIM_CCMR2_OC3M;
1193

    
1194
  /* Configure The Forced output Mode */
1195
  tmpccmr2 |= TIM_ForcedAction;
1196

    
1197
  /* Write to TIMx CCMR2 register */
1198
  TIMx->CCMR2 = tmpccmr2;
1199
}
1200

    
1201
/**
1202
  * @brief  Forces the TIMx output 4 waveform to active or inactive level.
1203
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
1204
  * @param  TIM_ForcedAction: specifies the forced Action to be set to the output waveform.
1205
  *          This parameter can be one of the following values:
1206
  *            @arg TIM_ForcedAction_Active: Force active level on OC4REF
1207
  *            @arg TIM_ForcedAction_InActive: Force inactive level on OC4REF.
1208
  * @retval None
1209
  */
1210
void TIM_ForcedOC4Config(TIM_TypeDef* TIMx, uint16_t TIM_ForcedAction)
1211
{
1212
  uint16_t tmpccmr2 = 0;
1213

    
1214
  /* Check the parameters */
1215
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
1216
  assert_param(IS_TIM_FORCED_ACTION(TIM_ForcedAction));
1217
  tmpccmr2 = TIMx->CCMR2;
1218

    
1219
  /* Reset the OC2M Bits */
1220
  tmpccmr2 &= (uint16_t)~TIM_CCMR2_OC4M;
1221

    
1222
  /* Configure The Forced output Mode */
1223
  tmpccmr2 |= (uint16_t)(TIM_ForcedAction << 8);
1224

    
1225
  /* Write to TIMx CCMR2 register */
1226
  TIMx->CCMR2 = tmpccmr2;
1227
}
1228

    
1229
/**
1230
  * @brief  Enables or disables the TIMx peripheral Preload register on CCR1.
1231
  * @param  TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
1232
  * @param  TIM_OCPreload: new state of the TIMx peripheral Preload register
1233
  *          This parameter can be one of the following values:
1234
  *            @arg TIM_OCPreload_Enable
1235
  *            @arg TIM_OCPreload_Disable
1236
  * @retval None
1237
  */
1238
void TIM_OC1PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
1239
{
1240
  uint16_t tmpccmr1 = 0;
1241

    
1242
  /* Check the parameters */
1243
  assert_param(IS_TIM_LIST1_PERIPH(TIMx));
1244
  assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));
1245

    
1246
  tmpccmr1 = TIMx->CCMR1;
1247

    
1248
  /* Reset the OC1PE Bit */
1249
  tmpccmr1 &= (uint16_t)(~TIM_CCMR1_OC1PE);
1250

    
1251
  /* Enable or Disable the Output Compare Preload feature */
1252
  tmpccmr1 |= TIM_OCPreload;
1253

    
1254
  /* Write to TIMx CCMR1 register */
1255
  TIMx->CCMR1 = tmpccmr1;
1256
}
1257

    
1258
/**
1259
  * @brief  Enables or disables the TIMx peripheral Preload register on CCR2.
1260
  * @param  TIMx: where x can be  1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM 
1261
  *         peripheral.
1262
  * @param  TIM_OCPreload: new state of the TIMx peripheral Preload register
1263
  *          This parameter can be one of the following values:
1264
  *            @arg TIM_OCPreload_Enable
1265
  *            @arg TIM_OCPreload_Disable
1266
  * @retval None
1267
  */
1268
void TIM_OC2PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
1269
{
1270
  uint16_t tmpccmr1 = 0;
1271

    
1272
  /* Check the parameters */
1273
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
1274
  assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));
1275

    
1276
  tmpccmr1 = TIMx->CCMR1;
1277

    
1278
  /* Reset the OC2PE Bit */
1279
  tmpccmr1 &= (uint16_t)(~TIM_CCMR1_OC2PE);
1280

    
1281
  /* Enable or Disable the Output Compare Preload feature */
1282
  tmpccmr1 |= (uint16_t)(TIM_OCPreload << 8);
1283

    
1284
  /* Write to TIMx CCMR1 register */
1285
  TIMx->CCMR1 = tmpccmr1;
1286
}
1287

    
1288
/**
1289
  * @brief  Enables or disables the TIMx peripheral Preload register on CCR3.
1290
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
1291
  * @param  TIM_OCPreload: new state of the TIMx peripheral Preload register
1292
  *          This parameter can be one of the following values:
1293
  *            @arg TIM_OCPreload_Enable
1294
  *            @arg TIM_OCPreload_Disable
1295
  * @retval None
1296
  */
1297
void TIM_OC3PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
1298
{
1299
  uint16_t tmpccmr2 = 0;
1300

    
1301
  /* Check the parameters */
1302
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
1303
  assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));
1304

    
1305
  tmpccmr2 = TIMx->CCMR2;
1306

    
1307
  /* Reset the OC3PE Bit */
1308
  tmpccmr2 &= (uint16_t)(~TIM_CCMR2_OC3PE);
1309

    
1310
  /* Enable or Disable the Output Compare Preload feature */
1311
  tmpccmr2 |= TIM_OCPreload;
1312

    
1313
  /* Write to TIMx CCMR2 register */
1314
  TIMx->CCMR2 = tmpccmr2;
1315
}
1316

    
1317
/**
1318
  * @brief  Enables or disables the TIMx peripheral Preload register on CCR4.
1319
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
1320
  * @param  TIM_OCPreload: new state of the TIMx peripheral Preload register
1321
  *          This parameter can be one of the following values:
1322
  *            @arg TIM_OCPreload_Enable
1323
  *            @arg TIM_OCPreload_Disable
1324
  * @retval None
1325
  */
1326
void TIM_OC4PreloadConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPreload)
1327
{
1328
  uint16_t tmpccmr2 = 0;
1329

    
1330
  /* Check the parameters */
1331
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
1332
  assert_param(IS_TIM_OCPRELOAD_STATE(TIM_OCPreload));
1333

    
1334
  tmpccmr2 = TIMx->CCMR2;
1335

    
1336
  /* Reset the OC4PE Bit */
1337
  tmpccmr2 &= (uint16_t)(~TIM_CCMR2_OC4PE);
1338

    
1339
  /* Enable or Disable the Output Compare Preload feature */
1340
  tmpccmr2 |= (uint16_t)(TIM_OCPreload << 8);
1341

    
1342
  /* Write to TIMx CCMR2 register */
1343
  TIMx->CCMR2 = tmpccmr2;
1344
}
1345

    
1346
/**
1347
  * @brief  Configures the TIMx Output Compare 1 Fast feature.
1348
  * @param  TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
1349
  * @param  TIM_OCFast: new state of the Output Compare Fast Enable Bit.
1350
  *          This parameter can be one of the following values:
1351
  *            @arg TIM_OCFast_Enable: TIM output compare fast enable
1352
  *            @arg TIM_OCFast_Disable: TIM output compare fast disable
1353
  * @retval None
1354
  */
1355
void TIM_OC1FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
1356
{
1357
  uint16_t tmpccmr1 = 0;
1358

    
1359
  /* Check the parameters */
1360
  assert_param(IS_TIM_LIST1_PERIPH(TIMx));
1361
  assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));
1362

    
1363
  /* Get the TIMx CCMR1 register value */
1364
  tmpccmr1 = TIMx->CCMR1;
1365

    
1366
  /* Reset the OC1FE Bit */
1367
  tmpccmr1 &= (uint16_t)~TIM_CCMR1_OC1FE;
1368

    
1369
  /* Enable or Disable the Output Compare Fast Bit */
1370
  tmpccmr1 |= TIM_OCFast;
1371

    
1372
  /* Write to TIMx CCMR1 */
1373
  TIMx->CCMR1 = tmpccmr1;
1374
}
1375

    
1376
/**
1377
  * @brief  Configures the TIMx Output Compare 2 Fast feature.
1378
  * @param  TIMx: where x can be  1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM 
1379
  *         peripheral.
1380
  * @param  TIM_OCFast: new state of the Output Compare Fast Enable Bit.
1381
  *          This parameter can be one of the following values:
1382
  *            @arg TIM_OCFast_Enable: TIM output compare fast enable
1383
  *            @arg TIM_OCFast_Disable: TIM output compare fast disable
1384
  * @retval None
1385
  */
1386
void TIM_OC2FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
1387
{
1388
  uint16_t tmpccmr1 = 0;
1389

    
1390
  /* Check the parameters */
1391
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
1392
  assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));
1393

    
1394
  /* Get the TIMx CCMR1 register value */
1395
  tmpccmr1 = TIMx->CCMR1;
1396

    
1397
  /* Reset the OC2FE Bit */
1398
  tmpccmr1 &= (uint16_t)(~TIM_CCMR1_OC2FE);
1399

    
1400
  /* Enable or Disable the Output Compare Fast Bit */
1401
  tmpccmr1 |= (uint16_t)(TIM_OCFast << 8);
1402

    
1403
  /* Write to TIMx CCMR1 */
1404
  TIMx->CCMR1 = tmpccmr1;
1405
}
1406

    
1407
/**
1408
  * @brief  Configures the TIMx Output Compare 3 Fast feature.
1409
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
1410
  * @param  TIM_OCFast: new state of the Output Compare Fast Enable Bit.
1411
  *          This parameter can be one of the following values:
1412
  *            @arg TIM_OCFast_Enable: TIM output compare fast enable
1413
  *            @arg TIM_OCFast_Disable: TIM output compare fast disable
1414
  * @retval None
1415
  */
1416
void TIM_OC3FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
1417
{
1418
  uint16_t tmpccmr2 = 0;
1419
  
1420
  /* Check the parameters */
1421
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
1422
  assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));
1423

    
1424
  /* Get the TIMx CCMR2 register value */
1425
  tmpccmr2 = TIMx->CCMR2;
1426

    
1427
  /* Reset the OC3FE Bit */
1428
  tmpccmr2 &= (uint16_t)~TIM_CCMR2_OC3FE;
1429

    
1430
  /* Enable or Disable the Output Compare Fast Bit */
1431
  tmpccmr2 |= TIM_OCFast;
1432

    
1433
  /* Write to TIMx CCMR2 */
1434
  TIMx->CCMR2 = tmpccmr2;
1435
}
1436

    
1437
/**
1438
  * @brief  Configures the TIMx Output Compare 4 Fast feature.
1439
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
1440
  * @param  TIM_OCFast: new state of the Output Compare Fast Enable Bit.
1441
  *          This parameter can be one of the following values:
1442
  *            @arg TIM_OCFast_Enable: TIM output compare fast enable
1443
  *            @arg TIM_OCFast_Disable: TIM output compare fast disable
1444
  * @retval None
1445
  */
1446
void TIM_OC4FastConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCFast)
1447
{
1448
  uint16_t tmpccmr2 = 0;
1449

    
1450
  /* Check the parameters */
1451
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
1452
  assert_param(IS_TIM_OCFAST_STATE(TIM_OCFast));
1453

    
1454
  /* Get the TIMx CCMR2 register value */
1455
  tmpccmr2 = TIMx->CCMR2;
1456

    
1457
  /* Reset the OC4FE Bit */
1458
  tmpccmr2 &= (uint16_t)(~TIM_CCMR2_OC4FE);
1459

    
1460
  /* Enable or Disable the Output Compare Fast Bit */
1461
  tmpccmr2 |= (uint16_t)(TIM_OCFast << 8);
1462

    
1463
  /* Write to TIMx CCMR2 */
1464
  TIMx->CCMR2 = tmpccmr2;
1465
}
1466

    
1467
/**
1468
  * @brief  Clears or safeguards the OCREF1 signal on an external event
1469
  * @param  TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
1470
  * @param  TIM_OCClear: new state of the Output Compare Clear Enable Bit.
1471
  *          This parameter can be one of the following values:
1472
  *            @arg TIM_OCClear_Enable: TIM Output clear enable
1473
  *            @arg TIM_OCClear_Disable: TIM Output clear disable
1474
  * @retval None
1475
  */
1476
void TIM_ClearOC1Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
1477
{
1478
  uint16_t tmpccmr1 = 0;
1479

    
1480
  /* Check the parameters */
1481
  assert_param(IS_TIM_LIST1_PERIPH(TIMx));
1482
  assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));
1483

    
1484
  tmpccmr1 = TIMx->CCMR1;
1485

    
1486
  /* Reset the OC1CE Bit */
1487
  tmpccmr1 &= (uint16_t)~TIM_CCMR1_OC1CE;
1488

    
1489
  /* Enable or Disable the Output Compare Clear Bit */
1490
  tmpccmr1 |= TIM_OCClear;
1491

    
1492
  /* Write to TIMx CCMR1 register */
1493
  TIMx->CCMR1 = tmpccmr1;
1494
}
1495

    
1496
/**
1497
  * @brief  Clears or safeguards the OCREF2 signal on an external event
1498
  * @param  TIMx: where x can be  1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM 
1499
  *         peripheral.
1500
  * @param  TIM_OCClear: new state of the Output Compare Clear Enable Bit.
1501
  *          This parameter can be one of the following values:
1502
  *            @arg TIM_OCClear_Enable: TIM Output clear enable
1503
  *            @arg TIM_OCClear_Disable: TIM Output clear disable
1504
  * @retval None
1505
  */
1506
void TIM_ClearOC2Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
1507
{
1508
  uint16_t tmpccmr1 = 0;
1509

