amiro-blt / Target / Demo / ARMCM4_STM32F405_Power_Management_GCC / Boot / lib / stdperiphlib / CMSIS / Include / core_cmInstr.h @ 69661903
History | View | Annotate | Download (16.8 KB)
1 |
/**************************************************************************//** |
---|---|
2 |
* @file core_cmInstr.h
|
3 |
* @brief CMSIS Cortex-M Core Instruction Access Header File
|
4 |
* @version V3.01
|
5 |
* @date 06. March 2012
|
6 |
*
|
7 |
* @note
|
8 |
* Copyright (C) 2009-2012 ARM Limited. All rights reserved.
|
9 |
*
|
10 |
* @par
|
11 |
* ARM Limited (ARM) is supplying this software for use with Cortex-M
|
12 |
* processor based microcontrollers. This file can be freely distributed
|
13 |
* within development tools that are supporting such ARM based processors.
|
14 |
*
|
15 |
* @par
|
16 |
* THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
|
17 |
* OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
|
18 |
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
|
19 |
* ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
|
20 |
* CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
|
21 |
*
|
22 |
******************************************************************************/
|
23 |
|
24 |
#ifndef __CORE_CMINSTR_H
|
25 |
#define __CORE_CMINSTR_H
|
26 |
|
27 |
|
28 |
/* ########################## Core Instruction Access ######################### */
|
29 |
/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
|
30 |
Access to dedicated instructions
|
31 |
@{
|
32 |
*/
|
33 |
|
34 |
#if defined ( __CC_ARM ) /*------------------RealView Compiler -----------------*/ |
35 |
/* ARM armcc specific functions */
|
36 |
|
37 |
#if (__ARMCC_VERSION < 400677) |
38 |
#error "Please use ARM Compiler Toolchain V4.0.677 or later!" |
39 |
#endif
|
40 |
|
41 |
|
42 |
/** \brief No Operation
|
43 |
|
44 |
No Operation does nothing. This instruction can be used for code alignment purposes.
|
45 |
*/
|
46 |
#define __NOP __nop
|
47 |
|
48 |
|
49 |
/** \brief Wait For Interrupt
|
50 |
|
51 |
Wait For Interrupt is a hint instruction that suspends execution
|
52 |
until one of a number of events occurs.
|
53 |
*/
|
54 |
#define __WFI __wfi
|
55 |
|
56 |
|
57 |
/** \brief Wait For Event
|
58 |
|
59 |
Wait For Event is a hint instruction that permits the processor to enter
|
60 |
a low-power state until one of a number of events occurs.
|
61 |
*/
|
62 |
#define __WFE __wfe
|
63 |
|
64 |
|
65 |
/** \brief Send Event
|
66 |
|
67 |
Send Event is a hint instruction. It causes an event to be signaled to the CPU.
|
68 |
*/
|
69 |
#define __SEV __sev
|
70 |
|
71 |
|
72 |
/** \brief Instruction Synchronization Barrier
|
73 |
|
74 |
Instruction Synchronization Barrier flushes the pipeline in the processor,
|
75 |
so that all instructions following the ISB are fetched from cache or
|
76 |
memory, after the instruction has been completed.
|
77 |
*/
|
78 |
#define __ISB() __isb(0xF) |
79 |
|
80 |
|
81 |
/** \brief Data Synchronization Barrier
|
82 |
|
83 |
This function acts as a special kind of Data Memory Barrier.
|
84 |
It completes when all explicit memory accesses before this instruction complete.
|
85 |
*/
|
86 |
#define __DSB() __dsb(0xF) |
87 |
|
88 |
|
89 |
/** \brief Data Memory Barrier
|
90 |
|
91 |
This function ensures the apparent order of the explicit memory operations before
|
92 |
and after the instruction, without ensuring their completion.
|
93 |
*/
|
94 |
#define __DMB() __dmb(0xF) |
95 |
|
96 |
|
97 |
/** \brief Reverse byte order (32 bit)
|
98 |
|
99 |
This function reverses the byte order in integer value.
|
100 |
|
101 |
\param [in] value Value to reverse
|
102 |
\return Reversed value
|
103 |
*/
|
104 |
#define __REV __rev
|
105 |
|
106 |
|
107 |
/** \brief Reverse byte order (16 bit)
|
108 |
|
109 |
This function reverses the byte order in two unsigned short values.
