amiro-blt / Target / Demo / ARMCM4_STM32F405_Power_Management_GCC / Boot / lib / stdperiphlib / STM32F4xx_StdPeriph_Driver / src / stm32f4xx_cryp.c @ 69661903
History | View | Annotate | Download (34.7 KB)
1 | 69661903 | Thomas Schöpping | /**
|
---|---|---|---|
2 | ******************************************************************************
|
||
3 | * @file stm32f4xx_cryp.c
|
||
4 | * @author MCD Application Team
|
||
5 | * @version V1.1.0
|
||
6 | * @date 11-January-2013
|
||
7 | * @brief This file provides firmware functions to manage the following
|
||
8 | * functionalities of the Cryptographic processor (CRYP) peripheral:
|
||
9 | * + Initialization and Configuration functions
|
||
10 | * + Data treatment functions
|
||
11 | * + Context swapping functions
|
||
12 | * + DMA interface function
|
||
13 | * + Interrupts and flags management
|
||
14 | *
|
||
15 | @verbatim
|
||
16 | ===================================================================
|
||
17 | ##### How to use this driver #####
|
||
18 | ===================================================================
|
||
19 | [..]
|
||
20 | (#) Enable the CRYP controller clock using
|
||
21 | RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_CRYP, ENABLE); function.
|
||
22 |
|
||
23 | (#) Initialise the CRYP using CRYP_Init(), CRYP_KeyInit() and if needed
|
||
24 | CRYP_IVInit().
|
||
25 |
|
||
26 | (#) Flush the IN and OUT FIFOs by using CRYP_FIFOFlush() function.
|
||
27 |
|
||
28 | (#) Enable the CRYP controller using the CRYP_Cmd() function.
|
||
29 |
|
||
30 | (#) If using DMA for Data input and output transfer, activate the needed DMA
|
||
31 | Requests using CRYP_DMACmd() function
|
||
32 |
|
||
33 | (#) If DMA is not used for data transfer, use CRYP_DataIn() and CRYP_DataOut()
|
||
34 | functions to enter data to IN FIFO and get result from OUT FIFO.
|
||
35 |
|
||
36 | (#) To control CRYP events you can use one of the following two methods:
|
||
37 | (++) Check on CRYP flags using the CRYP_GetFlagStatus() function.
|
||
38 | (++) Use CRYP interrupts through the function CRYP_ITConfig() at
|
||
39 | initialization phase and CRYP_GetITStatus() function into interrupt
|
||
40 | routines in processing phase.
|
||
41 |
|
||
42 | (#) Save and restore Cryptographic processor context using CRYP_SaveContext()
|
||
43 | and CRYP_RestoreContext() functions.
|
||
44 |
|
||
45 |
|
||
46 | *** Procedure to perform an encryption or a decryption ***
|
||
47 | ==========================================================
|
||
48 |
|
||
49 | *** Initialization ***
|
||
50 | ======================
|
||
51 | [..]
|
||
52 | (#) Initialize the peripheral using CRYP_Init(), CRYP_KeyInit() and CRYP_IVInit
|
||
53 | functions:
|
||
54 | (++) Configure the key size (128-, 192- or 256-bit, in the AES only)
|
||
55 | (++) Enter the symmetric key
|
||
56 | (++) Configure the data type
|
||
57 | (++) In case of decryption in AES-ECB or AES-CBC, you must prepare
|
||
58 | the key: configure the key preparation mode. Then Enable the CRYP
|
||
59 | peripheral using CRYP_Cmd() function: the BUSY flag is set.
|
||
60 | Wait until BUSY flag is reset : the key is prepared for decryption
|
||
61 | (++) Configure the algorithm and chaining (the DES/TDES in ECB/CBC, the
|
||
62 | AES in ECB/CBC/CTR)
|
||
63 | (++) Configure the direction (encryption/decryption).
|
||
64 | (++) Write the initialization vectors (in CBC or CTR modes only)
|
||
65 |
|
||
66 | (#) Flush the IN and OUT FIFOs using the CRYP_FIFOFlush() function
|
||
67 |
|
||
68 |
|
||
69 | *** Basic Processing mode (polling mode) ***
|
||
70 | ============================================
|
||
71 | [..]
|
||
72 | (#) Enable the cryptographic processor using CRYP_Cmd() function.
|
||
73 |
|
||
74 | (#) Write the first blocks in the input FIFO (2 to 8 words) using
|
||
75 | CRYP_DataIn() function.
|
||
76 |
|
||
77 | (#) Repeat the following sequence until the complete message has been
|
||
78 | processed:
|
||
79 |
|
||
80 | (++) Wait for flag CRYP_FLAG_OFNE occurs (using CRYP_GetFlagStatus()
|
||
81 | function), then read the OUT-FIFO using CRYP_DataOut() function
|
||
82 | (1 block or until the FIFO is empty)
|
||
83 |
|
||
84 | (++) Wait for flag CRYP_FLAG_IFNF occurs, (using CRYP_GetFlagStatus()
|
||
85 | function then write the IN FIFO using CRYP_DataIn() function
|
||
86 | (1 block or until the FIFO is full)
|
||
87 |
|
||
88 | (#) At the end of the processing, CRYP_FLAG_BUSY flag will be reset and
|
||
89 | both FIFOs are empty (CRYP_FLAG_IFEM is set and CRYP_FLAG_OFNE is
|
||
90 | reset). You can disable the peripheral using CRYP_Cmd() function.
|
||
91 |
|
||
92 | *** Interrupts Processing mode ***
|
||
93 | ==================================
|
||
94 | [..] In this mode, Processing is done when the data are transferred by the
|
||
95 | CPU during interrupts.
|
||
96 |
|
||
97 | (#) Enable the interrupts CRYP_IT_INI and CRYP_IT_OUTI using CRYP_ITConfig()
|
||
98 | function.
|
||
99 |
|
||
100 | (#) Enable the cryptographic processor using CRYP_Cmd() function.
|
||
101 |
|
||
102 | (#) In the CRYP_IT_INI interrupt handler : load the input message into the
|
||
103 | IN FIFO using CRYP_DataIn() function . You can load 2 or 4 words at a
|
||
104 | time, or load data until the IN FIFO is full. When the last word of
|
||
105 | the message has been entered into the IN FIFO, disable the CRYP_IT_INI
|
||
106 | interrupt (using CRYP_ITConfig() function).
|
||
107 |
|
||
108 | (#) In the CRYP_IT_OUTI interrupt handler : read the output message from
|
||
109 | the OUT FIFO using CRYP_DataOut() function. You can read 1 block (2 or
|
||
110 | 4 words) at a time or read data until the FIFO is empty.