    
1510
  /* Check the parameters */
1511
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
1512
  assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));
1513

    
1514
  tmpccmr1 = TIMx->CCMR1;
1515

    
1516
  /* Reset the OC2CE Bit */
1517
  tmpccmr1 &= (uint16_t)~TIM_CCMR1_OC2CE;
1518

    
1519
  /* Enable or Disable the Output Compare Clear Bit */
1520
  tmpccmr1 |= (uint16_t)(TIM_OCClear << 8);
1521

    
1522
  /* Write to TIMx CCMR1 register */
1523
  TIMx->CCMR1 = tmpccmr1;
1524
}
1525

    
1526
/**
1527
  * @brief  Clears or safeguards the OCREF3 signal on an external event
1528
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
1529
  * @param  TIM_OCClear: new state of the Output Compare Clear Enable Bit.
1530
  *          This parameter can be one of the following values:
1531
  *            @arg TIM_OCClear_Enable: TIM Output clear enable
1532
  *            @arg TIM_OCClear_Disable: TIM Output clear disable
1533
  * @retval None
1534
  */
1535
void TIM_ClearOC3Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
1536
{
1537
  uint16_t tmpccmr2 = 0;
1538

    
1539
  /* Check the parameters */
1540
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
1541
  assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));
1542

    
1543
  tmpccmr2 = TIMx->CCMR2;
1544

    
1545
  /* Reset the OC3CE Bit */
1546
  tmpccmr2 &= (uint16_t)~TIM_CCMR2_OC3CE;
1547

    
1548
  /* Enable or Disable the Output Compare Clear Bit */
1549
  tmpccmr2 |= TIM_OCClear;
1550

    
1551
  /* Write to TIMx CCMR2 register */
1552
  TIMx->CCMR2 = tmpccmr2;
1553
}
1554

    
1555
/**
1556
  * @brief  Clears or safeguards the OCREF4 signal on an external event
1557
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
1558
  * @param  TIM_OCClear: new state of the Output Compare Clear Enable Bit.
1559
  *          This parameter can be one of the following values:
1560
  *            @arg TIM_OCClear_Enable: TIM Output clear enable
1561
  *            @arg TIM_OCClear_Disable: TIM Output clear disable
1562
  * @retval None
1563
  */
1564
void TIM_ClearOC4Ref(TIM_TypeDef* TIMx, uint16_t TIM_OCClear)
1565
{
1566
  uint16_t tmpccmr2 = 0;
1567

    
1568
  /* Check the parameters */
1569
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
1570
  assert_param(IS_TIM_OCCLEAR_STATE(TIM_OCClear));
1571

    
1572
  tmpccmr2 = TIMx->CCMR2;
1573

    
1574
  /* Reset the OC4CE Bit */
1575
  tmpccmr2 &= (uint16_t)~TIM_CCMR2_OC4CE;
1576

    
1577
  /* Enable or Disable the Output Compare Clear Bit */
1578
  tmpccmr2 |= (uint16_t)(TIM_OCClear << 8);
1579

    
1580
  /* Write to TIMx CCMR2 register */
1581
  TIMx->CCMR2 = tmpccmr2;
1582
}
1583

    
1584
/**
1585
  * @brief  Configures the TIMx channel 1 polarity.
1586
  * @param  TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
1587
  * @param  TIM_OCPolarity: specifies the OC1 Polarity
1588
  *          This parameter can be one of the following values:
1589
  *            @arg TIM_OCPolarity_High: Output Compare active high
1590
  *            @arg TIM_OCPolarity_Low: Output Compare active low
1591
  * @retval None
1592
  */
1593
void TIM_OC1PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
1594
{
1595
  uint16_t tmpccer = 0;
1596

    
1597
  /* Check the parameters */
1598
  assert_param(IS_TIM_LIST1_PERIPH(TIMx));
1599
  assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));
1600

    
1601
  tmpccer = TIMx->CCER;
1602

    
1603
  /* Set or Reset the CC1P Bit */
1604
  tmpccer &= (uint16_t)(~TIM_CCER_CC1P);
1605
  tmpccer |= TIM_OCPolarity;
1606

    
1607
  /* Write to TIMx CCER register */
1608
  TIMx->CCER = tmpccer;
1609
}
1610

    
1611
/**
1612
  * @brief  Configures the TIMx Channel 1N polarity.
1613
  * @param  TIMx: where x can be 1 or 8 to select the TIM peripheral.
1614
  * @param  TIM_OCNPolarity: specifies the OC1N Polarity
1615
  *          This parameter can be one of the following values:
1616
  *            @arg TIM_OCNPolarity_High: Output Compare active high
1617
  *            @arg TIM_OCNPolarity_Low: Output Compare active low
1618
  * @retval None
1619
  */
1620
void TIM_OC1NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity)
1621
{
1622
  uint16_t tmpccer = 0;
1623
  /* Check the parameters */
1624
  assert_param(IS_TIM_LIST4_PERIPH(TIMx));
1625
  assert_param(IS_TIM_OCN_POLARITY(TIM_OCNPolarity));
1626
   
1627
  tmpccer = TIMx->CCER;
1628

    
1629
  /* Set or Reset the CC1NP Bit */
1630
  tmpccer &= (uint16_t)~TIM_CCER_CC1NP;
1631
  tmpccer |= TIM_OCNPolarity;
1632

    
1633
  /* Write to TIMx CCER register */
1634
  TIMx->CCER = tmpccer;
1635
}
1636

    
1637
/**
1638
  * @brief  Configures the TIMx channel 2 polarity.
1639
  * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM 
1640
  *         peripheral.
1641
  * @param  TIM_OCPolarity: specifies the OC2 Polarity
1642
  *          This parameter can be one of the following values:
1643
  *            @arg TIM_OCPolarity_High: Output Compare active high
1644
  *            @arg TIM_OCPolarity_Low: Output Compare active low
1645
  * @retval None
1646
  */
1647
void TIM_OC2PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
1648
{
1649
  uint16_t tmpccer = 0;
1650

    
1651
  /* Check the parameters */
1652
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
1653
  assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));
1654

    
1655
  tmpccer = TIMx->CCER;
1656

    
1657
  /* Set or Reset the CC2P Bit */
1658
  tmpccer &= (uint16_t)(~TIM_CCER_CC2P);
1659
  tmpccer |= (uint16_t)(TIM_OCPolarity << 4);
1660

    
1661
  /* Write to TIMx CCER register */
1662
  TIMx->CCER = tmpccer;
1663
}
1664

    
1665
/**
1666
  * @brief  Configures the TIMx Channel 2N polarity.
1667
  * @param  TIMx: where x can be 1 or 8 to select the TIM peripheral.
1668
  * @param  TIM_OCNPolarity: specifies the OC2N Polarity
1669
  *          This parameter can be one of the following values:
1670
  *            @arg TIM_OCNPolarity_High: Output Compare active high
1671
  *            @arg TIM_OCNPolarity_Low: Output Compare active low
1672
  * @retval None
1673
  */
1674
void TIM_OC2NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity)
1675
{
1676
  uint16_t tmpccer = 0;
1677

    
1678
  /* Check the parameters */
1679
  assert_param(IS_TIM_LIST4_PERIPH(TIMx));
1680
  assert_param(IS_TIM_OCN_POLARITY(TIM_OCNPolarity));
1681
  
1682
  tmpccer = TIMx->CCER;
1683

    
1684
  /* Set or Reset the CC2NP Bit */
1685
  tmpccer &= (uint16_t)~TIM_CCER_CC2NP;
1686
  tmpccer |= (uint16_t)(TIM_OCNPolarity << 4);
1687

    
1688
  /* Write to TIMx CCER register */
1689
  TIMx->CCER = tmpccer;
1690
}
1691

    
1692
/**
1693
  * @brief  Configures the TIMx channel 3 polarity.
1694
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
1695
  * @param  TIM_OCPolarity: specifies the OC3 Polarity
1696
  *          This parameter can be one of the following values:
1697
  *            @arg TIM_OCPolarity_High: Output Compare active high
1698
  *            @arg TIM_OCPolarity_Low: Output Compare active low
1699
  * @retval None
1700
  */
1701
void TIM_OC3PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
1702
{
1703
  uint16_t tmpccer = 0;
1704

    
1705
  /* Check the parameters */
1706
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
1707
  assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));
1708

    
1709
  tmpccer = TIMx->CCER;
1710

    
1711
  /* Set or Reset the CC3P Bit */
1712
  tmpccer &= (uint16_t)~TIM_CCER_CC3P;
1713
  tmpccer |= (uint16_t)(TIM_OCPolarity << 8);
1714

    
1715
  /* Write to TIMx CCER register */
1716
  TIMx->CCER = tmpccer;
1717
}
1718

    
1719
/**
1720
  * @brief  Configures the TIMx Channel 3N polarity.
1721
  * @param  TIMx: where x can be 1 or 8 to select the TIM peripheral.
1722
  * @param  TIM_OCNPolarity: specifies the OC3N Polarity
1723
  *          This parameter can be one of the following values:
1724
  *            @arg TIM_OCNPolarity_High: Output Compare active high
1725
  *            @arg TIM_OCNPolarity_Low: Output Compare active low
1726
  * @retval None
1727
  */
1728
void TIM_OC3NPolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCNPolarity)
1729
{
1730
  uint16_t tmpccer = 0;
1731
 
1732
  /* Check the parameters */
1733
  assert_param(IS_TIM_LIST4_PERIPH(TIMx));
1734
  assert_param(IS_TIM_OCN_POLARITY(TIM_OCNPolarity));
1735
    
1736
  tmpccer = TIMx->CCER;
1737

    
1738
  /* Set or Reset the CC3NP Bit */
1739
  tmpccer &= (uint16_t)~TIM_CCER_CC3NP;
1740
  tmpccer |= (uint16_t)(TIM_OCNPolarity << 8);
1741

    
1742
  /* Write to TIMx CCER register */
1743
  TIMx->CCER = tmpccer;
1744
}
1745

    
1746
/**
1747
  * @brief  Configures the TIMx channel 4 polarity.
1748
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
1749
  * @param  TIM_OCPolarity: specifies the OC4 Polarity
1750
  *          This parameter can be one of the following values:
1751
  *            @arg TIM_OCPolarity_High: Output Compare active high
1752
  *            @arg TIM_OCPolarity_Low: Output Compare active low
1753
  * @retval None
1754
  */
1755
void TIM_OC4PolarityConfig(TIM_TypeDef* TIMx, uint16_t TIM_OCPolarity)
1756
{
1757
  uint16_t tmpccer = 0;
1758

    
1759
  /* Check the parameters */
1760
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
1761
  assert_param(IS_TIM_OC_POLARITY(TIM_OCPolarity));
1762

    
1763
  tmpccer = TIMx->CCER;
1764

    
1765
  /* Set or Reset the CC4P Bit */
1766
  tmpccer &= (uint16_t)~TIM_CCER_CC4P;
1767
  tmpccer |= (uint16_t)(TIM_OCPolarity << 12);
1768

    
1769
  /* Write to TIMx CCER register */
1770
  TIMx->CCER = tmpccer;
1771
}
1772

    
1773
/**
1774
  * @brief  Enables or disables the TIM Capture Compare Channel x.
1775
  * @param  TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
1776
  * @param  TIM_Channel: specifies the TIM Channel
1777
  *          This parameter can be one of the following values:
1778
  *            @arg TIM_Channel_1: TIM Channel 1
1779
  *            @arg TIM_Channel_2: TIM Channel 2
1780
  *            @arg TIM_Channel_3: TIM Channel 3
1781
  *            @arg TIM_Channel_4: TIM Channel 4
1782
  * @param  TIM_CCx: specifies the TIM Channel CCxE bit new state.
1783
  *          This parameter can be: TIM_CCx_Enable or TIM_CCx_Disable. 
1784
  * @retval None
1785
  */
1786
void TIM_CCxCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCx)
1787
{
1788
  uint16_t tmp = 0;
1789

    
1790
  /* Check the parameters */
1791
  assert_param(IS_TIM_LIST1_PERIPH(TIMx)); 
1792
  assert_param(IS_TIM_CHANNEL(TIM_Channel));
1793
  assert_param(IS_TIM_CCX(TIM_CCx));
1794

    
1795
  tmp = CCER_CCE_SET << TIM_Channel;
1796

    
1797
  /* Reset the CCxE Bit */
1798
  TIMx->CCER &= (uint16_t)~ tmp;
1799

    
1800
  /* Set or reset the CCxE Bit */ 
1801
  TIMx->CCER |=  (uint16_t)(TIM_CCx << TIM_Channel);
1802
}
1803

    
1804
/**
1805
  * @brief  Enables or disables the TIM Capture Compare Channel xN.
1806
  * @param  TIMx: where x can be 1 or 8 to select the TIM peripheral.
1807
  * @param  TIM_Channel: specifies the TIM Channel
1808
  *          This parameter can be one of the following values:
1809
  *            @arg TIM_Channel_1: TIM Channel 1
1810
  *            @arg TIM_Channel_2: TIM Channel 2
1811
  *            @arg TIM_Channel_3: TIM Channel 3
1812
  * @param  TIM_CCxN: specifies the TIM Channel CCxNE bit new state.
1813
  *          This parameter can be: TIM_CCxN_Enable or TIM_CCxN_Disable. 
1814
  * @retval None
1815
  */
1816
void TIM_CCxNCmd(TIM_TypeDef* TIMx, uint16_t TIM_Channel, uint16_t TIM_CCxN)
1817
{
1818
  uint16_t tmp = 0;
1819