|
110 |
|
111 |
\param [in] value Value to reverse
|
112 |
\return Reversed value
|
113 |
*/
|
114 |
__attribute__((section(".rev16_text"))) __STATIC_INLINE __ASM uint32_t __REV16(uint32_t value)
|
115 |
{ |
116 |
rev16 r0, r0 |
117 |
bx lr |
118 |
} |
119 |
|
120 |
|
121 |
/** \brief Reverse byte order in signed short value
|
122 |
|
123 |
This function reverses the byte order in a signed short value with sign extension to integer.
|
124 |
|
125 |
\param [in] value Value to reverse
|
126 |
\return Reversed value
|
127 |
*/
|
128 |
__attribute__((section(".revsh_text"))) __STATIC_INLINE __ASM int32_t __REVSH(int32_t value)
|
129 |
{ |
130 |
revsh r0, r0 |
131 |
bx lr |
132 |
} |
133 |
|
134 |
|
135 |
/** \brief Rotate Right in unsigned value (32 bit)
|
136 |
|
137 |
This function Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
|
138 |
|
139 |
\param [in] value Value to rotate
|
140 |
\param [in] value Number of Bits to rotate
|
141 |
\return Rotated value
|
142 |
*/
|
143 |
#define __ROR __ror
|
144 |
|
145 |
|
146 |
#if (__CORTEX_M >= 0x03) |
147 |
|
148 |
/** \brief Reverse bit order of value
|
149 |
|
150 |
This function reverses the bit order of the given value.
|
151 |
|
152 |
\param [in] value Value to reverse
|
153 |
\return Reversed value
|
154 |
*/
|
155 |
#define __RBIT __rbit
|
156 |
|
157 |
|
158 |
/** \brief LDR Exclusive (8 bit)
|
159 |
|
160 |
This function performs a exclusive LDR command for 8 bit value.
|
161 |
|
162 |
\param [in] ptr Pointer to data
|
163 |
\return value of type uint8_t at (*ptr)
|
164 |
*/
|
165 |
#define __LDREXB(ptr) ((uint8_t ) __ldrex(ptr))
|
166 |
|
167 |
|
168 |
/** \brief LDR Exclusive (16 bit)
|
169 |
|
170 |
This function performs a exclusive LDR command for 16 bit values.
|
171 |
|
172 |
\param [in] ptr Pointer to data
|
173 |
\return value of type uint16_t at (*ptr)
|
174 |
*/
|
175 |
#define __LDREXH(ptr) ((uint16_t) __ldrex(ptr))
|
176 |
|
177 |
|
178 |
/** \brief LDR Exclusive (32 bit)
|
179 |
|
180 |
This function performs a exclusive LDR command for 32 bit values.
|
181 |
|
182 |
\param [in] ptr Pointer to data
|
183 |
\return value of type uint32_t at (*ptr)
|
184 |
*/
|
185 |
#define __LDREXW(ptr) ((uint32_t ) __ldrex(ptr))
|
186 |
|
187 |
|
188 |
/** \brief STR Exclusive (8 bit)
|
189 |
|
190 |
This function performs a exclusive STR command for 8 bit values.
|
191 |
|
192 |
\param [in] value Value to store
|
193 |
\param [in] ptr Pointer to location
|
194 |
\return 0 Function succeeded
|
195 |
\return 1 Function failed
|
196 |
*/
|
197 |
#define __STREXB(value, ptr) __strex(value, ptr)
|
198 |
|
199 |
|
200 |
/** \brief STR Exclusive (16 bit)
|
201 |
|
202 |
This function performs a exclusive STR command for 16 bit values.
|
203 |
|
204 |
\param [in] value Value to store
|
205 |
\param [in] ptr Pointer to location
|
206 |
\return 0 Function succeeded
|
207 |
\return 1 Function failed
|
208 |
*/
|
209 |
#define __STREXH(value, ptr) __strex(value, ptr)
|
210 |
|
211 |
|
212 |
/** \brief STR Exclusive (32 bit)
|
213 |
|
214 |
This function performs a exclusive STR command for 32 bit values.
|
215 |
|
216 |
\param [in] value Value to store
|
217 |
\param [in] ptr Pointer to location
|
218 |
\return 0 Function succeeded
|
219 |
\return 1 Function failed
|
220 |
*/
|
221 |
#define __STREXW(value, ptr) __strex(value, ptr)
|
222 |
|
223 |
|
224 |
/** \brief Remove the exclusive lock
|
225 |
|
226 |
This function removes the exclusive lock which is created by LDREX.
|
227 |
|
228 |
*/
|
229 |
#define __CLREX __clrex
|
230 |
|
231 |
|
232 |
/** \brief Signed Saturate
|
233 |
|
234 |
This function saturates a signed value.