|
||
111 | When the last word has been read, INIM=0, BUSY=0 and both FIFOs are
|
||
112 | empty (CRYP_FLAG_IFEM is set and CRYP_FLAG_OFNE is reset).
|
||
113 | You can disable the CRYP_IT_OUTI interrupt (using CRYP_ITConfig()
|
||
114 | function) and you can disable the peripheral using CRYP_Cmd() function.
|
||
115 |
|
||
116 | *** DMA Processing mode ***
|
||
117 | ===========================
|
||
118 | [..] In this mode, Processing is done when the DMA is used to transfer the
|
||
119 | data from/to the memory.
|
||
120 |
|
||
121 | (#) Configure the DMA controller to transfer the input data from the
|
||
122 | memory using DMA_Init() function.
|
||
123 | The transfer length is the length of the message.
|
||
124 | As message padding is not managed by the peripheral, the message
|
||
125 | length must be an entire number of blocks. The data are transferred
|
||
126 | in burst mode. The burst length is 4 words in the AES and 2 or 4
|
||
127 | words in the DES/TDES. The DMA should be configured to set an
|
||
128 | interrupt on transfer completion of the output data to indicate that
|
||
129 | the processing is finished.
|
||
130 | Refer to DMA peripheral driver for more details.
|
||
131 |
|
||
132 | (#) Enable the cryptographic processor using CRYP_Cmd() function.
|
||
133 | Enable the DMA requests CRYP_DMAReq_DataIN and CRYP_DMAReq_DataOUT
|
||
134 | using CRYP_DMACmd() function.
|
||
135 |
|
||
136 | (#) All the transfers and processing are managed by the DMA and the
|
||
137 | cryptographic processor. The DMA transfer complete interrupt indicates
|
||
138 | that the processing is complete. Both FIFOs are normally empty and
|
||
139 | CRYP_FLAG_BUSY flag is reset.
|
||
140 |
|
||
141 | @endverbatim
|
||
142 | *
|
||
143 | ******************************************************************************
|
||
144 | * @attention
|
||
145 | *
|
||
146 | * <h2><center>© COPYRIGHT 2013 STMicroelectronics</center></h2>
|
||
147 | *
|
||
148 | * Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
|
||
149 | * You may not use this file except in compliance with the License.
|
||
150 | * You may obtain a copy of the License at:
|
||
151 | *
|
||
152 | * http://www.st.com/software_license_agreement_liberty_v2
|
||
153 | *
|
||
154 | * Unless required by applicable law or agreed to in writing, software
|
||
155 | * distributed under the License is distributed on an "AS IS" BASIS,
|
||
156 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
157 | * See the License for the specific language governing permissions and
|
||
158 | * limitations under the License.
|
||
159 | *
|
||
160 | ******************************************************************************
|
||
161 | */
|
||
162 | |||
163 | /* Includes ------------------------------------------------------------------*/
|
||
164 | #include "stm32f4xx_cryp.h" |
||
165 | #include "stm32f4xx_rcc.h" |
||
166 | |||
167 | /** @addtogroup STM32F4xx_StdPeriph_Driver
|
||
168 | * @{
|
||
169 | */
|
||
170 | |||
171 | /** @defgroup CRYP
|
||
172 | * @brief CRYP driver modules
|
||
173 | * @{
|
||
174 | */
|
||
175 | |||
176 | /* Private typedef -----------------------------------------------------------*/
|
||
177 | /* Private define ------------------------------------------------------------*/
|
||
178 | #define FLAG_MASK ((uint8_t)0x20) |
||
179 | #define MAX_TIMEOUT ((uint16_t)0xFFFF) |
||
180 | |||
181 | /* Private macro -------------------------------------------------------------*/
|
||
182 | /* Private variables ---------------------------------------------------------*/
|
||
183 | /* Private function prototypes -----------------------------------------------*/
|
||
184 | /* Private functions ---------------------------------------------------------*/
|
||
185 | |||
186 | /** @defgroup CRYP_Private_Functions
|
||
187 | * @{
|
||
188 | */
|
||
189 | |||
190 | /** @defgroup CRYP_Group1 Initialization and Configuration functions
|
||
191 | * @brief Initialization and Configuration functions
|
||
192 | *
|
||
193 | @verbatim
|
||
194 | ===============================================================================
|
||
195 | ##### Initialization and Configuration functions #####
|
||
196 | ===============================================================================
|
||
197 | [..] This section provides functions allowing to
|
||
198 | (+) Initialize the cryptographic Processor using CRYP_Init() function
|
||
199 | (++) Encrypt or Decrypt
|
||
200 | (++) mode : TDES-ECB, TDES-CBC,
|
||
201 | DES-ECB, DES-CBC,
|
||
202 | AES-ECB, AES-CBC, AES-CTR, AES-Key, AES-GCM, AES-CCM
|
||
203 | (++) DataType : 32-bit data, 16-bit data, bit data or bit-string
|
||
204 | (++) Key Size (only in AES modes)
|
||
205 | (+) Configure the Encrypt or Decrypt Key using CRYP_KeyInit() function
|
||
206 | (+) Configure the Initialization Vectors(IV) for CBC and CTR modes using
|
||
207 | CRYP_IVInit() function.
|
||
208 | (+) Flushes the IN and OUT FIFOs : using CRYP_FIFOFlush() function.
|
||
209 | (+) Enable or disable the CRYP Processor using CRYP_Cmd() function
|
||
210 |
|
||
211 | @endverbatim
|
||
212 | * @{
|
||
213 | */
|
||
214 | /**
|
||
215 | * @brief Deinitializes the CRYP peripheral registers to their default reset values
|
||
216 | * @param None
|
||
217 | * @retval None
|
||
218 | */
|
||
219 | void CRYP_DeInit(void) |
||
220 | { |
||
221 | /* Enable CRYP reset state */
|
||
222 | RCC_AHB2PeriphResetCmd(RCC_AHB2Periph_CRYP, ENABLE); |
||
223 | |||
224 | /* Release CRYP from reset state */
|
||
225 | RCC_AHB2PeriphResetCmd(RCC_AHB2Periph_CRYP, DISABLE); |
||
226 | } |
||
227 | |||
228 | /**
|
||
229 | * @brief Initializes the CRYP peripheral according to the specified parameters
|
||
230 | * in the CRYP_InitStruct.
|
||
231 | * @param CRYP_InitStruct: pointer to a CRYP_InitTypeDef structure that contains
|
||
232 | * the configuration information for the CRYP peripheral.