    
1820
  /* Check the parameters */
1821
  assert_param(IS_TIM_LIST4_PERIPH(TIMx));
1822
  assert_param(IS_TIM_COMPLEMENTARY_CHANNEL(TIM_Channel));
1823
  assert_param(IS_TIM_CCXN(TIM_CCxN));
1824

    
1825
  tmp = CCER_CCNE_SET << TIM_Channel;
1826

    
1827
  /* Reset the CCxNE Bit */
1828
  TIMx->CCER &= (uint16_t) ~tmp;
1829

    
1830
  /* Set or reset the CCxNE Bit */ 
1831
  TIMx->CCER |=  (uint16_t)(TIM_CCxN << TIM_Channel);
1832
}
1833
/**
1834
  * @}
1835
  */
1836

    
1837
/** @defgroup TIM_Group3 Input Capture management functions
1838
 *  @brief    Input Capture management functions 
1839
 *
1840
@verbatim   
1841
 ===============================================================================
1842
                  ##### Input Capture management functions #####
1843
 ===============================================================================  
1844
         
1845
            ##### TIM Driver: how to use it in Input Capture Mode #####
1846
 ===============================================================================
1847
    [..]    
1848
    To use the Timer in Input Capture mode, the following steps are mandatory:
1849
       
1850
      (#) Enable TIM clock using RCC_APBxPeriphClockCmd(RCC_APBxPeriph_TIMx, ENABLE) 
1851
          function
1852
       
1853
      (#) Configure the TIM pins by configuring the corresponding GPIO pins
1854
       
1855
      (#) Configure the Time base unit as described in the first part of this driver,
1856
          if needed, else the Timer will run with the default configuration:
1857
        (++) Autoreload value = 0xFFFF
1858
        (++) Prescaler value = 0x0000
1859
        (++) Counter mode = Up counting
1860
        (++) Clock Division = TIM_CKD_DIV1
1861
          
1862
      (#) Fill the TIM_ICInitStruct with the desired parameters including:
1863
        (++) TIM Channel: TIM_Channel
1864
        (++) TIM Input Capture polarity: TIM_ICPolarity
1865
        (++) TIM Input Capture selection: TIM_ICSelection
1866
        (++) TIM Input Capture Prescaler: TIM_ICPrescaler
1867
        (++) TIM Input CApture filter value: TIM_ICFilter
1868
       
1869
      (#) Call TIM_ICInit(TIMx, &TIM_ICInitStruct) to configure the desired channel 
1870
          with the corresponding configuration and to measure only frequency 
1871
          or duty cycle of the input signal, or, Call TIM_PWMIConfig(TIMx, &TIM_ICInitStruct) 
1872
          to configure the desired channels with the corresponding configuration 
1873
          and to measure the frequency and the duty cycle of the input signal
1874
          
1875
      (#) Enable the NVIC or the DMA to read the measured frequency. 
1876
          
1877
      (#) Enable the corresponding interrupt (or DMA request) to read the Captured 
1878
          value, using the function TIM_ITConfig(TIMx, TIM_IT_CCx) 
1879
          (or TIM_DMA_Cmd(TIMx, TIM_DMA_CCx)) 
1880
       
1881
      (#) Call the TIM_Cmd(ENABLE) function to enable the TIM counter.
1882
       
1883
      (#) Use TIM_GetCapturex(TIMx); to read the captured value.
1884
       
1885
      -@- All other functions can be used separately to modify, if needed,
1886
          a specific feature of the Timer. 
1887

1888
@endverbatim
1889
  * @{
1890
  */
1891

    
1892
/**
1893
  * @brief  Initializes the TIM peripheral according to the specified parameters
1894
  *         in the TIM_ICInitStruct.
1895
  * @param  TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
1896
  * @param  TIM_ICInitStruct: pointer to a TIM_ICInitTypeDef structure that contains
1897
  *         the configuration information for the specified TIM peripheral.
1898
  * @retval None
1899
  */
1900
void TIM_ICInit(TIM_TypeDef* TIMx, TIM_ICInitTypeDef* TIM_ICInitStruct)
1901
{
1902
  /* Check the parameters */
1903
  assert_param(IS_TIM_LIST1_PERIPH(TIMx));
1904
  assert_param(IS_TIM_IC_POLARITY(TIM_ICInitStruct->TIM_ICPolarity));
1905
  assert_param(IS_TIM_IC_SELECTION(TIM_ICInitStruct->TIM_ICSelection));
1906
  assert_param(IS_TIM_IC_PRESCALER(TIM_ICInitStruct->TIM_ICPrescaler));
1907
  assert_param(IS_TIM_IC_FILTER(TIM_ICInitStruct->TIM_ICFilter));
1908
  
1909
  if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_1)
1910
  {
1911
    /* TI1 Configuration */
1912
    TI1_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity,
1913
               TIM_ICInitStruct->TIM_ICSelection,
1914
               TIM_ICInitStruct->TIM_ICFilter);
1915
    /* Set the Input Capture Prescaler value */
1916
    TIM_SetIC1Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
1917
  }
1918
  else if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_2)
1919
  {
1920
    /* TI2 Configuration */
1921
    assert_param(IS_TIM_LIST2_PERIPH(TIMx));
1922
    TI2_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity,
1923
               TIM_ICInitStruct->TIM_ICSelection,
1924
               TIM_ICInitStruct->TIM_ICFilter);
1925
    /* Set the Input Capture Prescaler value */
1926
    TIM_SetIC2Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
1927
  }
1928
  else if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_3)
1929
  {
1930
    /* TI3 Configuration */
1931
    assert_param(IS_TIM_LIST3_PERIPH(TIMx));
1932
    TI3_Config(TIMx,  TIM_ICInitStruct->TIM_ICPolarity,
1933
               TIM_ICInitStruct->TIM_ICSelection,
1934
               TIM_ICInitStruct->TIM_ICFilter);
1935
    /* Set the Input Capture Prescaler value */
1936
    TIM_SetIC3Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
1937
  }
1938
  else
1939
  {
1940
    /* TI4 Configuration */
1941
    assert_param(IS_TIM_LIST3_PERIPH(TIMx));
1942
    TI4_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity,
1943
               TIM_ICInitStruct->TIM_ICSelection,
1944
               TIM_ICInitStruct->TIM_ICFilter);
1945
    /* Set the Input Capture Prescaler value */
1946
    TIM_SetIC4Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
1947
  }
1948
}
1949

    
1950
/**
1951
  * @brief  Fills each TIM_ICInitStruct member with its default value.
1952
  * @param  TIM_ICInitStruct: pointer to a TIM_ICInitTypeDef structure which will
1953
  *         be initialized.
1954
  * @retval None
1955
  */
1956
void TIM_ICStructInit(TIM_ICInitTypeDef* TIM_ICInitStruct)
1957
{
1958
  /* Set the default configuration */
1959
  TIM_ICInitStruct->TIM_Channel = TIM_Channel_1;
1960
  TIM_ICInitStruct->TIM_ICPolarity = TIM_ICPolarity_Rising;
1961
  TIM_ICInitStruct->TIM_ICSelection = TIM_ICSelection_DirectTI;
1962
  TIM_ICInitStruct->TIM_ICPrescaler = TIM_ICPSC_DIV1;
1963
  TIM_ICInitStruct->TIM_ICFilter = 0x00;
1964
}
1965

    
1966
/**
1967
  * @brief  Configures the TIM peripheral according to the specified parameters
1968
  *         in the TIM_ICInitStruct to measure an external PWM signal.
1969
  * @param  TIMx: where x can be  1, 2, 3, 4, 5,8, 9 or 12 to select the TIM 
1970
  *         peripheral.
1971
  * @param  TIM_ICInitStruct: pointer to a TIM_ICInitTypeDef structure that contains
1972
  *         the configuration information for the specified TIM peripheral.
1973
  * @retval None
1974
  */
1975
void TIM_PWMIConfig(TIM_TypeDef* TIMx, TIM_ICInitTypeDef* TIM_ICInitStruct)
1976
{
1977
  uint16_t icoppositepolarity = TIM_ICPolarity_Rising;
1978
  uint16_t icoppositeselection = TIM_ICSelection_DirectTI;
1979

    
1980
  /* Check the parameters */
1981
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
1982

    
1983
  /* Select the Opposite Input Polarity */
1984
  if (TIM_ICInitStruct->TIM_ICPolarity == TIM_ICPolarity_Rising)
1985
  {
1986
    icoppositepolarity = TIM_ICPolarity_Falling;
1987
  }
1988
  else
1989
  {
1990
    icoppositepolarity = TIM_ICPolarity_Rising;
1991
  }
1992
  /* Select the Opposite Input */
1993
  if (TIM_ICInitStruct->TIM_ICSelection == TIM_ICSelection_DirectTI)
1994
  {
1995
    icoppositeselection = TIM_ICSelection_IndirectTI;
1996
  }
1997
  else
1998
  {
1999
    icoppositeselection = TIM_ICSelection_DirectTI;
2000
  }
2001
  if (TIM_ICInitStruct->TIM_Channel == TIM_Channel_1)
2002
  {
2003
    /* TI1 Configuration */
2004
    TI1_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity, TIM_ICInitStruct->TIM_ICSelection,
2005
               TIM_ICInitStruct->TIM_ICFilter);
2006
    /* Set the Input Capture Prescaler value */
2007
    TIM_SetIC1Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
2008
    /* TI2 Configuration */
2009
    TI2_Config(TIMx, icoppositepolarity, icoppositeselection, TIM_ICInitStruct->TIM_ICFilter);
2010
    /* Set the Input Capture Prescaler value */
2011
    TIM_SetIC2Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
2012
  }
2013
  else
2014
  { 
2015
    /* TI2 Configuration */
2016
    TI2_Config(TIMx, TIM_ICInitStruct->TIM_ICPolarity, TIM_ICInitStruct->TIM_ICSelection,
2017
               TIM_ICInitStruct->TIM_ICFilter);
2018
    /* Set the Input Capture Prescaler value */
2019
    TIM_SetIC2Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
2020
    /* TI1 Configuration */
2021
    TI1_Config(TIMx, icoppositepolarity, icoppositeselection, TIM_ICInitStruct->TIM_ICFilter);
2022
    /* Set the Input Capture Prescaler value */
2023
    TIM_SetIC1Prescaler(TIMx, TIM_ICInitStruct->TIM_ICPrescaler);
2024
  }
2025
}
2026

    
2027
/**
2028
  * @brief  Gets the TIMx Input Capture 1 value.
2029
  * @param  TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
2030
  * @retval Capture Compare 1 Register value.
2031
  */
2032
uint32_t TIM_GetCapture1(TIM_TypeDef* TIMx)
2033
{
2034
  /* Check the parameters */
2035
  assert_param(IS_TIM_LIST1_PERIPH(TIMx));
2036

    
2037
  /* Get the Capture 1 Register value */
2038
  return TIMx->CCR1;
2039
}
2040

    
2041
/**
2042
  * @brief  Gets the TIMx Input Capture 2 value.
2043
  * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM 
2044
  *         peripheral.
2045
  * @retval Capture Compare 2 Register value.
2046
  */
2047
uint32_t TIM_GetCapture2(TIM_TypeDef* TIMx)
2048
{
2049
  /* Check the parameters */
2050
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
2051

    
2052
  /* Get the Capture 2 Register value */
2053
  return TIMx->CCR2;
2054
}
2055

    
2056
/**
2057
  * @brief  Gets the TIMx Input Capture 3 value.
2058
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
2059
  * @retval Capture Compare 3 Register value.
2060
  */
2061
uint32_t TIM_GetCapture3(TIM_TypeDef* TIMx)
2062
{
2063
  /* Check the parameters */
2064
  assert_param(IS_TIM_LIST3_PERIPH(TIMx)); 
2065

    
2066
  /* Get the Capture 3 Register value */
2067
  return TIMx->CCR3;
2068
}
2069

    
2070
/**
2071
  * @brief  Gets the TIMx Input Capture 4 value.
2072
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
2073
  * @retval Capture Compare 4 Register value.
2074
  */
2075
uint32_t TIM_GetCapture4(TIM_TypeDef* TIMx)
2076
{
2077
  /* Check the parameters */
2078
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
2079

    
2080
  /* Get the Capture 4 Register value */
2081
  return TIMx->CCR4;
2082
}
2083

    
2084
/**
2085
  * @brief  Sets the TIMx Input Capture 1 prescaler.
2086
  * @param  TIMx: where x can be 1 to 14 except 6 and 7, to select the TIM peripheral.
2087
  * @param  TIM_ICPSC: specifies the Input Capture1 prescaler new value.
2088
  *          This parameter can be one of the following values:
2089
  *            @arg TIM_ICPSC_DIV1: no prescaler
2090
  *            @arg TIM_ICPSC_DIV2: capture is done once every 2 events
2091
  *            @arg TIM_ICPSC_DIV4: capture is done once every 4 events
2092
  *            @arg TIM_ICPSC_DIV8: capture is done once every 8 events
2093
  * @retval None
2094
  */
2095
void TIM_SetIC1Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC)
2096
{
2097
  /* Check the parameters */
2098
  assert_param(IS_TIM_LIST1_PERIPH(TIMx));
2099
  assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC));
2100