|
235 |
|
236 |
\param [in] value Value to be saturated
|
237 |
\param [in] sat Bit position to saturate to (1..32)
|
238 |
\return Saturated value
|
239 |
*/
|
240 |
#define __SSAT __ssat
|
241 |
|
242 |
|
243 |
/** \brief Unsigned Saturate
|
244 |
|
245 |
This function saturates an unsigned value.
|
246 |
|
247 |
\param [in] value Value to be saturated
|
248 |
\param [in] sat Bit position to saturate to (0..31)
|
249 |
\return Saturated value
|
250 |
*/
|
251 |
#define __USAT __usat
|
252 |
|
253 |
|
254 |
/** \brief Count leading zeros
|
255 |
|
256 |
This function counts the number of leading zeros of a data value.
|
257 |
|
258 |
\param [in] value Value to count the leading zeros
|
259 |
\return number of leading zeros in value
|
260 |
*/
|
261 |
#define __CLZ __clz
|
262 |
|
263 |
#endif /* (__CORTEX_M >= 0x03) */ |
264 |
|
265 |
|
266 |
|
267 |
#elif defined ( __ICCARM__ ) /*------------------ ICC Compiler -------------------*/ |
268 |
/* IAR iccarm specific functions */
|
269 |
|
270 |
#include <cmsis_iar.h> |
271 |
|
272 |
|
273 |
#elif defined ( __TMS470__ ) /*---------------- TI CCS Compiler ------------------*/ |
274 |
/* TI CCS specific functions */
|
275 |
|
276 |
#include <cmsis_ccs.h> |
277 |
|
278 |
|
279 |
#elif defined ( __GNUC__ ) /*------------------ GNU Compiler ---------------------*/ |
280 |
/* GNU gcc specific functions */
|
281 |
|
282 |
/** \brief No Operation
|
283 |
|
284 |
No Operation does nothing. This instruction can be used for code alignment purposes.
|
285 |
*/
|
286 |
__attribute__( ( always_inline ) ) __STATIC_INLINE void __NOP(void) |
287 |
{ |
288 |
__ASM volatile ("nop"); |
289 |
} |
290 |
|
291 |
|
292 |
/** \brief Wait For Interrupt
|
293 |
|
294 |
Wait For Interrupt is a hint instruction that suspends execution
|
295 |
until one of a number of events occurs.
|
296 |
*/
|
297 |
__attribute__( ( always_inline ) ) __STATIC_INLINE void __WFI(void) |
298 |
{ |
299 |
__ASM volatile ("wfi"); |
300 |
} |
301 |
|
302 |
|
303 |
/** \brief Wait For Event
|
304 |
|
305 |
Wait For Event is a hint instruction that permits the processor to enter
|
306 |
a low-power state until one of a number of events occurs.
|
307 |
*/
|
308 |
__attribute__( ( always_inline ) ) __STATIC_INLINE void __WFE(void) |
309 |
{ |
310 |
__ASM volatile ("wfe"); |
311 |
} |
312 |
|
313 |
|
314 |
/** \brief Send Event
|
315 |
|
316 |
Send Event is a hint instruction. It causes an event to be signaled to the CPU.
|
317 |
*/
|
318 |
__attribute__( ( always_inline ) ) __STATIC_INLINE void __SEV(void) |
319 |
{ |
320 |
__ASM volatile ("sev"); |
321 |
} |
322 |
|
323 |
|
324 |
/** \brief Instruction Synchronization Barrier
|
325 |
|
326 |
Instruction Synchronization Barrier flushes the pipeline in the processor,
|
327 |
so that all instructions following the ISB are fetched from cache or
|
328 |
memory, after the instruction has been completed.
|
329 |
*/
|
330 |
__attribute__( ( always_inline ) ) __STATIC_INLINE void __ISB(void) |
331 |
{ |
332 |
__ASM volatile ("isb"); |
333 |
} |
334 |
|
335 |
|
336 |
/** \brief Data Synchronization Barrier
|
337 |
|
338 |
This function acts as a special kind of Data Memory Barrier.
|
339 |
It completes when all explicit memory accesses before this instruction complete.
|
340 |
*/
|
341 |
__attribute__( ( always_inline ) ) __STATIC_INLINE void __DSB(void) |
342 |
{ |
343 |
__ASM volatile ("dsb"); |
344 |
} |
345 |
|
346 |
|
347 |
/** \brief Data Memory Barrier
|
348 |
|
349 |
This function ensures the apparent order of the explicit memory operations before
|
350 |
and after the instruction, without ensuring their completion.
|
351 |
*/
|
352 |
__attribute__( ( always_inline ) ) __STATIC_INLINE void __DMB(void) |
353 |
{ |
354 |
__ASM volatile ("dmb"); |
355 |
} |
356 |
|
357 |
|
358 |
/** \brief Reverse byte order (32 bit)
|
359 |
|
360 |
This function reverses the byte order in integer value.