|
||
233 | * @retval None
|
||
234 | */
|
||
235 | void CRYP_Init(CRYP_InitTypeDef* CRYP_InitStruct)
|
||
236 | { |
||
237 | /* Check the parameters */
|
||
238 | assert_param(IS_CRYP_ALGOMODE(CRYP_InitStruct->CRYP_AlgoMode)); |
||
239 | assert_param(IS_CRYP_DATATYPE(CRYP_InitStruct->CRYP_DataType)); |
||
240 | assert_param(IS_CRYP_ALGODIR(CRYP_InitStruct->CRYP_AlgoDir)); |
||
241 | |||
242 | /* Select Algorithm mode*/
|
||
243 | CRYP->CR &= ~CRYP_CR_ALGOMODE; |
||
244 | CRYP->CR |= CRYP_InitStruct->CRYP_AlgoMode; |
||
245 | |||
246 | /* Select dataType */
|
||
247 | CRYP->CR &= ~CRYP_CR_DATATYPE; |
||
248 | CRYP->CR |= CRYP_InitStruct->CRYP_DataType; |
||
249 | |||
250 | /* select Key size (used only with AES algorithm) */
|
||
251 | if ((CRYP_InitStruct->CRYP_AlgoMode != CRYP_AlgoMode_TDES_ECB) &&
|
||
252 | (CRYP_InitStruct->CRYP_AlgoMode != CRYP_AlgoMode_TDES_CBC) && |
||
253 | (CRYP_InitStruct->CRYP_AlgoMode != CRYP_AlgoMode_DES_ECB) && |
||
254 | (CRYP_InitStruct->CRYP_AlgoMode != CRYP_AlgoMode_DES_CBC)) |
||
255 | { |
||
256 | assert_param(IS_CRYP_KEYSIZE(CRYP_InitStruct->CRYP_KeySize)); |
||
257 | CRYP->CR &= ~CRYP_CR_KEYSIZE; |
||
258 | CRYP->CR |= CRYP_InitStruct->CRYP_KeySize; /* Key size and value must be
|
||
259 | configured once the key has
|
||
260 | been prepared */
|
||
261 | } |
||
262 | |||
263 | /* Select data Direction */
|
||
264 | CRYP->CR &= ~CRYP_CR_ALGODIR; |
||
265 | CRYP->CR |= CRYP_InitStruct->CRYP_AlgoDir; |
||
266 | } |
||
267 | |||
268 | /**
|
||
269 | * @brief Fills each CRYP_InitStruct member with its default value.
|
||
270 | * @param CRYP_InitStruct: pointer to a CRYP_InitTypeDef structure which will
|
||
271 | * be initialized.
|
||
272 | * @retval None
|
||
273 | */
|
||
274 | void CRYP_StructInit(CRYP_InitTypeDef* CRYP_InitStruct)
|
||
275 | { |
||
276 | /* Initialize the CRYP_AlgoDir member */
|
||
277 | CRYP_InitStruct->CRYP_AlgoDir = CRYP_AlgoDir_Encrypt; |
||
278 | |||
279 | /* initialize the CRYP_AlgoMode member */
|
||
280 | CRYP_InitStruct->CRYP_AlgoMode = CRYP_AlgoMode_TDES_ECB; |
||
281 | |||
282 | /* initialize the CRYP_DataType member */
|
||
283 | CRYP_InitStruct->CRYP_DataType = CRYP_DataType_32b; |
||
284 | |||
285 | /* Initialize the CRYP_KeySize member */
|
||
286 | CRYP_InitStruct->CRYP_KeySize = CRYP_KeySize_128b; |
||
287 | } |
||
288 | |||
289 | /**
|
||
290 | * @brief Initializes the CRYP Keys according to the specified parameters in
|
||
291 | * the CRYP_KeyInitStruct.
|
||
292 | * @param CRYP_KeyInitStruct: pointer to a CRYP_KeyInitTypeDef structure that
|
||
293 | * contains the configuration information for the CRYP Keys.
|
||
294 | * @retval None
|
||
295 | */
|
||
296 | void CRYP_KeyInit(CRYP_KeyInitTypeDef* CRYP_KeyInitStruct)
|
||
297 | { |
||
298 | /* Key Initialisation */
|
||
299 | CRYP->K0LR = CRYP_KeyInitStruct->CRYP_Key0Left; |
||
300 | CRYP->K0RR = CRYP_KeyInitStruct->CRYP_Key0Right; |
||
301 | CRYP->K1LR = CRYP_KeyInitStruct->CRYP_Key1Left; |
||
302 | CRYP->K1RR = CRYP_KeyInitStruct->CRYP_Key1Right; |
||
303 | CRYP->K2LR = CRYP_KeyInitStruct->CRYP_Key2Left; |
||
304 | CRYP->K2RR = CRYP_KeyInitStruct->CRYP_Key2Right; |
||
305 | CRYP->K3LR = CRYP_KeyInitStruct->CRYP_Key3Left; |
||
306 | CRYP->K3RR = CRYP_KeyInitStruct->CRYP_Key3Right; |
||
307 | } |
||
308 | |||
309 | /**
|
||
310 | * @brief Fills each CRYP_KeyInitStruct member with its default value.
|
||
311 | * @param CRYP_KeyInitStruct: pointer to a CRYP_KeyInitTypeDef structure
|
||
312 | * which will be initialized.
|
||
313 | * @retval None
|
||
314 | */
|
||
315 | void CRYP_KeyStructInit(CRYP_KeyInitTypeDef* CRYP_KeyInitStruct)
|
||
316 | { |
||
317 | CRYP_KeyInitStruct->CRYP_Key0Left = 0;
|
||
318 | CRYP_KeyInitStruct->CRYP_Key0Right = 0;
|
||
319 | CRYP_KeyInitStruct->CRYP_Key1Left = 0;
|
||
320 | CRYP_KeyInitStruct->CRYP_Key1Right = 0;
|
||
321 | CRYP_KeyInitStruct->CRYP_Key2Left = 0;
|
||
322 | CRYP_KeyInitStruct->CRYP_Key2Right = 0;
|
||
323 | CRYP_KeyInitStruct->CRYP_Key3Left = 0;
|
||
324 | CRYP_KeyInitStruct->CRYP_Key3Right = 0;
|
||
325 | } |
||
326 | /**
|
||
327 | * @brief Initializes the CRYP Initialization Vectors(IV) according to the
|
||
328 | * specified parameters in the CRYP_IVInitStruct.
|
||
329 | * @param CRYP_IVInitStruct: pointer to a CRYP_IVInitTypeDef structure that contains
|
||
330 | * the configuration information for the CRYP Initialization Vectors(IV).