    
2101
  /* Reset the IC1PSC Bits */
2102
  TIMx->CCMR1 &= (uint16_t)~TIM_CCMR1_IC1PSC;
2103

    
2104
  /* Set the IC1PSC value */
2105
  TIMx->CCMR1 |= TIM_ICPSC;
2106
}
2107

    
2108
/**
2109
  * @brief  Sets the TIMx Input Capture 2 prescaler.
2110
  * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM 
2111
  *         peripheral.
2112
  * @param  TIM_ICPSC: specifies the Input Capture2 prescaler new value.
2113
  *          This parameter can be one of the following values:
2114
  *            @arg TIM_ICPSC_DIV1: no prescaler
2115
  *            @arg TIM_ICPSC_DIV2: capture is done once every 2 events
2116
  *            @arg TIM_ICPSC_DIV4: capture is done once every 4 events
2117
  *            @arg TIM_ICPSC_DIV8: capture is done once every 8 events
2118
  * @retval None
2119
  */
2120
void TIM_SetIC2Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC)
2121
{
2122
  /* Check the parameters */
2123
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
2124
  assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC));
2125

    
2126
  /* Reset the IC2PSC Bits */
2127
  TIMx->CCMR1 &= (uint16_t)~TIM_CCMR1_IC2PSC;
2128

    
2129
  /* Set the IC2PSC value */
2130
  TIMx->CCMR1 |= (uint16_t)(TIM_ICPSC << 8);
2131
}
2132

    
2133
/**
2134
  * @brief  Sets the TIMx Input Capture 3 prescaler.
2135
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
2136
  * @param  TIM_ICPSC: specifies the Input Capture3 prescaler new value.
2137
  *          This parameter can be one of the following values:
2138
  *            @arg TIM_ICPSC_DIV1: no prescaler
2139
  *            @arg TIM_ICPSC_DIV2: capture is done once every 2 events
2140
  *            @arg TIM_ICPSC_DIV4: capture is done once every 4 events
2141
  *            @arg TIM_ICPSC_DIV8: capture is done once every 8 events
2142
  * @retval None
2143
  */
2144
void TIM_SetIC3Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC)
2145
{
2146
  /* Check the parameters */
2147
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
2148
  assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC));
2149

    
2150
  /* Reset the IC3PSC Bits */
2151
  TIMx->CCMR2 &= (uint16_t)~TIM_CCMR2_IC3PSC;
2152

    
2153
  /* Set the IC3PSC value */
2154
  TIMx->CCMR2 |= TIM_ICPSC;
2155
}
2156

    
2157
/**
2158
  * @brief  Sets the TIMx Input Capture 4 prescaler.
2159
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
2160
  * @param  TIM_ICPSC: specifies the Input Capture4 prescaler new value.
2161
  *          This parameter can be one of the following values:
2162
  *            @arg TIM_ICPSC_DIV1: no prescaler
2163
  *            @arg TIM_ICPSC_DIV2: capture is done once every 2 events
2164
  *            @arg TIM_ICPSC_DIV4: capture is done once every 4 events
2165
  *            @arg TIM_ICPSC_DIV8: capture is done once every 8 events
2166
  * @retval None
2167
  */
2168
void TIM_SetIC4Prescaler(TIM_TypeDef* TIMx, uint16_t TIM_ICPSC)
2169
{  
2170
  /* Check the parameters */
2171
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
2172
  assert_param(IS_TIM_IC_PRESCALER(TIM_ICPSC));
2173

    
2174
  /* Reset the IC4PSC Bits */
2175
  TIMx->CCMR2 &= (uint16_t)~TIM_CCMR2_IC4PSC;
2176

    
2177
  /* Set the IC4PSC value */
2178
  TIMx->CCMR2 |= (uint16_t)(TIM_ICPSC << 8);
2179
}
2180
/**
2181
  * @}
2182
  */
2183

    
2184
/** @defgroup TIM_Group4 Advanced-control timers (TIM1 and TIM8) specific features
2185
 *  @brief   Advanced-control timers (TIM1 and TIM8) specific features
2186
 *
2187
@verbatim   
2188
 ===============================================================================
2189
      ##### Advanced-control timers (TIM1 and TIM8) specific features #####
2190
 ===============================================================================  
2191
        
2192
             ##### TIM Driver: how to use the Break feature #####
2193
 ===============================================================================
2194
    [..] 
2195
    After configuring the Timer channel(s) in the appropriate Output Compare mode: 
2196
                         
2197
      (#) Fill the TIM_BDTRInitStruct with the desired parameters for the Timer
2198
          Break Polarity, dead time, Lock level, the OSSI/OSSR State and the 
2199
          AOE(automatic output enable).
2200
               
2201
      (#) Call TIM_BDTRConfig(TIMx, &TIM_BDTRInitStruct) to configure the Timer
2202
          
2203
      (#) Enable the Main Output using TIM_CtrlPWMOutputs(TIM1, ENABLE) 
2204
          
2205
      (#) Once the break even occurs, the Timer's output signals are put in reset
2206
          state or in a known state (according to the configuration made in
2207
          TIM_BDTRConfig() function).
2208

2209
@endverbatim
2210
  * @{
2211
  */
2212

    
2213
/**
2214
  * @brief  Configures the Break feature, dead time, Lock level, OSSI/OSSR State
2215
  *         and the AOE(automatic output enable).
2216
  * @param  TIMx: where x can be  1 or 8 to select the TIM 
2217
  * @param  TIM_BDTRInitStruct: pointer to a TIM_BDTRInitTypeDef structure that
2218
  *         contains the BDTR Register configuration  information for the TIM peripheral.
2219
  * @retval None
2220
  */
2221
void TIM_BDTRConfig(TIM_TypeDef* TIMx, TIM_BDTRInitTypeDef *TIM_BDTRInitStruct)
2222
{
2223
  /* Check the parameters */
2224
  assert_param(IS_TIM_LIST4_PERIPH(TIMx));
2225
  assert_param(IS_TIM_OSSR_STATE(TIM_BDTRInitStruct->TIM_OSSRState));
2226
  assert_param(IS_TIM_OSSI_STATE(TIM_BDTRInitStruct->TIM_OSSIState));
2227
  assert_param(IS_TIM_LOCK_LEVEL(TIM_BDTRInitStruct->TIM_LOCKLevel));
2228
  assert_param(IS_TIM_BREAK_STATE(TIM_BDTRInitStruct->TIM_Break));
2229
  assert_param(IS_TIM_BREAK_POLARITY(TIM_BDTRInitStruct->TIM_BreakPolarity));
2230
  assert_param(IS_TIM_AUTOMATIC_OUTPUT_STATE(TIM_BDTRInitStruct->TIM_AutomaticOutput));
2231

    
2232
  /* Set the Lock level, the Break enable Bit and the Polarity, the OSSR State,
2233
     the OSSI State, the dead time value and the Automatic Output Enable Bit */
2234
  TIMx->BDTR = (uint32_t)TIM_BDTRInitStruct->TIM_OSSRState | TIM_BDTRInitStruct->TIM_OSSIState |
2235
             TIM_BDTRInitStruct->TIM_LOCKLevel | TIM_BDTRInitStruct->TIM_DeadTime |
2236
             TIM_BDTRInitStruct->TIM_Break | TIM_BDTRInitStruct->TIM_BreakPolarity |
2237
             TIM_BDTRInitStruct->TIM_AutomaticOutput;
2238
}
2239

    
2240
/**
2241
  * @brief  Fills each TIM_BDTRInitStruct member with its default value.
2242
  * @param  TIM_BDTRInitStruct: pointer to a TIM_BDTRInitTypeDef structure which
2243
  *         will be initialized.
2244
  * @retval None
2245
  */
2246
void TIM_BDTRStructInit(TIM_BDTRInitTypeDef* TIM_BDTRInitStruct)
2247
{
2248
  /* Set the default configuration */
2249
  TIM_BDTRInitStruct->TIM_OSSRState = TIM_OSSRState_Disable;
2250
  TIM_BDTRInitStruct->TIM_OSSIState = TIM_OSSIState_Disable;
2251
  TIM_BDTRInitStruct->TIM_LOCKLevel = TIM_LOCKLevel_OFF;
2252
  TIM_BDTRInitStruct->TIM_DeadTime = 0x00;
2253
  TIM_BDTRInitStruct->TIM_Break = TIM_Break_Disable;
2254
  TIM_BDTRInitStruct->TIM_BreakPolarity = TIM_BreakPolarity_Low;
2255
  TIM_BDTRInitStruct->TIM_AutomaticOutput = TIM_AutomaticOutput_Disable;
2256
}
2257

    
2258
/**
2259
  * @brief  Enables or disables the TIM peripheral Main Outputs.
2260
  * @param  TIMx: where x can be 1 or 8 to select the TIMx peripheral.
2261
  * @param  NewState: new state of the TIM peripheral Main Outputs.
2262
  *          This parameter can be: ENABLE or DISABLE.
2263
  * @retval None
2264
  */
2265
void TIM_CtrlPWMOutputs(TIM_TypeDef* TIMx, FunctionalState NewState)
2266
{
2267
  /* Check the parameters */
2268
  assert_param(IS_TIM_LIST4_PERIPH(TIMx));
2269
  assert_param(IS_FUNCTIONAL_STATE(NewState));
2270

    
2271
  if (NewState != DISABLE)
2272
  {
2273
    /* Enable the TIM Main Output */
2274
    TIMx->BDTR |= TIM_BDTR_MOE;
2275
  }
2276
  else
2277
  {
2278
    /* Disable the TIM Main Output */
2279
    TIMx->BDTR &= (uint16_t)~TIM_BDTR_MOE;
2280
  }  
2281
}
2282

    
2283
/**
2284
  * @brief  Selects the TIM peripheral Commutation event.
2285
  * @param  TIMx: where x can be  1 or 8 to select the TIMx peripheral
2286
  * @param  NewState: new state of the Commutation event.
2287
  *          This parameter can be: ENABLE or DISABLE.
2288
  * @retval None
2289
  */
2290
void TIM_SelectCOM(TIM_TypeDef* TIMx, FunctionalState NewState)
2291
{
2292
  /* Check the parameters */
2293
  assert_param(IS_TIM_LIST4_PERIPH(TIMx));
2294
  assert_param(IS_FUNCTIONAL_STATE(NewState));
2295

    
2296
  if (NewState != DISABLE)
2297
  {
2298
    /* Set the COM Bit */
2299
    TIMx->CR2 |= TIM_CR2_CCUS;
2300
  }
2301
  else
2302
  {
2303
    /* Reset the COM Bit */
2304
    TIMx->CR2 &= (uint16_t)~TIM_CR2_CCUS;
2305
  }
2306
}
2307

    
2308
/**
2309
  * @brief  Sets or Resets the TIM peripheral Capture Compare Preload Control bit.
2310
  * @param  TIMx: where x can be  1 or 8 to select the TIMx peripheral
2311
  * @param  NewState: new state of the Capture Compare Preload Control bit
2312
  *          This parameter can be: ENABLE or DISABLE.
2313
  * @retval None
2314
  */
2315
void TIM_CCPreloadControl(TIM_TypeDef* TIMx, FunctionalState NewState)
2316
{ 
2317
  /* Check the parameters */
2318
  assert_param(IS_TIM_LIST4_PERIPH(TIMx));
2319
  assert_param(IS_FUNCTIONAL_STATE(NewState));
2320
  if (NewState != DISABLE)
2321
  {
2322
    /* Set the CCPC Bit */
2323
    TIMx->CR2 |= TIM_CR2_CCPC;
2324
  }
2325
  else
2326
  {
2327
    /* Reset the CCPC Bit */
2328
    TIMx->CR2 &= (uint16_t)~TIM_CR2_CCPC;
2329
  }
2330
}
2331
/**
2332
  * @}
2333
  */
2334

    
2335
/** @defgroup TIM_Group5 Interrupts DMA and flags management functions
2336
 *  @brief    Interrupts, DMA and flags management functions 
2337
 *
2338
@verbatim   
2339
 ===============================================================================
2340
          ##### Interrupts, DMA and flags management functions #####
2341
 ===============================================================================  
2342

2343
@endverbatim
2344
  * @{
2345
  */
2346

    
2347
/**
2348
  * @brief  Enables or disables the specified TIM interrupts.
2349
  * @param  TIMx: where x can be 1 to 14 to select the TIMx peripheral.
2350
  * @param  TIM_IT: specifies the TIM interrupts sources to be enabled or disabled.
2351
  *          This parameter can be any combination of the following values:
2352
  *            @arg TIM_IT_Update: TIM update Interrupt source
2353
  *            @arg TIM_IT_CC1: TIM Capture Compare 1 Interrupt source
2354
  *            @arg TIM_IT_CC2: TIM Capture Compare 2 Interrupt source
2355
  *            @arg TIM_IT_CC3: TIM Capture Compare 3 Interrupt source
2356
  *            @arg TIM_IT_CC4: TIM Capture Compare 4 Interrupt source
2357
  *            @arg TIM_IT_COM: TIM Commutation Interrupt source
2358
  *            @arg TIM_IT_Trigger: TIM Trigger Interrupt source
2359
  *            @arg TIM_IT_Break: TIM Break Interrupt source
2360
  *  
2361
  * @note   For TIM6 and TIM7 only the parameter TIM_IT_Update can be used
2362
  * @note   For TIM9 and TIM12 only one of the following parameters can be used: TIM_IT_Update,
2363
  *          TIM_IT_CC1, TIM_IT_CC2 or TIM_IT_Trigger. 
2364
  * @note   For TIM10, TIM11, TIM13 and TIM14 only one of the following parameters can
2365
  *          be used: TIM_IT_Update or TIM_IT_CC1   
2366
  * @note   TIM_IT_COM and TIM_IT_Break can be used only with TIM1 and TIM8 
2367
  *        
2368
  * @param  NewState: new state of the TIM interrupts.
2369
  *          This parameter can be: ENABLE or DISABLE.
2370
  * @retval None
2371
  */
2372
void TIM_ITConfig(TIM_TypeDef* TIMx, uint16_t TIM_IT, FunctionalState NewState)
2373
{  
2374
  /* Check the parameters */
2375
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
2376
  assert_param(IS_TIM_IT(TIM_IT));
2377
  assert_param(IS_FUNCTIONAL_STATE(NewState));
2378
  