|
361 |
|
362 |
\param [in] value Value to reverse
|
363 |
\return Reversed value
|
364 |
*/
|
365 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __REV(uint32_t value) |
366 |
{ |
367 |
uint32_t result; |
368 |
|
369 |
__ASM volatile ("rev %0, %1" : "=r" (result) : "r" (value) ); |
370 |
return(result);
|
371 |
} |
372 |
|
373 |
|
374 |
/** \brief Reverse byte order (16 bit)
|
375 |
|
376 |
This function reverses the byte order in two unsigned short values.
|
377 |
|
378 |
\param [in] value Value to reverse
|
379 |
\return Reversed value
|
380 |
*/
|
381 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __REV16(uint32_t value) |
382 |
{ |
383 |
uint32_t result; |
384 |
|
385 |
__ASM volatile ("rev16 %0, %1" : "=r" (result) : "r" (value) ); |
386 |
return(result);
|
387 |
} |
388 |
|
389 |
|
390 |
/** \brief Reverse byte order in signed short value
|
391 |
|
392 |
This function reverses the byte order in a signed short value with sign extension to integer.
|
393 |
|
394 |
\param [in] value Value to reverse
|
395 |
\return Reversed value
|
396 |
*/
|
397 |
__attribute__( ( always_inline ) ) __STATIC_INLINE int32_t __REVSH(int32_t value) |
398 |
{ |
399 |
uint32_t result; |
400 |
|
401 |
__ASM volatile ("revsh %0, %1" : "=r" (result) : "r" (value) ); |
402 |
return(result);
|
403 |
} |
404 |
|
405 |
|
406 |
/** \brief Rotate Right in unsigned value (32 bit)
|
407 |
|
408 |
This function Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
|
409 |
|
410 |
\param [in] value Value to rotate
|
411 |
\param [in] value Number of Bits to rotate
|
412 |
\return Rotated value
|
413 |
*/
|
414 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __ROR(uint32_t op1, uint32_t op2) |
415 |
{ |
416 |
|
417 |
__ASM volatile ("ror %0, %0, %1" : "+r" (op1) : "r" (op2) ); |
418 |
return(op1);
|
419 |
} |
420 |
|
421 |
|
422 |
#if (__CORTEX_M >= 0x03) |
423 |
|
424 |
/** \brief Reverse bit order of value
|
425 |
|
426 |
This function reverses the bit order of the given value.
|
427 |
|
428 |
\param [in] value Value to reverse
|
429 |
\return Reversed value
|
430 |
*/
|
431 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __RBIT(uint32_t value) |
432 |
{ |
433 |
uint32_t result; |
434 |
|
435 |
__ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) ); |
436 |
return(result);
|
437 |
} |
438 |
|
439 |
|
440 |
/** \brief LDR Exclusive (8 bit)
|
441 |
|
442 |
This function performs a exclusive LDR command for 8 bit value.
|
443 |
|
444 |
\param [in] ptr Pointer to data
|
445 |
\return value of type uint8_t at (*ptr)
|
446 |
*/
|
447 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint8_t __LDREXB(volatile uint8_t *addr)
|
448 |
{ |
449 |
uint8_t result; |
450 |
|
451 |
__ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) ); |
452 |
return(result);
|
453 |
} |
454 |
|
455 |
|
456 |
/** \brief LDR Exclusive (16 bit)
|
457 |
|
458 |
This function performs a exclusive LDR command for 16 bit values.
|
459 |
|
460 |
\param [in] ptr Pointer to data
|
461 |
\return value of type uint16_t at (*ptr)
|
462 |
*/
|
463 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint16_t __LDREXH(volatile uint16_t *addr)
|
464 |
{ |
465 |
uint16_t result; |
466 |
|
467 |
__ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) ); |
468 |
return(result);
|
469 |
} |
470 |
|
471 |
|
472 |
/** \brief LDR Exclusive (32 bit)
|
473 |
|
474 |
This function performs a exclusive LDR command for 32 bit values.
|
475 |
|
476 |
\param [in] ptr Pointer to data
|
477 |
\return value of type uint32_t at (*ptr)
|
478 |
*/
|
479 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __LDREXW(volatile uint32_t *addr)
|
480 |
{ |
481 |
uint32_t result; |
482 |
|
483 |
__ASM volatile ("ldrex %0, [%1]" : "=r" (result) : "r" (addr) ); |
484 |
return(result);
|
485 |
} |
486 |
|
487 |
|
488 |
/** \brief STR Exclusive (8 bit)
|
489 |
|
490 |
This function performs a exclusive STR command for 8 bit values.