|
||
331 | * @retval None
|
||
332 | */
|
||
333 | void CRYP_IVInit(CRYP_IVInitTypeDef* CRYP_IVInitStruct)
|
||
334 | { |
||
335 | CRYP->IV0LR = CRYP_IVInitStruct->CRYP_IV0Left; |
||
336 | CRYP->IV0RR = CRYP_IVInitStruct->CRYP_IV0Right; |
||
337 | CRYP->IV1LR = CRYP_IVInitStruct->CRYP_IV1Left; |
||
338 | CRYP->IV1RR = CRYP_IVInitStruct->CRYP_IV1Right; |
||
339 | } |
||
340 | |||
341 | /**
|
||
342 | * @brief Fills each CRYP_IVInitStruct member with its default value.
|
||
343 | * @param CRYP_IVInitStruct: pointer to a CRYP_IVInitTypeDef Initialization
|
||
344 | * Vectors(IV) structure which will be initialized.
|
||
345 | * @retval None
|
||
346 | */
|
||
347 | void CRYP_IVStructInit(CRYP_IVInitTypeDef* CRYP_IVInitStruct)
|
||
348 | { |
||
349 | CRYP_IVInitStruct->CRYP_IV0Left = 0;
|
||
350 | CRYP_IVInitStruct->CRYP_IV0Right = 0;
|
||
351 | CRYP_IVInitStruct->CRYP_IV1Left = 0;
|
||
352 | CRYP_IVInitStruct->CRYP_IV1Right = 0;
|
||
353 | } |
||
354 | |||
355 | /**
|
||
356 | * @brief Configures the AES-CCM and AES-GCM phases
|
||
357 | * @note This function is used only with AES-CCM or AES-GCM Algorithms
|
||
358 | * @param CRYP_Phase: specifies the CRYP AES-CCM and AES-GCM phase to be configured.
|
||
359 | * This parameter can be one of the following values:
|
||
360 | * @arg CRYP_Phase_Init: Initialization phase
|
||
361 | * @arg CRYP_Phase_Header: Header phase
|
||
362 | * @arg CRYP_Phase_Payload: Payload phase
|
||
363 | * @arg CRYP_Phase_Final: Final phase
|
||
364 | * @retval None
|
||
365 | */
|
||
366 | void CRYP_PhaseConfig(uint32_t CRYP_Phase)
|
||
367 | { uint32_t tempcr = 0;
|
||
368 | |||
369 | /* Check the parameter */
|
||
370 | assert_param(IS_CRYP_PHASE(CRYP_Phase)); |
||
371 | |||
372 | /* Get the CR register */
|
||
373 | tempcr = CRYP->CR; |
||
374 | |||
375 | /* Reset the phase configuration bits: GCMP_CCMPH */
|
||
376 | tempcr &= (uint32_t)(~CRYP_CR_GCM_CCMPH); |
||
377 | /* Set the selected phase */
|
||
378 | tempcr |= (uint32_t)CRYP_Phase; |
||
379 | |||
380 | /* Set the CR register */
|
||
381 | CRYP->CR = tempcr; |
||
382 | } |
||
383 | |||
384 | /**
|
||
385 | * @brief Flushes the IN and OUT FIFOs (that is read and write pointers of the
|
||
386 | * FIFOs are reset)
|
||
387 | * @note The FIFOs must be flushed only when BUSY flag is reset.
|
||
388 | * @param None
|
||
389 | * @retval None
|
||
390 | */
|
||
391 | void CRYP_FIFOFlush(void) |
||
392 | { |
||
393 | /* Reset the read and write pointers of the FIFOs */
|
||
394 | CRYP->CR |= CRYP_CR_FFLUSH; |
||
395 | } |
||
396 | |||
397 | /**
|
||
398 | * @brief Enables or disables the CRYP peripheral.
|
||
399 | * @param NewState: new state of the CRYP peripheral.
|
||
400 | * This parameter can be: ENABLE or DISABLE.
|
||
401 | * @retval None
|
||
402 | */
|
||
403 | void CRYP_Cmd(FunctionalState NewState)
|
||
404 | { |
||
405 | /* Check the parameters */
|
||
406 | assert_param(IS_FUNCTIONAL_STATE(NewState)); |
||
407 | |||
408 | if (NewState != DISABLE)
|
||
409 | { |
||
410 | /* Enable the Cryptographic processor */
|
||
411 | CRYP->CR |= CRYP_CR_CRYPEN; |
||
412 | } |
||
413 | else
|
||
414 | { |
||
415 | /* Disable the Cryptographic processor */
|
||
416 | CRYP->CR &= ~CRYP_CR_CRYPEN; |
||
417 | } |
||
418 | } |
||
419 | /**
|
||
420 | * @}
|
||
421 | */
|
||
422 | |||
423 | /** @defgroup CRYP_Group2 CRYP Data processing functions
|
||
424 | * @brief CRYP Data processing functions
|
||
425 | *
|
||
426 | @verbatim
|
||
427 | ===============================================================================
|
||
428 | ##### CRYP Data processing functions #####
|
||
429 | ===============================================================================
|
||
430 | [..] This section provides functions allowing the encryption and decryption
|
||
431 | operations:
|
||
432 | (+) Enter data to be treated in the IN FIFO : using CRYP_DataIn() function.
|
||
433 | (+) Get the data result from the OUT FIFO : using CRYP_DataOut() function.
|
||
434 | |||
435 | @endverbatim
|
||
436 | * @{
|
||
437 | */
|
||
438 | |||
439 | /**
|
||
440 | * @brief Writes data in the Data Input register (DIN).
|
||
441 | * @note After the DIN register has been read once or several times,
|
||
442 | * the FIFO must be flushed (using CRYP_FIFOFlush() function).
|
||
443 | * @param Data: data to write in Data Input register
|
||
444 | * @retval None
|
||
445 | */
|
||
446 | void CRYP_DataIn(uint32_t Data)
|
||
447 | { |
||
448 | CRYP->DR = Data; |
||
449 | } |
||
450 | |||
451 | /**
|
||
452 | * @brief Returns the last data entered into the output FIFO.
|
||
453 | * @param None
|
||
454 | * @retval Last data entered into the output FIFO.
|
||
455 | */
|
||
456 | uint32_t CRYP_DataOut(void)
|
||
457 | { |
||
458 | return CRYP->DOUT;
|
||
459 | } |
||
460 | /**
|
||
461 | * @}
|
||
462 | */
|
||
463 | |||
464 | /** @defgroup CRYP_Group3 Context swapping functions
|
||
465 | * @brief Context swapping functions
|
||
466 | *
|
||
467 | @verbatim
|
||
468 | ===============================================================================
|
||
469 | ##### Context swapping functions #####
|
||
470 | ===============================================================================
|
||
471 | [..] This section provides functions allowing to save and store CRYP Context
|
||
472 | |||
473 | [..] It is possible to interrupt an encryption/ decryption/ key generation process
|
||
474 | to perform another processing with a higher priority, and to complete the
|
||
475 | interrupted process later on, when the higher-priority task is complete. To do
|
||
476 | so, the context of the interrupted task must be saved from the CRYP registers
|
||
477 | to memory, and then be restored from memory to the CRYP registers.