2379
  if (NewState != DISABLE)
2380
  {
2381
    /* Enable the Interrupt sources */
2382
    TIMx->DIER |= TIM_IT;
2383
  }
2384
  else
2385
  {
2386
    /* Disable the Interrupt sources */
2387
    TIMx->DIER &= (uint16_t)~TIM_IT;
2388
  }
2389
}
2390

    
2391
/**
2392
  * @brief  Configures the TIMx event to be generate by software.
2393
  * @param  TIMx: where x can be 1 to 14 to select the TIM peripheral.
2394
  * @param  TIM_EventSource: specifies the event source.
2395
  *          This parameter can be one or more of the following values:           
2396
  *            @arg TIM_EventSource_Update: Timer update Event source
2397
  *            @arg TIM_EventSource_CC1: Timer Capture Compare 1 Event source
2398
  *            @arg TIM_EventSource_CC2: Timer Capture Compare 2 Event source
2399
  *            @arg TIM_EventSource_CC3: Timer Capture Compare 3 Event source
2400
  *            @arg TIM_EventSource_CC4: Timer Capture Compare 4 Event source
2401
  *            @arg TIM_EventSource_COM: Timer COM event source  
2402
  *            @arg TIM_EventSource_Trigger: Timer Trigger Event source
2403
  *            @arg TIM_EventSource_Break: Timer Break event source
2404
  * 
2405
  * @note   TIM6 and TIM7 can only generate an update event. 
2406
  * @note   TIM_EventSource_COM and TIM_EventSource_Break are used only with TIM1 and TIM8.
2407
  *        
2408
  * @retval None
2409
  */
2410
void TIM_GenerateEvent(TIM_TypeDef* TIMx, uint16_t TIM_EventSource)
2411
{ 
2412
  /* Check the parameters */
2413
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
2414
  assert_param(IS_TIM_EVENT_SOURCE(TIM_EventSource));
2415
 
2416
  /* Set the event sources */
2417
  TIMx->EGR = TIM_EventSource;
2418
}
2419

    
2420
/**
2421
  * @brief  Checks whether the specified TIM flag is set or not.
2422
  * @param  TIMx: where x can be 1 to 14 to select the TIM peripheral.
2423
  * @param  TIM_FLAG: specifies the flag to check.
2424
  *          This parameter can be one of the following values:
2425
  *            @arg TIM_FLAG_Update: TIM update Flag
2426
  *            @arg TIM_FLAG_CC1: TIM Capture Compare 1 Flag
2427
  *            @arg TIM_FLAG_CC2: TIM Capture Compare 2 Flag
2428
  *            @arg TIM_FLAG_CC3: TIM Capture Compare 3 Flag
2429
  *            @arg TIM_FLAG_CC4: TIM Capture Compare 4 Flag
2430
  *            @arg TIM_FLAG_COM: TIM Commutation Flag
2431
  *            @arg TIM_FLAG_Trigger: TIM Trigger Flag
2432
  *            @arg TIM_FLAG_Break: TIM Break Flag
2433
  *            @arg TIM_FLAG_CC1OF: TIM Capture Compare 1 over capture Flag
2434
  *            @arg TIM_FLAG_CC2OF: TIM Capture Compare 2 over capture Flag
2435
  *            @arg TIM_FLAG_CC3OF: TIM Capture Compare 3 over capture Flag
2436
  *            @arg TIM_FLAG_CC4OF: TIM Capture Compare 4 over capture Flag
2437
  *
2438
  * @note   TIM6 and TIM7 can have only one update flag. 
2439
  * @note   TIM_FLAG_COM and TIM_FLAG_Break are used only with TIM1 and TIM8.    
2440
  *
2441
  * @retval The new state of TIM_FLAG (SET or RESET).
2442
  */
2443
FlagStatus TIM_GetFlagStatus(TIM_TypeDef* TIMx, uint16_t TIM_FLAG)
2444
{ 
2445
  ITStatus bitstatus = RESET;  
2446
  /* Check the parameters */
2447
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
2448
  assert_param(IS_TIM_GET_FLAG(TIM_FLAG));
2449

    
2450
  
2451
  if ((TIMx->SR & TIM_FLAG) != (uint16_t)RESET)
2452
  {
2453
    bitstatus = SET;
2454
  }
2455
  else
2456
  {
2457
    bitstatus = RESET;
2458
  }
2459
  return bitstatus;
2460
}
2461

    
2462
/**
2463
  * @brief  Clears the TIMx's pending flags.
2464
  * @param  TIMx: where x can be 1 to 14 to select the TIM peripheral.
2465
  * @param  TIM_FLAG: specifies the flag bit to clear.
2466
  *          This parameter can be any combination of the following values:
2467
  *            @arg TIM_FLAG_Update: TIM update Flag
2468
  *            @arg TIM_FLAG_CC1: TIM Capture Compare 1 Flag
2469
  *            @arg TIM_FLAG_CC2: TIM Capture Compare 2 Flag
2470
  *            @arg TIM_FLAG_CC3: TIM Capture Compare 3 Flag
2471
  *            @arg TIM_FLAG_CC4: TIM Capture Compare 4 Flag
2472
  *            @arg TIM_FLAG_COM: TIM Commutation Flag
2473
  *            @arg TIM_FLAG_Trigger: TIM Trigger Flag
2474
  *            @arg TIM_FLAG_Break: TIM Break Flag
2475
  *            @arg TIM_FLAG_CC1OF: TIM Capture Compare 1 over capture Flag
2476
  *            @arg TIM_FLAG_CC2OF: TIM Capture Compare 2 over capture Flag
2477
  *            @arg TIM_FLAG_CC3OF: TIM Capture Compare 3 over capture Flag
2478
  *            @arg TIM_FLAG_CC4OF: TIM Capture Compare 4 over capture Flag
2479
  *
2480
  * @note   TIM6 and TIM7 can have only one update flag. 
2481
  * @note   TIM_FLAG_COM and TIM_FLAG_Break are used only with TIM1 and TIM8.
2482
  *    
2483
  * @retval None
2484
  */
2485
void TIM_ClearFlag(TIM_TypeDef* TIMx, uint16_t TIM_FLAG)
2486
{  
2487
  /* Check the parameters */
2488
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
2489
   
2490
  /* Clear the flags */
2491
  TIMx->SR = (uint16_t)~TIM_FLAG;
2492
}
2493

    
2494
/**
2495
  * @brief  Checks whether the TIM interrupt has occurred or not.
2496
  * @param  TIMx: where x can be 1 to 14 to select the TIM peripheral.
2497
  * @param  TIM_IT: specifies the TIM interrupt source to check.
2498
  *          This parameter can be one of the following values:
2499
  *            @arg TIM_IT_Update: TIM update Interrupt source
2500
  *            @arg TIM_IT_CC1: TIM Capture Compare 1 Interrupt source
2501
  *            @arg TIM_IT_CC2: TIM Capture Compare 2 Interrupt source
2502
  *            @arg TIM_IT_CC3: TIM Capture Compare 3 Interrupt source
2503
  *            @arg TIM_IT_CC4: TIM Capture Compare 4 Interrupt source
2504
  *            @arg TIM_IT_COM: TIM Commutation Interrupt source
2505
  *            @arg TIM_IT_Trigger: TIM Trigger Interrupt source
2506
  *            @arg TIM_IT_Break: TIM Break Interrupt source
2507
  *
2508
  * @note   TIM6 and TIM7 can generate only an update interrupt.
2509
  * @note   TIM_IT_COM and TIM_IT_Break are used only with TIM1 and TIM8.
2510
  *     
2511
  * @retval The new state of the TIM_IT(SET or RESET).
2512
  */
2513
ITStatus TIM_GetITStatus(TIM_TypeDef* TIMx, uint16_t TIM_IT)
2514
{
2515
  ITStatus bitstatus = RESET;  
2516
  uint16_t itstatus = 0x0, itenable = 0x0;
2517
  /* Check the parameters */
2518
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
2519
  assert_param(IS_TIM_GET_IT(TIM_IT));
2520
   
2521
  itstatus = TIMx->SR & TIM_IT;
2522
  
2523
  itenable = TIMx->DIER & TIM_IT;
2524
  if ((itstatus != (uint16_t)RESET) && (itenable != (uint16_t)RESET))
2525
  {
2526
    bitstatus = SET;
2527
  }
2528
  else
2529
  {
2530
    bitstatus = RESET;
2531
  }
2532
  return bitstatus;
2533
}
2534

    
2535
/**
2536
  * @brief  Clears the TIMx's interrupt pending bits.
2537
  * @param  TIMx: where x can be 1 to 14 to select the TIM peripheral.
2538
  * @param  TIM_IT: specifies the pending bit to clear.
2539
  *          This parameter can be any combination of the following values:
2540
  *            @arg TIM_IT_Update: TIM1 update Interrupt source
2541
  *            @arg TIM_IT_CC1: TIM Capture Compare 1 Interrupt source
2542
  *            @arg TIM_IT_CC2: TIM Capture Compare 2 Interrupt source
2543
  *            @arg TIM_IT_CC3: TIM Capture Compare 3 Interrupt source
2544
  *            @arg TIM_IT_CC4: TIM Capture Compare 4 Interrupt source
2545
  *            @arg TIM_IT_COM: TIM Commutation Interrupt source
2546
  *            @arg TIM_IT_Trigger: TIM Trigger Interrupt source
2547
  *            @arg TIM_IT_Break: TIM Break Interrupt source
2548
  *
2549
  * @note   TIM6 and TIM7 can generate only an update interrupt.
2550
  * @note   TIM_IT_COM and TIM_IT_Break are used only with TIM1 and TIM8.
2551
  *      
2552
  * @retval None
2553
  */
2554
void TIM_ClearITPendingBit(TIM_TypeDef* TIMx, uint16_t TIM_IT)
2555
{
2556
  /* Check the parameters */
2557
  assert_param(IS_TIM_ALL_PERIPH(TIMx));
2558

    
2559
  /* Clear the IT pending Bit */
2560
  TIMx->SR = (uint16_t)~TIM_IT;
2561
}
2562

    
2563
/**
2564
  * @brief  Configures the TIMx's DMA interface.
2565
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
2566
  * @param  TIM_DMABase: DMA Base address.
2567
  *          This parameter can be one of the following values:
2568
  *            @arg TIM_DMABase_CR1  
2569
  *            @arg TIM_DMABase_CR2
2570
  *            @arg TIM_DMABase_SMCR
2571
  *            @arg TIM_DMABase_DIER
2572
  *            @arg TIM1_DMABase_SR
2573
  *            @arg TIM_DMABase_EGR
2574
  *            @arg TIM_DMABase_CCMR1
2575
  *            @arg TIM_DMABase_CCMR2
2576
  *            @arg TIM_DMABase_CCER
2577
  *            @arg TIM_DMABase_CNT   
2578
  *            @arg TIM_DMABase_PSC   
2579
  *            @arg TIM_DMABase_ARR
2580
  *            @arg TIM_DMABase_RCR
2581
  *            @arg TIM_DMABase_CCR1
2582
  *            @arg TIM_DMABase_CCR2
2583
  *            @arg TIM_DMABase_CCR3  
2584
  *            @arg TIM_DMABase_CCR4
2585
  *            @arg TIM_DMABase_BDTR
2586
  *            @arg TIM_DMABase_DCR
2587
  * @param  TIM_DMABurstLength: DMA Burst length. This parameter can be one value
2588
  *         between: TIM_DMABurstLength_1Transfer and TIM_DMABurstLength_18Transfers.
2589
  * @retval None
2590
  */
2591
void TIM_DMAConfig(TIM_TypeDef* TIMx, uint16_t TIM_DMABase, uint16_t TIM_DMABurstLength)
2592
{
2593
  /* Check the parameters */
2594
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
2595
  assert_param(IS_TIM_DMA_BASE(TIM_DMABase)); 
2596
  assert_param(IS_TIM_DMA_LENGTH(TIM_DMABurstLength));
2597

    
2598
  /* Set the DMA Base and the DMA Burst Length */
2599
  TIMx->DCR = TIM_DMABase | TIM_DMABurstLength;
2600
}
2601

    
2602
/**
2603
  * @brief  Enables or disables the TIMx's DMA Requests.
2604
  * @param  TIMx: where x can be 1, 2, 3, 4, 5, 6, 7 or 8 to select the TIM peripheral.
2605
  * @param  TIM_DMASource: specifies the DMA Request sources.
2606
  *          This parameter can be any combination of the following values:
2607
  *            @arg TIM_DMA_Update: TIM update Interrupt source
2608
  *            @arg TIM_DMA_CC1: TIM Capture Compare 1 DMA source
2609
  *            @arg TIM_DMA_CC2: TIM Capture Compare 2 DMA source
2610
  *            @arg TIM_DMA_CC3: TIM Capture Compare 3 DMA source
2611
  *            @arg TIM_DMA_CC4: TIM Capture Compare 4 DMA source
2612
  *            @arg TIM_DMA_COM: TIM Commutation DMA source
2613
  *            @arg TIM_DMA_Trigger: TIM Trigger DMA source
2614
  * @param  NewState: new state of the DMA Request sources.
2615
  *          This parameter can be: ENABLE or DISABLE.
2616
  * @retval None
2617
  */
2618
void TIM_DMACmd(TIM_TypeDef* TIMx, uint16_t TIM_DMASource, FunctionalState NewState)
2619
{ 
2620
  /* Check the parameters */
2621
  assert_param(IS_TIM_LIST5_PERIPH(TIMx)); 
2622
  assert_param(IS_TIM_DMA_SOURCE(TIM_DMASource));
2623
  assert_param(IS_FUNCTIONAL_STATE(NewState));
2624
  
2625
  if (NewState != DISABLE)
2626
  {
2627
    /* Enable the DMA sources */
2628
    TIMx->DIER |= TIM_DMASource; 
2629
  }
2630
  else
2631
  {
2632
    /* Disable the DMA sources */
2633
    TIMx->DIER &= (uint16_t)~TIM_DMASource;
2634
  }
2635
}
2636

    
2637
/**
2638
  * @brief  Selects the TIMx peripheral Capture Compare DMA source.
2639
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
2640
  * @param  NewState: new state of the Capture Compare DMA source
2641
  *          This parameter can be: ENABLE or DISABLE.
2642
  * @retval None
2643
  */
2644
void TIM_SelectCCDMA(TIM_TypeDef* TIMx, FunctionalState NewState)
2645
{
2646
  /* Check the parameters */
2647
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
2648
  assert_param(IS_FUNCTIONAL_STATE(NewState));
2649

    
2650
  if (NewState != DISABLE)
2651
  {
2652
    /* Set the CCDS Bit */
2653
    TIMx->CR2 |= TIM_CR2_CCDS;
2654
  }
2655
  else
2656
  {
2657
    /* Reset the CCDS Bit */
2658
    TIMx->CR2 &= (uint16_t)~TIM_CR2_CCDS;
2659
  }
2660
}
2661
/**
2662
  * @}
2663
  */
2664

    
2665
/** @defgroup TIM_Group6 Clocks management functions
2666
 *  @brief    Clocks management functions
2667
 *
2668
@verbatim   
2669
 ===============================================================================
2670
                  ##### Clocks management functions #####
2671
 ===============================================================================  
2672

2673
@endverbatim
2674
  * @{
2675
  */
2676

    
2677
/**
2678
  * @brief  Configures the TIMx internal Clock
2679
  * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM 
2680
  *         peripheral.
2681
  * @retval None
2682
  */
2683
void TIM_InternalClockConfig(TIM_TypeDef* TIMx)
2684
{
2685
  /* Check the parameters */
2686
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
2687

    
2688
  /* Disable slave mode to clock the prescaler directly with the internal clock */
2689
  TIMx->SMCR &=  (uint16_t)~TIM_SMCR_SMS;
2690
}
2691

    
2692
/**
2693
  * @brief  Configures the TIMx Internal Trigger as External Clock
2694
  * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM 
2695
  *         peripheral.
2696
  * @param  TIM_InputTriggerSource: Trigger source.
2697
  *          This parameter can be one of the following values:
2698
  *            @arg TIM_TS_ITR0: Internal Trigger 0
2699
  *            @arg TIM_TS_ITR1: Internal Trigger 1
2700
  *            @arg TIM_TS_ITR2: Internal Trigger 2
2701
  *            @arg TIM_TS_ITR3: Internal Trigger 3
2702
  * @retval None
2703
  */
2704
void TIM_ITRxExternalClockConfig(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource)
2705
{
2706
  /* Check the parameters */
2707
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
2708
  assert_param(IS_TIM_INTERNAL_TRIGGER_SELECTION(TIM_InputTriggerSource));
2709

    
2710
  /* Select the Internal Trigger */
2711
  TIM_SelectInputTrigger(TIMx, TIM_InputTriggerSource);
2712

    
2713
  /* Select the External clock mode1 */
2714
  TIMx->SMCR |= TIM_SlaveMode_External1;
2715
}
2716

    
2717
/**
2718
  * @brief  Configures the TIMx Trigger as External Clock
2719
  * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13 or 14  
2720
  *         to select the TIM peripheral.
2721
  * @param  TIM_TIxExternalCLKSource: Trigger source.
2722
  *          This parameter can be one of the following values:
2723
  *            @arg TIM_TIxExternalCLK1Source_TI1ED: TI1 Edge Detector
2724
  *            @arg TIM_TIxExternalCLK1Source_TI1: Filtered Timer Input 1
2725
  *            @arg TIM_TIxExternalCLK1Source_TI2: Filtered Timer Input 2
2726
  * @param  TIM_ICPolarity: specifies the TIx Polarity.
2727
  *          This parameter can be one of the following values:
2728
  *            @arg TIM_ICPolarity_Rising
2729
  *            @arg TIM_ICPolarity_Falling
2730
  * @param  ICFilter: specifies the filter value.
2731
  *          This parameter must be a value between 0x0 and 0xF.
2732
  * @retval None
2733
  */
2734
void TIM_TIxExternalClockConfig(TIM_TypeDef* TIMx, uint16_t TIM_TIxExternalCLKSource,
2735
                                uint16_t TIM_ICPolarity, uint16_t ICFilter)
2736
{
2737
  /* Check the parameters */
2738
  assert_param(IS_TIM_LIST1_PERIPH(TIMx));
2739
  assert_param(IS_TIM_IC_POLARITY(TIM_ICPolarity));
2740
  assert_param(IS_TIM_IC_FILTER(ICFilter));
2741

    
2742
  /* Configure the Timer Input Clock Source */
2743
  if (TIM_TIxExternalCLKSource == TIM_TIxExternalCLK1Source_TI2)
2744
  {
2745
    TI2_Config(TIMx, TIM_ICPolarity, TIM_ICSelection_DirectTI, ICFilter);
2746
  }
2747
  else
2748
  {
2749
    TI1_Config(TIMx, TIM_ICPolarity, TIM_ICSelection_DirectTI, ICFilter);
2750
  }
2751
  /* Select the Trigger source */
2752
  TIM_SelectInputTrigger(TIMx, TIM_TIxExternalCLKSource);
2753
  /* Select the External clock mode1 */
2754
  TIMx->SMCR |= TIM_SlaveMode_External1;
2755
}
2756

    
2757
/**
2758
  * @brief  Configures the External clock Mode1
2759
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
2760
  * @param  TIM_ExtTRGPrescaler: The external Trigger Prescaler.
2761
  *          This parameter can be one of the following values:
2762
  *            @arg TIM_ExtTRGPSC_OFF: ETRP Prescaler OFF.
2763
  *            @arg TIM_ExtTRGPSC_DIV2: ETRP frequency divided by 2.
2764
  *            @arg TIM_ExtTRGPSC_DIV4: ETRP frequency divided by 4.
2765
  *            @arg TIM_ExtTRGPSC_DIV8: ETRP frequency divided by 8.
2766
  * @param  TIM_ExtTRGPolarity: The external Trigger Polarity.
2767
  *          This parameter can be one of the following values:
2768
  *            @arg TIM_ExtTRGPolarity_Inverted: active low or falling edge active.
2769
  *            @arg TIM_ExtTRGPolarity_NonInverted: active high or rising edge active.
2770
  * @param  ExtTRGFilter: External Trigger Filter.
2771
  *          This parameter must be a value between 0x00 and 0x0F
2772
  * @retval None
2773
  */
2774
void TIM_ETRClockMode1Config(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler,
2775
                            uint16_t TIM_ExtTRGPolarity, uint16_t ExtTRGFilter)
2776
{
2777
  uint16_t tmpsmcr = 0;
2778

    
2779
  /* Check the parameters */
2780
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
2781
  assert_param(IS_TIM_EXT_PRESCALER(TIM_ExtTRGPrescaler));
2782
  assert_param(IS_TIM_EXT_POLARITY(TIM_ExtTRGPolarity));
2783
  assert_param(IS_TIM_EXT_FILTER(ExtTRGFilter));
2784
  /* Configure the ETR Clock source */
2785
  TIM_ETRConfig(TIMx, TIM_ExtTRGPrescaler, TIM_ExtTRGPolarity, ExtTRGFilter);
2786
  
2787
  /* Get the TIMx SMCR register value */
2788
  tmpsmcr = TIMx->SMCR;
2789

    
2790
  /* Reset the SMS Bits */
2791
  tmpsmcr &= (uint16_t)~TIM_SMCR_SMS;
2792

    
2793
  /* Select the External clock mode1 */
2794
  tmpsmcr |= TIM_SlaveMode_External1;
2795

    
2796
  /* Select the Trigger selection : ETRF */
2797
  tmpsmcr &= (uint16_t)~TIM_SMCR_TS;
2798
  tmpsmcr |= TIM_TS_ETRF;
2799

    
2800
  /* Write to TIMx SMCR */
2801
  TIMx->SMCR = tmpsmcr;
2802
}
2803

    
2804
/**
2805
  * @brief  Configures the External clock Mode2
2806
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
2807
  * @param  TIM_ExtTRGPrescaler: The external Trigger Prescaler.
2808
  *          This parameter can be one of the following values:
2809
  *            @arg TIM_ExtTRGPSC_OFF: ETRP Prescaler OFF.
2810
  *            @arg TIM_ExtTRGPSC_DIV2: ETRP frequency divided by 2.
2811
  *            @arg TIM_ExtTRGPSC_DIV4: ETRP frequency divided by 4.
2812
  *            @arg TIM_ExtTRGPSC_DIV8: ETRP frequency divided by 8.
2813
  * @param  TIM_ExtTRGPolarity: The external Trigger Polarity.
2814
  *          This parameter can be one of the following values:
2815
  *            @arg TIM_ExtTRGPolarity_Inverted: active low or falling edge active.
2816
  *            @arg TIM_ExtTRGPolarity_NonInverted: active high or rising edge active.
2817
  * @param  ExtTRGFilter: External Trigger Filter.
2818
  *          This parameter must be a value between 0x00 and 0x0F
2819
  * @retval None
2820
  */
2821
void TIM_ETRClockMode2Config(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler, 
2822
                             uint16_t TIM_ExtTRGPolarity, uint16_t ExtTRGFilter)
2823
{
2824
  /* Check the parameters */
2825
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
2826
  assert_param(IS_TIM_EXT_PRESCALER(TIM_ExtTRGPrescaler));
2827
  assert_param(IS_TIM_EXT_POLARITY(TIM_ExtTRGPolarity));
2828
  assert_param(IS_TIM_EXT_FILTER(ExtTRGFilter));
2829

    
2830
  /* Configure the ETR Clock source */
2831
  TIM_ETRConfig(TIMx, TIM_ExtTRGPrescaler, TIM_ExtTRGPolarity, ExtTRGFilter);
2832

    
2833
  /* Enable the External clock mode2 */
2834
  TIMx->SMCR |= TIM_SMCR_ECE;
2835
}
2836
/**
2837
  * @}
2838
  */
2839

    
2840
/** @defgroup TIM_Group7 Synchronization management functions
2841
 *  @brief    Synchronization management functions 
2842
 *
2843
@verbatim   
2844
 ===============================================================================
2845
                ##### Synchronization management functions #####
2846
 ===============================================================================  
2847
                         
2848
          ##### TIM Driver: how to use it in synchronization Mode #####
2849
 ===============================================================================
2850
    [..] 
2851
    
2852
    *** Case of two/several Timers ***
2853
    ==================================
2854
    [..]
2855
      (#) Configure the Master Timers using the following functions:
2856
        (++) void TIM_SelectOutputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_TRGOSource); 
2857
        (++) void TIM_SelectMasterSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_MasterSlaveMode);  
2858
      (#) Configure the Slave Timers using the following functions: 
2859
        (++) void TIM_SelectInputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource);  
2860
        (++) void TIM_SelectSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_SlaveMode); 
2861
          
2862
    *** Case of Timers and external trigger(ETR pin) ***
2863
    ====================================================
2864
    [..]           
2865
      (#) Configure the External trigger using this function:
2866
        (++) void TIM_ETRConfig(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler, uint16_t TIM_ExtTRGPolarity,
2867
                               uint16_t ExtTRGFilter);
2868
      (#) Configure the Slave Timers using the following functions: 
2869
        (++) void TIM_SelectInputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource);  
2870
        (++) void TIM_SelectSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_SlaveMode); 
2871