|
||
478 |
|
||
479 | (#) To save the current context, use CRYP_SaveContext() function
|
||
480 | (#) To restore the saved context, use CRYP_RestoreContext() function
|
||
481 | |||
482 | @endverbatim
|
||
483 | * @{
|
||
484 | */
|
||
485 | |||
486 | /**
|
||
487 | * @brief Saves the CRYP peripheral Context.
|
||
488 | * @note This function stops DMA transfer before to save the context. After
|
||
489 | * restoring the context, you have to enable the DMA again (if the DMA
|
||
490 | * was previously used).
|
||
491 | * @param CRYP_ContextSave: pointer to a CRYP_Context structure that contains
|
||
492 | * the repository for current context.
|
||
493 | * @param CRYP_KeyInitStruct: pointer to a CRYP_KeyInitTypeDef structure that
|
||
494 | * contains the configuration information for the CRYP Keys.
|
||
495 | * @retval None
|
||
496 | */
|
||
497 | ErrorStatus CRYP_SaveContext(CRYP_Context* CRYP_ContextSave, |
||
498 | CRYP_KeyInitTypeDef* CRYP_KeyInitStruct) |
||
499 | { |
||
500 | __IO uint32_t timeout = 0;
|
||
501 | uint32_t ckeckmask = 0, bitstatus;
|
||
502 | ErrorStatus status = ERROR; |
||
503 | |||
504 | /* Stop DMA transfers on the IN FIFO by clearing the DIEN bit in the CRYP_DMACR */
|
||
505 | CRYP->DMACR &= ~(uint32_t)CRYP_DMACR_DIEN; |
||
506 | |||
507 | /* Wait until both the IN and OUT FIFOs are empty
|
||
508 | (IFEM=1 and OFNE=0 in the CRYP_SR register) and the
|
||
509 | BUSY bit is cleared. */
|
||
510 | |||
511 | if ((CRYP->CR & (uint32_t)(CRYP_CR_ALGOMODE_TDES_ECB | CRYP_CR_ALGOMODE_TDES_CBC)) != (uint32_t)0 )/* TDES */ |
||
512 | { |
||
513 | ckeckmask = CRYP_SR_IFEM | CRYP_SR_BUSY ; |
||
514 | } |
||
515 | else /* AES or DES */ |
||
516 | { |
||
517 | ckeckmask = CRYP_SR_IFEM | CRYP_SR_BUSY | CRYP_SR_OFNE; |
||
518 | } |
||
519 | |||
520 | do
|
||
521 | { |
||
522 | bitstatus = CRYP->SR & ckeckmask; |
||
523 | timeout++; |
||
524 | } |
||
525 | while ((timeout != MAX_TIMEOUT) && (bitstatus != CRYP_SR_IFEM));
|
||
526 | |||
527 | if ((CRYP->SR & ckeckmask) != CRYP_SR_IFEM)
|
||
528 | { |
||
529 | status = ERROR; |
||
530 | } |
||
531 | else
|
||
532 | { |
||
533 | /* Stop DMA transfers on the OUT FIFO by
|
||
534 | - writing the DOEN bit to 0 in the CRYP_DMACR register
|
||
535 | - and clear the CRYPEN bit. */
|
||
536 | |||
537 | CRYP->DMACR &= ~(uint32_t)CRYP_DMACR_DOEN; |
||
538 | CRYP->CR &= ~(uint32_t)CRYP_CR_CRYPEN; |
||
539 | |||
540 | /* Save the current configuration (bit 19, bit[17:16] and bits [9:2] in the CRYP_CR register) */
|
||
541 | CRYP_ContextSave->CR_CurrentConfig = CRYP->CR & (CRYP_CR_GCM_CCMPH | |
||
542 | CRYP_CR_KEYSIZE | |
||
543 | CRYP_CR_DATATYPE | |
||
544 | CRYP_CR_ALGOMODE | |
||
545 | CRYP_CR_ALGODIR); |
||
546 | |||
547 | /* and, if not in ECB mode, the initialization vectors. */
|
||
548 | CRYP_ContextSave->CRYP_IV0LR = CRYP->IV0LR; |
||
549 | CRYP_ContextSave->CRYP_IV0RR = CRYP->IV0RR; |
||
550 | CRYP_ContextSave->CRYP_IV1LR = CRYP->IV1LR; |
||
551 | CRYP_ContextSave->CRYP_IV1RR = CRYP->IV1RR; |
||
552 | |||
553 | /* save The key value */
|
||
554 | CRYP_ContextSave->CRYP_K0LR = CRYP_KeyInitStruct->CRYP_Key0Left; |
||
555 | CRYP_ContextSave->CRYP_K0RR = CRYP_KeyInitStruct->CRYP_Key0Right; |
||
556 | CRYP_ContextSave->CRYP_K1LR = CRYP_KeyInitStruct->CRYP_Key1Left; |
||
557 | CRYP_ContextSave->CRYP_K1RR = CRYP_KeyInitStruct->CRYP_Key1Right; |
||
558 | CRYP_ContextSave->CRYP_K2LR = CRYP_KeyInitStruct->CRYP_Key2Left; |
||
559 | CRYP_ContextSave->CRYP_K2RR = CRYP_KeyInitStruct->CRYP_Key2Right; |
||
560 | CRYP_ContextSave->CRYP_K3LR = CRYP_KeyInitStruct->CRYP_Key3Left; |
||
561 | CRYP_ContextSave->CRYP_K3RR = CRYP_KeyInitStruct->CRYP_Key3Right; |
||
562 | |||
563 | /* Save the content of context swap registers */
|
||
564 | CRYP_ContextSave->CRYP_CSGCMCCMR[0] = CRYP->CSGCMCCM0R;
|
||
565 | CRYP_ContextSave->CRYP_CSGCMCCMR[1] = CRYP->CSGCMCCM1R;
|
||
566 | CRYP_ContextSave->CRYP_CSGCMCCMR[2] = CRYP->CSGCMCCM2R;
|
||
567 | CRYP_ContextSave->CRYP_CSGCMCCMR[3] = CRYP->CSGCMCCM3R;
|
||
568 | CRYP_ContextSave->CRYP_CSGCMCCMR[4] = CRYP->CSGCMCCM4R;
|
||
569 | CRYP_ContextSave->CRYP_CSGCMCCMR[5] = CRYP->CSGCMCCM5R;
|
||
570 | CRYP_ContextSave->CRYP_CSGCMCCMR[6] = CRYP->CSGCMCCM6R;
|
||
571 | CRYP_ContextSave->CRYP_CSGCMCCMR[7] = CRYP->CSGCMCCM7R;
|
||
572 | |||
573 | CRYP_ContextSave->CRYP_CSGCMR[0] = CRYP->CSGCM0R;
|
||
574 | CRYP_ContextSave->CRYP_CSGCMR[1] = CRYP->CSGCM1R;
|
||
575 | CRYP_ContextSave->CRYP_CSGCMR[2] = CRYP->CSGCM2R;
|
||
576 | CRYP_ContextSave->CRYP_CSGCMR[3] = CRYP->CSGCM3R;
|
||
577 | CRYP_ContextSave->CRYP_CSGCMR[4] = CRYP->CSGCM4R;
|
||
578 | CRYP_ContextSave->CRYP_CSGCMR[5] = CRYP->CSGCM5R;
|
||
579 | CRYP_ContextSave->CRYP_CSGCMR[6] = CRYP->CSGCM6R;
|
||
580 | CRYP_ContextSave->CRYP_CSGCMR[7] = CRYP->CSGCM7R;
|
||
581 | |||
582 | /* When needed, save the DMA status (pointers for IN and OUT messages,
|
||
583 | number of remaining bytes, etc.) */
|
||
584 | |||
585 | status = SUCCESS; |
||
586 | } |
||
587 | |||
588 | return status;
|
||
589 | } |
||
590 | |||
591 | /**
|
||
592 | * @brief Restores the CRYP peripheral Context.
|
||
593 | * @note Since teh DMA transfer is stopped in CRYP_SaveContext() function,
|
||
594 | * after restoring the context, you have to enable the DMA again (if the
|
||
595 | * DMA was previously used).
|
||
596 | * @param CRYP_ContextRestore: pointer to a CRYP_Context structure that contains
|
||
597 | * the repository for saved context.
|
||
598 | * @note The data that were saved during context saving must be rewrited into
|
||
599 | * the IN FIFO.
|
||
600 | * @retval None
|
||
601 | */
|
||
602 | void CRYP_RestoreContext(CRYP_Context* CRYP_ContextRestore)
|
||
603 | { |
||
604 | |||
605 | /* Configure the processor with the saved configuration */
|
||
606 | CRYP->CR = CRYP_ContextRestore->CR_CurrentConfig; |
||
607 | |||
608 | /* restore The key value */
|
||
609 | CRYP->K0LR = CRYP_ContextRestore->CRYP_K0LR; |
||
610 | CRYP->K0RR = CRYP_ContextRestore->CRYP_K0RR; |
||
611 | CRYP->K1LR = CRYP_ContextRestore->CRYP_K1LR; |
||
612 | CRYP->K1RR = CRYP_ContextRestore->CRYP_K1RR; |
||
613 | CRYP->K2LR = CRYP_ContextRestore->CRYP_K2LR; |
||
614 | CRYP->K2RR = CRYP_ContextRestore->CRYP_K2RR; |
||
615 | CRYP->K3LR = CRYP_ContextRestore->CRYP_K3LR; |
||
616 | CRYP->K3RR = CRYP_ContextRestore->CRYP_K3RR; |
||
617 | |||
618 | /* and the initialization vectors. */
|
||
619 | CRYP->IV0LR = CRYP_ContextRestore->CRYP_IV0LR; |
||
620 | CRYP->IV0RR = CRYP_ContextRestore->CRYP_IV0RR; |
||
621 | CRYP->IV1LR = CRYP_ContextRestore->CRYP_IV1LR; |
||
622 | CRYP->IV1RR = CRYP_ContextRestore->CRYP_IV1RR; |
||
623 | |||
624 | /* Restore the content of context swap registers */
|
||
625 | CRYP->CSGCMCCM0R = CRYP_ContextRestore->CRYP_CSGCMCCMR[0];
|
||
626 | CRYP->CSGCMCCM1R = CRYP_ContextRestore->CRYP_CSGCMCCMR[1];
|
||
627 | CRYP->CSGCMCCM2R = CRYP_ContextRestore->CRYP_CSGCMCCMR[2];
|
||
628 | CRYP->CSGCMCCM3R = CRYP_ContextRestore->CRYP_CSGCMCCMR[3];
|
||
629 | CRYP->CSGCMCCM4R = CRYP_ContextRestore->CRYP_CSGCMCCMR[4];
|
||
630 | CRYP->CSGCMCCM5R = CRYP_ContextRestore->CRYP_CSGCMCCMR[5];
|
||
631 | CRYP->CSGCMCCM6R = CRYP_ContextRestore->CRYP_CSGCMCCMR[6];
|
||
632 | CRYP->CSGCMCCM7R = CRYP_ContextRestore->CRYP_CSGCMCCMR[7];
|
||
633 | |||
634 | CRYP->CSGCM0R = CRYP_ContextRestore->CRYP_CSGCMR[0];
|
||
635 | CRYP->CSGCM1R = CRYP_ContextRestore->CRYP_CSGCMR[1];
|
||
636 | CRYP->CSGCM2R = CRYP_ContextRestore->CRYP_CSGCMR[2];
|
||
637 | CRYP->CSGCM3R = CRYP_ContextRestore->CRYP_CSGCMR[3];
|
||
638 | CRYP->CSGCM4R = CRYP_ContextRestore->CRYP_CSGCMR[4];
|
||
639 | CRYP->CSGCM5R = CRYP_ContextRestore->CRYP_CSGCMR[5];
|
||
640 | CRYP->CSGCM6R = CRYP_ContextRestore->CRYP_CSGCMR[6];
|
||
641 | CRYP->CSGCM7R = CRYP_ContextRestore->CRYP_CSGCMR[7];
|
||
642 | |||
643 | /* Enable the cryptographic processor */
|
||
644 | CRYP->CR |= CRYP_CR_CRYPEN; |
||
645 | } |
||
646 | /**
|
||
647 | * @}
|
||
648 | */
|
||
649 | |||
650 | /** @defgroup CRYP_Group4 CRYP's DMA interface Configuration function
|
||
651 | * @brief CRYP's DMA interface Configuration function
|
||
652 | *
|
||
653 | @verbatim
|
||
654 | ===============================================================================
|
||
655 | ##### CRYP's DMA interface Configuration function #####
|
||
656 | ===============================================================================
|
||
657 | [..] This section provides functions allowing to configure the DMA interface for
|
||
658 | CRYP data input and output transfer.
|
||
659 |
|
||
660 | [..] When the DMA mode is enabled (using the CRYP_DMACmd() function), data can be
|
||
661 | transferred:
|
||
662 | (+) From memory to the CRYP IN FIFO using the DMA peripheral by enabling
|
||
663 | the CRYP_DMAReq_DataIN request.