2872
@endverbatim
2873
  * @{
2874
  */
2875

    
2876
/**
2877
  * @brief  Selects the Input Trigger source
2878
  * @param  TIMx: where x can be  1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13 or 14  
2879
  *         to select the TIM peripheral.
2880
  * @param  TIM_InputTriggerSource: The Input Trigger source.
2881
  *          This parameter can be one of the following values:
2882
  *            @arg TIM_TS_ITR0: Internal Trigger 0
2883
  *            @arg TIM_TS_ITR1: Internal Trigger 1
2884
  *            @arg TIM_TS_ITR2: Internal Trigger 2
2885
  *            @arg TIM_TS_ITR3: Internal Trigger 3
2886
  *            @arg TIM_TS_TI1F_ED: TI1 Edge Detector
2887
  *            @arg TIM_TS_TI1FP1: Filtered Timer Input 1
2888
  *            @arg TIM_TS_TI2FP2: Filtered Timer Input 2
2889
  *            @arg TIM_TS_ETRF: External Trigger input
2890
  * @retval None
2891
  */
2892
void TIM_SelectInputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_InputTriggerSource)
2893
{
2894
  uint16_t tmpsmcr = 0;
2895

    
2896
  /* Check the parameters */
2897
  assert_param(IS_TIM_LIST1_PERIPH(TIMx)); 
2898
  assert_param(IS_TIM_TRIGGER_SELECTION(TIM_InputTriggerSource));
2899

    
2900
  /* Get the TIMx SMCR register value */
2901
  tmpsmcr = TIMx->SMCR;
2902

    
2903
  /* Reset the TS Bits */
2904
  tmpsmcr &= (uint16_t)~TIM_SMCR_TS;
2905

    
2906
  /* Set the Input Trigger source */
2907
  tmpsmcr |= TIM_InputTriggerSource;
2908

    
2909
  /* Write to TIMx SMCR */
2910
  TIMx->SMCR = tmpsmcr;
2911
}
2912

    
2913
/**
2914
  * @brief  Selects the TIMx Trigger Output Mode.
2915
  * @param  TIMx: where x can be 1, 2, 3, 4, 5, 6, 7 or 8 to select the TIM peripheral.
2916
  *     
2917
  * @param  TIM_TRGOSource: specifies the Trigger Output source.
2918
  *   This parameter can be one of the following values:
2919
  *
2920
  *  - For all TIMx
2921
  *            @arg TIM_TRGOSource_Reset:  The UG bit in the TIM_EGR register is used as the trigger output(TRGO)
2922
  *            @arg TIM_TRGOSource_Enable: The Counter Enable CEN is used as the trigger output(TRGO)
2923
  *            @arg TIM_TRGOSource_Update: The update event is selected as the trigger output(TRGO)
2924
  *
2925
  *  - For all TIMx except TIM6 and TIM7
2926
  *            @arg TIM_TRGOSource_OC1: The trigger output sends a positive pulse when the CC1IF flag
2927
  *                                     is to be set, as soon as a capture or compare match occurs(TRGO)
2928
  *            @arg TIM_TRGOSource_OC1Ref: OC1REF signal is used as the trigger output(TRGO)
2929
  *            @arg TIM_TRGOSource_OC2Ref: OC2REF signal is used as the trigger output(TRGO)
2930
  *            @arg TIM_TRGOSource_OC3Ref: OC3REF signal is used as the trigger output(TRGO)
2931
  *            @arg TIM_TRGOSource_OC4Ref: OC4REF signal is used as the trigger output(TRGO)
2932
  *
2933
  * @retval None
2934
  */
2935
void TIM_SelectOutputTrigger(TIM_TypeDef* TIMx, uint16_t TIM_TRGOSource)
2936
{
2937
  /* Check the parameters */
2938
  assert_param(IS_TIM_LIST5_PERIPH(TIMx));
2939
  assert_param(IS_TIM_TRGO_SOURCE(TIM_TRGOSource));
2940

    
2941
  /* Reset the MMS Bits */
2942
  TIMx->CR2 &= (uint16_t)~TIM_CR2_MMS;
2943
  /* Select the TRGO source */
2944
  TIMx->CR2 |=  TIM_TRGOSource;
2945
}
2946

    
2947
/**
2948
  * @brief  Selects the TIMx Slave Mode.
2949
  * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM peripheral.
2950
  * @param  TIM_SlaveMode: specifies the Timer Slave Mode.
2951
  *          This parameter can be one of the following values:
2952
  *            @arg TIM_SlaveMode_Reset: Rising edge of the selected trigger signal(TRGI) reinitialize 
2953
  *                                      the counter and triggers an update of the registers
2954
  *            @arg TIM_SlaveMode_Gated:     The counter clock is enabled when the trigger signal (TRGI) is high
2955
  *            @arg TIM_SlaveMode_Trigger:   The counter starts at a rising edge of the trigger TRGI
2956
  *            @arg TIM_SlaveMode_External1: Rising edges of the selected trigger (TRGI) clock the counter
2957
  * @retval None
2958
  */
2959
void TIM_SelectSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_SlaveMode)
2960
{
2961
  /* Check the parameters */
2962
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
2963
  assert_param(IS_TIM_SLAVE_MODE(TIM_SlaveMode));
2964

    
2965
  /* Reset the SMS Bits */
2966
  TIMx->SMCR &= (uint16_t)~TIM_SMCR_SMS;
2967

    
2968
  /* Select the Slave Mode */
2969
  TIMx->SMCR |= TIM_SlaveMode;
2970
}
2971

    
2972
/**
2973
  * @brief  Sets or Resets the TIMx Master/Slave Mode.
2974
  * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM peripheral.
2975
  * @param  TIM_MasterSlaveMode: specifies the Timer Master Slave Mode.
2976
  *          This parameter can be one of the following values:
2977
  *            @arg TIM_MasterSlaveMode_Enable: synchronization between the current timer
2978
  *                                             and its slaves (through TRGO)
2979
  *            @arg TIM_MasterSlaveMode_Disable: No action
2980
  * @retval None
2981
  */
2982
void TIM_SelectMasterSlaveMode(TIM_TypeDef* TIMx, uint16_t TIM_MasterSlaveMode)
2983
{
2984
  /* Check the parameters */
2985
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
2986
  assert_param(IS_TIM_MSM_STATE(TIM_MasterSlaveMode));
2987

    
2988
  /* Reset the MSM Bit */
2989
  TIMx->SMCR &= (uint16_t)~TIM_SMCR_MSM;
2990
  
2991
  /* Set or Reset the MSM Bit */
2992
  TIMx->SMCR |= TIM_MasterSlaveMode;
2993
}
2994

    
2995
/**
2996
  * @brief  Configures the TIMx External Trigger (ETR).
2997
  * @param  TIMx: where x can be  1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
2998
  * @param  TIM_ExtTRGPrescaler: The external Trigger Prescaler.
2999
  *          This parameter can be one of the following values:
3000
  *            @arg TIM_ExtTRGPSC_OFF: ETRP Prescaler OFF.
3001
  *            @arg TIM_ExtTRGPSC_DIV2: ETRP frequency divided by 2.
3002
  *            @arg TIM_ExtTRGPSC_DIV4: ETRP frequency divided by 4.
3003
  *            @arg TIM_ExtTRGPSC_DIV8: ETRP frequency divided by 8.
3004
  * @param  TIM_ExtTRGPolarity: The external Trigger Polarity.
3005
  *          This parameter can be one of the following values:
3006
  *            @arg TIM_ExtTRGPolarity_Inverted: active low or falling edge active.
3007
  *            @arg TIM_ExtTRGPolarity_NonInverted: active high or rising edge active.
3008
  * @param  ExtTRGFilter: External Trigger Filter.
3009
  *          This parameter must be a value between 0x00 and 0x0F
3010
  * @retval None
3011
  */
3012
void TIM_ETRConfig(TIM_TypeDef* TIMx, uint16_t TIM_ExtTRGPrescaler,
3013
                   uint16_t TIM_ExtTRGPolarity, uint16_t ExtTRGFilter)
3014
{
3015
  uint16_t tmpsmcr = 0;
3016

    
3017
  /* Check the parameters */
3018
  assert_param(IS_TIM_LIST3_PERIPH(TIMx));
3019
  assert_param(IS_TIM_EXT_PRESCALER(TIM_ExtTRGPrescaler));
3020
  assert_param(IS_TIM_EXT_POLARITY(TIM_ExtTRGPolarity));
3021
  assert_param(IS_TIM_EXT_FILTER(ExtTRGFilter));
3022

    
3023
  tmpsmcr = TIMx->SMCR;
3024

    
3025
  /* Reset the ETR Bits */
3026
  tmpsmcr &= SMCR_ETR_MASK;
3027

    
3028
  /* Set the Prescaler, the Filter value and the Polarity */
3029
  tmpsmcr |= (uint16_t)(TIM_ExtTRGPrescaler | (uint16_t)(TIM_ExtTRGPolarity | (uint16_t)(ExtTRGFilter << (uint16_t)8)));
3030

    
3031
  /* Write to TIMx SMCR */
3032
  TIMx->SMCR = tmpsmcr;
3033
}
3034
/**
3035
  * @}
3036
  */
3037

    
3038
/** @defgroup TIM_Group8 Specific interface management functions
3039
 *  @brief    Specific interface management functions 
3040
 *
3041
@verbatim   
3042
 ===============================================================================
3043
            ##### Specific interface management functions #####
3044
 ===============================================================================  
3045

3046
@endverbatim
3047
  * @{
3048
  */
3049

    
3050
/**
3051
  * @brief  Configures the TIMx Encoder Interface.
3052
  * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM 
3053
  *         peripheral.
3054
  * @param  TIM_EncoderMode: specifies the TIMx Encoder Mode.
3055
  *          This parameter can be one of the following values:
3056
  *            @arg TIM_EncoderMode_TI1: Counter counts on TI1FP1 edge depending on TI2FP2 level.
3057
  *            @arg TIM_EncoderMode_TI2: Counter counts on TI2FP2 edge depending on TI1FP1 level.
3058
  *            @arg TIM_EncoderMode_TI12: Counter counts on both TI1FP1 and TI2FP2 edges depending
3059
  *                                       on the level of the other input.
3060
  * @param  TIM_IC1Polarity: specifies the IC1 Polarity
3061
  *          This parameter can be one of the following values:
3062
  *            @arg TIM_ICPolarity_Falling: IC Falling edge.
3063
  *            @arg TIM_ICPolarity_Rising: IC Rising edge.
3064
  * @param  TIM_IC2Polarity: specifies the IC2 Polarity
3065
  *          This parameter can be one of the following values:
3066
  *            @arg TIM_ICPolarity_Falling: IC Falling edge.
3067
  *            @arg TIM_ICPolarity_Rising: IC Rising edge.
3068
  * @retval None
3069
  */
3070
void TIM_EncoderInterfaceConfig(TIM_TypeDef* TIMx, uint16_t TIM_EncoderMode,
3071
                                uint16_t TIM_IC1Polarity, uint16_t TIM_IC2Polarity)
3072
{
3073
  uint16_t tmpsmcr = 0;
3074
  uint16_t tmpccmr1 = 0;
3075
  uint16_t tmpccer = 0;
3076
    
3077
  /* Check the parameters */
3078
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
3079
  assert_param(IS_TIM_ENCODER_MODE(TIM_EncoderMode));
3080
  assert_param(IS_TIM_IC_POLARITY(TIM_IC1Polarity));
3081
  assert_param(IS_TIM_IC_POLARITY(TIM_IC2Polarity));
3082

    
3083
  /* Get the TIMx SMCR register value */
3084
  tmpsmcr = TIMx->SMCR;
3085

    
3086
  /* Get the TIMx CCMR1 register value */
3087
  tmpccmr1 = TIMx->CCMR1;
3088

    
3089
  /* Get the TIMx CCER register value */
3090
  tmpccer = TIMx->CCER;
3091

    
3092
  /* Set the encoder Mode */
3093
  tmpsmcr &= (uint16_t)~TIM_SMCR_SMS;
3094
  tmpsmcr |= TIM_EncoderMode;
3095

    
3096
  /* Select the Capture Compare 1 and the Capture Compare 2 as input */
3097
  tmpccmr1 &= ((uint16_t)~TIM_CCMR1_CC1S) & ((uint16_t)~TIM_CCMR1_CC2S);
3098
  tmpccmr1 |= TIM_CCMR1_CC1S_0 | TIM_CCMR1_CC2S_0;
3099

    
3100
  /* Set the TI1 and the TI2 Polarities */
3101
  tmpccer &= ((uint16_t)~TIM_CCER_CC1P) & ((uint16_t)~TIM_CCER_CC2P);
3102
  tmpccer |= (uint16_t)(TIM_IC1Polarity | (uint16_t)(TIM_IC2Polarity << (uint16_t)4));
3103

    
3104
  /* Write to TIMx SMCR */
3105
  TIMx->SMCR = tmpsmcr;
3106

    
3107
  /* Write to TIMx CCMR1 */
3108
  TIMx->CCMR1 = tmpccmr1;
3109

    
3110
  /* Write to TIMx CCER */
3111
  TIMx->CCER = tmpccer;
3112
}
3113

    
3114
/**
3115
  * @brief  Enables or disables the TIMx's Hall sensor interface.
3116
  * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM 
3117
  *         peripheral.
3118
  * @param  NewState: new state of the TIMx Hall sensor interface.
3119
  *          This parameter can be: ENABLE or DISABLE.
3120
  * @retval None
3121
  */
3122
void TIM_SelectHallSensor(TIM_TypeDef* TIMx, FunctionalState NewState)
3123
{
3124
  /* Check the parameters */
3125
  assert_param(IS_TIM_LIST2_PERIPH(TIMx));
3126
  assert_param(IS_FUNCTIONAL_STATE(NewState));
3127