|
||
664 | (+) From the CRYP OUT FIFO to the memory using the DMA peripheral by enabling
|
||
665 | the CRYP_DMAReq_DataOUT request.
|
||
666 | |||
667 | @endverbatim
|
||
668 | * @{
|
||
669 | */
|
||
670 | |||
671 | /**
|
||
672 | * @brief Enables or disables the CRYP DMA interface.
|
||
673 | * @param CRYP_DMAReq: specifies the CRYP DMA transfer request to be enabled or disabled.
|
||
674 | * This parameter can be any combination of the following values:
|
||
675 | * @arg CRYP_DMAReq_DataOUT: DMA for outgoing(Tx) data transfer
|
||
676 | * @arg CRYP_DMAReq_DataIN: DMA for incoming(Rx) data transfer
|
||
677 | * @param NewState: new state of the selected CRYP DMA transfer request.
|
||
678 | * This parameter can be: ENABLE or DISABLE.
|
||
679 | * @retval None
|
||
680 | */
|
||
681 | void CRYP_DMACmd(uint8_t CRYP_DMAReq, FunctionalState NewState)
|
||
682 | { |
||
683 | /* Check the parameters */
|
||
684 | assert_param(IS_CRYP_DMAREQ(CRYP_DMAReq)); |
||
685 | assert_param(IS_FUNCTIONAL_STATE(NewState)); |
||
686 | |||
687 | if (NewState != DISABLE)
|
||
688 | { |
||
689 | /* Enable the selected CRYP DMA request */
|
||
690 | CRYP->DMACR |= CRYP_DMAReq; |
||
691 | } |
||
692 | else
|
||
693 | { |
||
694 | /* Disable the selected CRYP DMA request */
|
||
695 | CRYP->DMACR &= (uint8_t)~CRYP_DMAReq; |
||
696 | } |
||
697 | } |
||
698 | /**
|
||
699 | * @}
|
||
700 | */
|
||
701 | |||
702 | /** @defgroup CRYP_Group5 Interrupts and flags management functions
|
||
703 | * @brief Interrupts and flags management functions
|
||
704 | *
|
||
705 | @verbatim
|
||
706 | ===============================================================================
|
||
707 | ##### Interrupts and flags management functions #####
|
||
708 | ===============================================================================
|
||
709 |
|
||
710 | [..] This section provides functions allowing to configure the CRYP Interrupts and
|
||
711 | to get the status and Interrupts pending bits.
|
||
712 | |||
713 | [..] The CRYP provides 2 Interrupts sources and 7 Flags:
|
||
714 | |||
715 | *** Flags : ***
|
||
716 | ===============
|
||
717 | [..]
|
||
718 | (#) CRYP_FLAG_IFEM : Set when Input FIFO is empty. This Flag is cleared only
|
||
719 | by hardware.
|
||
720 |
|
||
721 | (#) CRYP_FLAG_IFNF : Set when Input FIFO is not full. This Flag is cleared
|
||
722 | only by hardware.
|
||
723 | |||
724 | |||
725 | (#) CRYP_FLAG_INRIS : Set when Input FIFO Raw interrupt is pending it gives
|
||
726 | the raw interrupt state prior to masking of the input FIFO service interrupt.
|
||
727 | This Flag is cleared only by hardware.
|
||
728 |
|
||
729 | (#) CRYP_FLAG_OFNE : Set when Output FIFO not empty. This Flag is cleared
|
||
730 | only by hardware.
|
||
731 |
|
||
732 | (#) CRYP_FLAG_OFFU : Set when Output FIFO is full. This Flag is cleared only
|
||
733 | by hardware.
|
||
734 |
|
||
735 | (#) CRYP_FLAG_OUTRIS : Set when Output FIFO Raw interrupt is pending it gives
|
||
736 | the raw interrupt state prior to masking of the output FIFO service interrupt.
|
||
737 | This Flag is cleared only by hardware.
|
||
738 |
|
||
739 | (#) CRYP_FLAG_BUSY : Set when the CRYP core is currently processing a block
|
||
740 | of data or a key preparation (for AES decryption). This Flag is cleared
|
||
741 | only by hardware. To clear it, the CRYP core must be disabled and the last
|
||
742 | processing has completed.
|
||
743 | |||
744 | *** Interrupts : ***
|
||
745 | ====================
|
||
746 | [..]
|
||
747 | (#) CRYP_IT_INI : The input FIFO service interrupt is asserted when there
|
||
748 | are less than 4 words in the input FIFO. This interrupt is associated to
|
||
749 | CRYP_FLAG_INRIS flag.
|
||
750 | |||
751 | -@- This interrupt is cleared by performing write operations to the input FIFO
|
||
752 | until it holds 4 or more words. The input FIFO service interrupt INMIS is
|
||
753 | enabled with the CRYP enable bit. Consequently, when CRYP is disabled, the
|
||
754 | INMIS signal is low even if the input FIFO is empty.
|
||
755 | |||
756 | |||
757 | |||
758 | (#) CRYP_IT_OUTI : The output FIFO service interrupt is asserted when there
|
||
759 | is one or more (32-bit word) data items in the output FIFO. This interrupt
|
||
760 | is associated to CRYP_FLAG_OUTRIS flag.
|
||
761 | |||
762 | -@- This interrupt is cleared by reading data from the output FIFO until there
|
||
763 | is no valid (32-bit) word left (that is, the interrupt follows the state
|
||
764 | of the OFNE (output FIFO not empty) flag).
|
||
765 | |||
766 | *** Managing the CRYP controller events : ***
|
||
767 | =============================================
|
||
768 | [..] The user should identify which mode will be used in his application to manage
|
||
769 | the CRYP controller events: Polling mode or Interrupt mode.
|
||
770 | |||
771 | (#) In the Polling Mode it is advised to use the following functions:
|
||
772 | (++) CRYP_GetFlagStatus() : to check if flags events occur.
|
||
773 | |||
774 | -@@- The CRYPT flags do not need to be cleared since they are cleared as
|
||
775 | soon as the associated event are reset.
|
||
776 | |||
777 | |||
778 | (#) In the Interrupt Mode it is advised to use the following functions:
|
||
779 | (++) CRYP_ITConfig() : to enable or disable the interrupt source.
|
||
780 | (++) CRYP_GetITStatus() : to check if Interrupt occurs.
|
||
781 | |||
782 | -@@- The CRYPT interrupts have no pending bits, the interrupt is cleared as
|
||
783 | soon as the associated event is reset.
|
||
784 | |||
785 | @endverbatim
|
||
786 | * @{
|
||
787 | */
|
||
788 | |||
789 | /**
|
||
790 | * @brief Enables or disables the specified CRYP interrupts.
|
||
791 | * @param CRYP_IT: specifies the CRYP interrupt source to be enabled or disabled.
|
||
792 | * This parameter can be any combination of the following values:
|
||
793 | * @arg CRYP_IT_INI: Input FIFO interrupt
|
||
794 | * @arg CRYP_IT_OUTI: Output FIFO interrupt
|
||
795 | * @param NewState: new state of the specified CRYP interrupt.
|
||
796 | * This parameter can be: ENABLE or DISABLE.
|
||
797 | * @retval None
|
||
798 | */
|
||
799 | void CRYP_ITConfig(uint8_t CRYP_IT, FunctionalState NewState)
|
||
800 | { |
||
801 | /* Check the parameters */
|
||
802 | assert_param(IS_CRYP_CONFIG_IT(CRYP_IT)); |
||
803 | assert_param(IS_FUNCTIONAL_STATE(NewState)); |
||
804 | |||
805 | if (NewState != DISABLE)
|
||
806 | { |
||
807 | /* Enable the selected CRYP interrupt */
|
||
808 | CRYP->IMSCR |= CRYP_IT; |
||
809 | } |
||
810 | else
|
||
811 | { |
||
812 | /* Disable the selected CRYP interrupt */
|
||
813 | CRYP->IMSCR &= (uint8_t)~CRYP_IT; |
||
814 | } |
||
815 | } |
||
816 | |||
817 | /**
|
||
818 | * @brief Checks whether the specified CRYP interrupt has occurred or not.
|
||
819 | * @note This function checks the status of the masked interrupt (i.e the
|
||
820 | * interrupt should be previously enabled).
|
||
821 | * @param CRYP_IT: specifies the CRYP (masked) interrupt source to check.
|
||
822 | * This parameter can be one of the following values:
|
||
823 | * @arg CRYP_IT_INI: Input FIFO interrupt
|
||
824 | * @arg CRYP_IT_OUTI: Output FIFO interrupt
|
||
825 | * @retval The new state of CRYP_IT (SET or RESET).
|
||
826 | */
|
||
827 | ITStatus CRYP_GetITStatus(uint8_t CRYP_IT) |
||
828 | { |
||
829 | ITStatus bitstatus = RESET; |
||
830 | /* Check the parameters */
|
||
831 | assert_param(IS_CRYP_GET_IT(CRYP_IT)); |
||
832 | |||
833 | /* Check the status of the specified CRYP interrupt */
|
||
834 | if ((CRYP->MISR & CRYP_IT) != (uint8_t)RESET)
|
||
835 | { |
||
836 | /* CRYP_IT is set */
|
||
837 | bitstatus = SET; |
||
838 | } |
||
839 | else
|
||
840 | { |
||
841 | /* CRYP_IT is reset */
|
||
842 | bitstatus = RESET; |
||
843 | } |
||
844 | /* Return the CRYP_IT status */
|
||
845 | return bitstatus;
|
||
846 | } |
||
847 | |||
848 | /**
|
||
849 | * @brief Returns whether CRYP peripheral is enabled or disabled.
|
||
850 | * @param none.
|
||
851 | * @retval Current state of the CRYP peripheral (ENABLE or DISABLE).
|
||
852 | */
|
||
853 | FunctionalState CRYP_GetCmdStatus(void)
|
||
854 | { |
||
855 | FunctionalState state = DISABLE; |
||
856 | |||
857 | if ((CRYP->CR & CRYP_CR_CRYPEN) != 0) |
||
858 | { |
||
859 | /* CRYPEN bit is set */
|
||
860 | state = ENABLE; |
||
861 | } |
||
862 | else
|
||
863 | { |
||
864 | /* CRYPEN bit is reset */
|
||
865 | state = DISABLE; |
||
866 | } |
||
867 | return state;
|
||
868 | } |
||
869 | |||
870 | /**
|
||
871 | * @brief Checks whether the specified CRYP flag is set or not.
|
||
872 | * @param CRYP_FLAG: specifies the CRYP flag to check.
|
||
873 | * This parameter can be one of the following values:
|
||
874 | * @arg CRYP_FLAG_IFEM: Input FIFO Empty flag.
|
||
875 | * @arg CRYP_FLAG_IFNF: Input FIFO Not Full flag.
|
||
876 | * @arg CRYP_FLAG_OFNE: Output FIFO Not Empty flag.
|
||
877 | * @arg CRYP_FLAG_OFFU: Output FIFO Full flag.
|
||
878 | * @arg CRYP_FLAG_BUSY: Busy flag.
|
||
879 | * @arg CRYP_FLAG_OUTRIS: Output FIFO raw interrupt flag.
|
||
880 | * @arg CRYP_FLAG_INRIS: Input FIFO raw interrupt flag.
|
||
881 | * @retval The new state of CRYP_FLAG (SET or RESET).
|
||
882 | */
|
||
883 | FlagStatus CRYP_GetFlagStatus(uint8_t CRYP_FLAG) |
||
884 | { |
||
885 | FlagStatus bitstatus = RESET; |
||
886 | uint32_t tempreg = 0;
|
||
887 | |||
888 | /* Check the parameters */
|
||
889 | assert_param(IS_CRYP_GET_FLAG(CRYP_FLAG)); |
||
890 | |||
891 | /* check if the FLAG is in RISR register */
|
||
892 | if ((CRYP_FLAG & FLAG_MASK) != 0x00) |
||
893 | { |
||
894 | tempreg = CRYP->RISR; |
||
895 | } |
||
896 | else /* The FLAG is in SR register */ |
||
897 | { |
||
898 | tempreg = CRYP->SR; |
||
899 | } |
||
900 | |||
901 | |||
902 | /* Check the status of the specified CRYP flag */
|
||
903 | if ((tempreg & CRYP_FLAG ) != (uint8_t)RESET)
|
||
904 | { |
||
905 | /* CRYP_FLAG is set */
|
||
906 | bitstatus = SET; |
||
907 | } |
||
908 | else
|
||
909 | { |
||
910 | /* CRYP_FLAG is reset */
|
||
911 | bitstatus = RESET; |
||
912 | } |
||
913 | |||
914 | /* Return the CRYP_FLAG status */
|
||
915 | return bitstatus;
|
||
916 | } |
||
917 | |||
918 | /**
|
||
919 | * @}
|
||
920 | */
|
||
921 | |||
922 | /**
|
||
923 | * @}
|
||
924 | */
|
||
925 | |||
926 | /**
|
||
927 | * @}
|
||
928 | */
|
||
929 | |||
930 | /**
|
||
931 | * @}
|
||
932 | */
|
||
933 | |||
934 | /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|