    
3128
  if (NewState != DISABLE)
3129
  {
3130
    /* Set the TI1S Bit */
3131
    TIMx->CR2 |= TIM_CR2_TI1S;
3132
  }
3133
  else
3134
  {
3135
    /* Reset the TI1S Bit */
3136
    TIMx->CR2 &= (uint16_t)~TIM_CR2_TI1S;
3137
  }
3138
}
3139
/**
3140
  * @}
3141
  */
3142

    
3143
/** @defgroup TIM_Group9 Specific remapping management function
3144
 *  @brief   Specific remapping management function
3145
 *
3146
@verbatim   
3147
 ===============================================================================
3148
              ##### Specific remapping management function #####
3149
 ===============================================================================  
3150

3151
@endverbatim
3152
  * @{
3153
  */
3154

    
3155
/**
3156
  * @brief  Configures the TIM2, TIM5 and TIM11 Remapping input capabilities.
3157
  * @param  TIMx: where x can be 2, 5 or 11 to select the TIM peripheral.
3158
  * @param  TIM_Remap: specifies the TIM input remapping source.
3159
  *          This parameter can be one of the following values:
3160
  *            @arg TIM2_TIM8_TRGO: TIM2 ITR1 input is connected to TIM8 Trigger output(default)
3161
  *            @arg TIM2_ETH_PTP:   TIM2 ITR1 input is connected to ETH PTP trogger output.
3162
  *            @arg TIM2_USBFS_SOF: TIM2 ITR1 input is connected to USB FS SOF. 
3163
  *            @arg TIM2_USBHS_SOF: TIM2 ITR1 input is connected to USB HS SOF. 
3164
  *            @arg TIM5_GPIO:      TIM5 CH4 input is connected to dedicated Timer pin(default)
3165
  *            @arg TIM5_LSI:       TIM5 CH4 input is connected to LSI clock.
3166
  *            @arg TIM5_LSE:       TIM5 CH4 input is connected to LSE clock.
3167
  *            @arg TIM5_RTC:       TIM5 CH4 input is connected to RTC Output event.
3168
  *            @arg TIM11_GPIO:     TIM11 CH4 input is connected to dedicated Timer pin(default) 
3169
  *            @arg TIM11_HSE:      TIM11 CH4 input is connected to HSE_RTC clock
3170
  *                                 (HSE divided by a programmable prescaler)  
3171
  * @retval None
3172
  */
3173
void TIM_RemapConfig(TIM_TypeDef* TIMx, uint16_t TIM_Remap)
3174
{
3175
 /* Check the parameters */
3176
  assert_param(IS_TIM_LIST6_PERIPH(TIMx));
3177
  assert_param(IS_TIM_REMAP(TIM_Remap));
3178

    
3179
  /* Set the Timer remapping configuration */
3180
  TIMx->OR =  TIM_Remap;
3181
}
3182
/**
3183
  * @}
3184
  */
3185

    
3186
/**
3187
  * @brief  Configure the TI1 as Input.
3188
  * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13 or 14 
3189
  *         to select the TIM peripheral.
3190
  * @param  TIM_ICPolarity : The Input Polarity.
3191
  *          This parameter can be one of the following values:
3192
  *            @arg TIM_ICPolarity_Rising
3193
  *            @arg TIM_ICPolarity_Falling
3194
  *            @arg TIM_ICPolarity_BothEdge  
3195
  * @param  TIM_ICSelection: specifies the input to be used.
3196
  *          This parameter can be one of the following values:
3197
  *            @arg TIM_ICSelection_DirectTI: TIM Input 1 is selected to be connected to IC1.
3198
  *            @arg TIM_ICSelection_IndirectTI: TIM Input 1 is selected to be connected to IC2.
3199
  *            @arg TIM_ICSelection_TRC: TIM Input 1 is selected to be connected to TRC.
3200
  * @param  TIM_ICFilter: Specifies the Input Capture Filter.
3201
  *          This parameter must be a value between 0x00 and 0x0F.
3202
  * @retval None
3203
  */
3204
static void TI1_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
3205
                       uint16_t TIM_ICFilter)
3206
{
3207
  uint16_t tmpccmr1 = 0, tmpccer = 0;
3208

    
3209
  /* Disable the Channel 1: Reset the CC1E Bit */
3210
  TIMx->CCER &= (uint16_t)~TIM_CCER_CC1E;
3211
  tmpccmr1 = TIMx->CCMR1;
3212
  tmpccer = TIMx->CCER;
3213

    
3214
  /* Select the Input and set the filter */
3215
  tmpccmr1 &= ((uint16_t)~TIM_CCMR1_CC1S) & ((uint16_t)~TIM_CCMR1_IC1F);
3216
  tmpccmr1 |= (uint16_t)(TIM_ICSelection | (uint16_t)(TIM_ICFilter << (uint16_t)4));
3217

    
3218
  /* Select the Polarity and set the CC1E Bit */
3219
  tmpccer &= (uint16_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP);
3220
  tmpccer |= (uint16_t)(TIM_ICPolarity | (uint16_t)TIM_CCER_CC1E);
3221

    
3222
  /* Write to TIMx CCMR1 and CCER registers */
3223
  TIMx->CCMR1 = tmpccmr1;
3224
  TIMx->CCER = tmpccer;
3225
}
3226

    
3227
/**
3228
  * @brief  Configure the TI2 as Input.
3229
  * @param  TIMx: where x can be 1, 2, 3, 4, 5, 8, 9 or 12 to select the TIM 
3230
  *         peripheral.
3231
  * @param  TIM_ICPolarity : The Input Polarity.
3232
  *          This parameter can be one of the following values:
3233
  *            @arg TIM_ICPolarity_Rising
3234
  *            @arg TIM_ICPolarity_Falling
3235
  *            @arg TIM_ICPolarity_BothEdge   
3236
  * @param  TIM_ICSelection: specifies the input to be used.
3237
  *          This parameter can be one of the following values:
3238
  *            @arg TIM_ICSelection_DirectTI: TIM Input 2 is selected to be connected to IC2.
3239
  *            @arg TIM_ICSelection_IndirectTI: TIM Input 2 is selected to be connected to IC1.
3240
  *            @arg TIM_ICSelection_TRC: TIM Input 2 is selected to be connected to TRC.
3241
  * @param  TIM_ICFilter: Specifies the Input Capture Filter.
3242
  *          This parameter must be a value between 0x00 and 0x0F.
3243
  * @retval None
3244
  */
3245
static void TI2_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
3246
                       uint16_t TIM_ICFilter)
3247
{
3248
  uint16_t tmpccmr1 = 0, tmpccer = 0, tmp = 0;
3249

    
3250
  /* Disable the Channel 2: Reset the CC2E Bit */
3251
  TIMx->CCER &= (uint16_t)~TIM_CCER_CC2E;
3252
  tmpccmr1 = TIMx->CCMR1;
3253
  tmpccer = TIMx->CCER;
3254
  tmp = (uint16_t)(TIM_ICPolarity << 4);
3255

    
3256
  /* Select the Input and set the filter */
3257
  tmpccmr1 &= ((uint16_t)~TIM_CCMR1_CC2S) & ((uint16_t)~TIM_CCMR1_IC2F);
3258
  tmpccmr1 |= (uint16_t)(TIM_ICFilter << 12);
3259
  tmpccmr1 |= (uint16_t)(TIM_ICSelection << 8);
3260

    
3261
  /* Select the Polarity and set the CC2E Bit */
3262
  tmpccer &= (uint16_t)~(TIM_CCER_CC2P | TIM_CCER_CC2NP);
3263
  tmpccer |=  (uint16_t)(tmp | (uint16_t)TIM_CCER_CC2E);
3264

    
3265
  /* Write to TIMx CCMR1 and CCER registers */
3266
  TIMx->CCMR1 = tmpccmr1 ;
3267
  TIMx->CCER = tmpccer;
3268
}
3269

    
3270
/**
3271
  * @brief  Configure the TI3 as Input.
3272
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
3273
  * @param  TIM_ICPolarity : The Input Polarity.
3274
  *          This parameter can be one of the following values:
3275
  *            @arg TIM_ICPolarity_Rising
3276
  *            @arg TIM_ICPolarity_Falling
3277
  *            @arg TIM_ICPolarity_BothEdge         
3278
  * @param  TIM_ICSelection: specifies the input to be used.
3279
  *          This parameter can be one of the following values:
3280
  *            @arg TIM_ICSelection_DirectTI: TIM Input 3 is selected to be connected to IC3.
3281
  *            @arg TIM_ICSelection_IndirectTI: TIM Input 3 is selected to be connected to IC4.
3282
  *            @arg TIM_ICSelection_TRC: TIM Input 3 is selected to be connected to TRC.
3283
  * @param  TIM_ICFilter: Specifies the Input Capture Filter.
3284
  *          This parameter must be a value between 0x00 and 0x0F.
3285
  * @retval None
3286
  */
3287
static void TI3_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
3288
                       uint16_t TIM_ICFilter)
3289
{
3290
  uint16_t tmpccmr2 = 0, tmpccer = 0, tmp = 0;
3291

    
3292
  /* Disable the Channel 3: Reset the CC3E Bit */
3293
  TIMx->CCER &= (uint16_t)~TIM_CCER_CC3E;
3294
  tmpccmr2 = TIMx->CCMR2;
3295
  tmpccer = TIMx->CCER;
3296
  tmp = (uint16_t)(TIM_ICPolarity << 8);
3297

    
3298
  /* Select the Input and set the filter */
3299
  tmpccmr2 &= ((uint16_t)~TIM_CCMR1_CC1S) & ((uint16_t)~TIM_CCMR2_IC3F);
3300
  tmpccmr2 |= (uint16_t)(TIM_ICSelection | (uint16_t)(TIM_ICFilter << (uint16_t)4));
3301

    
3302
  /* Select the Polarity and set the CC3E Bit */
3303
  tmpccer &= (uint16_t)~(TIM_CCER_CC3P | TIM_CCER_CC3NP);
3304
  tmpccer |= (uint16_t)(tmp | (uint16_t)TIM_CCER_CC3E);
3305

    
3306
  /* Write to TIMx CCMR2 and CCER registers */
3307
  TIMx->CCMR2 = tmpccmr2;
3308
  TIMx->CCER = tmpccer;
3309
}
3310

    
3311
/**
3312
  * @brief  Configure the TI4 as Input.
3313
  * @param  TIMx: where x can be 1, 2, 3, 4, 5 or 8 to select the TIM peripheral.
3314
  * @param  TIM_ICPolarity : The Input Polarity.
3315
  *          This parameter can be one of the following values:
3316
  *            @arg TIM_ICPolarity_Rising
3317
  *            @arg TIM_ICPolarity_Falling
3318
  *            @arg TIM_ICPolarity_BothEdge     
3319
  * @param  TIM_ICSelection: specifies the input to be used.
3320
  *          This parameter can be one of the following values:
3321
  *            @arg TIM_ICSelection_DirectTI: TIM Input 4 is selected to be connected to IC4.
3322
  *            @arg TIM_ICSelection_IndirectTI: TIM Input 4 is selected to be connected to IC3.
3323
  *            @arg TIM_ICSelection_TRC: TIM Input 4 is selected to be connected to TRC.
3324
  * @param  TIM_ICFilter: Specifies the Input Capture Filter.
3325
  *          This parameter must be a value between 0x00 and 0x0F.
3326
  * @retval None
3327
  */
3328
static void TI4_Config(TIM_TypeDef* TIMx, uint16_t TIM_ICPolarity, uint16_t TIM_ICSelection,
3329
                       uint16_t TIM_ICFilter)
3330
{
3331
  uint16_t tmpccmr2 = 0, tmpccer = 0, tmp = 0;
3332

    
3333
  /* Disable the Channel 4: Reset the CC4E Bit */
3334
  TIMx->CCER &= (uint16_t)~TIM_CCER_CC4E;
3335
  tmpccmr2 = TIMx->CCMR2;
3336
  tmpccer = TIMx->CCER;
3337
  tmp = (uint16_t)(TIM_ICPolarity << 12);
3338

    
3339
  /* Select the Input and set the filter */
3340
  tmpccmr2 &= ((uint16_t)~TIM_CCMR1_CC2S) & ((uint16_t)~TIM_CCMR1_IC2F);
3341
  tmpccmr2 |= (uint16_t)(TIM_ICSelection << 8);
3342
  tmpccmr2 |= (uint16_t)(TIM_ICFilter << 12);
3343

    
3344
  /* Select the Polarity and set the CC4E Bit */
3345
  tmpccer &= (uint16_t)~(TIM_CCER_CC4P | TIM_CCER_CC4NP);
3346
  tmpccer |= (uint16_t)(tmp | (uint16_t)TIM_CCER_CC4E);
3347

    
3348
  /* Write to TIMx CCMR2 and CCER registers */
3349
  TIMx->CCMR2 = tmpccmr2;
3350
  TIMx->CCER = tmpccer ;
3351
}
3352

    
3353
/**
3354
  * @}
3355
  */
3356

    
3357
/**
3358
  * @}
3359
  */
3360

    
3361
/**
3362
  * @}
3363
  */
3364

    
3365
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/