|
491 |
|
492 |
\param [in] value Value to store
|
493 |
\param [in] ptr Pointer to location
|
494 |
\return 0 Function succeeded
|
495 |
\return 1 Function failed
|
496 |
*/
|
497 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)
|
498 |
{ |
499 |
uint32_t result; |
500 |
|
501 |
__ASM volatile ("strexb %0, %2, [%1]" : "=&r" (result) : "r" (addr), "r" (value) ); |
502 |
return(result);
|
503 |
} |
504 |
|
505 |
|
506 |
/** \brief STR Exclusive (16 bit)
|
507 |
|
508 |
This function performs a exclusive STR command for 16 bit values.
|
509 |
|
510 |
\param [in] value Value to store
|
511 |
\param [in] ptr Pointer to location
|
512 |
\return 0 Function succeeded
|
513 |
\return 1 Function failed
|
514 |
*/
|
515 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)
|
516 |
{ |
517 |
uint32_t result; |
518 |
|
519 |
__ASM volatile ("strexh %0, %2, [%1]" : "=&r" (result) : "r" (addr), "r" (value) ); |
520 |
return(result);
|
521 |
} |
522 |
|
523 |
|
524 |
/** \brief STR Exclusive (32 bit)
|
525 |
|
526 |
This function performs a exclusive STR command for 32 bit values.
|
527 |
|
528 |
\param [in] value Value to store
|
529 |
\param [in] ptr Pointer to location
|
530 |
\return 0 Function succeeded
|
531 |
\return 1 Function failed
|
532 |
*/
|
533 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)
|
534 |
{ |
535 |
uint32_t result; |
536 |
|
537 |
__ASM volatile ("strex %0, %2, [%1]" : "=&r" (result) : "r" (addr), "r" (value) ); |
538 |
return(result);
|
539 |
} |
540 |
|
541 |
|
542 |
/** \brief Remove the exclusive lock
|
543 |
|
544 |
This function removes the exclusive lock which is created by LDREX.
|
545 |
|
546 |
*/
|
547 |
__attribute__( ( always_inline ) ) __STATIC_INLINE void __CLREX(void) |
548 |
{ |
549 |
__ASM volatile ("clrex"); |
550 |
} |
551 |
|
552 |
|
553 |
/** \brief Signed Saturate
|
554 |
|
555 |
This function saturates a signed value.
|
556 |
|
557 |
\param [in] value Value to be saturated
|
558 |
\param [in] sat Bit position to saturate to (1..32)
|
559 |
\return Saturated value
|
560 |
*/
|
561 |
#define __SSAT(ARG1,ARG2) \
|
562 |
({ \ |
563 |
uint32_t __RES, __ARG1 = (ARG1); \ |
564 |
__ASM ("ssat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \ |
565 |
__RES; \ |
566 |
}) |
567 |
|
568 |
|
569 |
/** \brief Unsigned Saturate
|
570 |
|
571 |
This function saturates an unsigned value.
|
572 |
|
573 |
\param [in] value Value to be saturated
|
574 |
\param [in] sat Bit position to saturate to (0..31)
|
575 |
\return Saturated value
|
576 |
*/
|
577 |
#define __USAT(ARG1,ARG2) \
|
578 |
({ \ |
579 |
uint32_t __RES, __ARG1 = (ARG1); \ |
580 |
__ASM ("usat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \ |
581 |
__RES; \ |
582 |
}) |
583 |
|
584 |
|
585 |
/** \brief Count leading zeros
|
586 |
|
587 |
This function counts the number of leading zeros of a data value.
|
588 |
|
589 |
\param [in] value Value to count the leading zeros
|
590 |
\return number of leading zeros in value
|
591 |
*/
|
592 |
__attribute__( ( always_inline ) ) __STATIC_INLINE uint8_t __CLZ(uint32_t value) |
593 |
{ |
594 |
uint8_t result; |
595 |
|
596 |
__ASM volatile ("clz %0, %1" : "=r" (result) : "r" (value) ); |
597 |
return(result);
|
598 |
} |
599 |
|
600 |
#endif /* (__CORTEX_M >= 0x03) */ |
601 |
|
602 |
|
603 |
|
604 |
|
605 |
#elif defined ( __TASKING__ ) /*------------------ TASKING Compiler --------------*/ |
606 |
/* TASKING carm specific functions */
|
607 |
|
608 |
/*
|
609 |
* The CMSIS functions have been implemented as intrinsics in the compiler.
|
610 |
* Please use "carm -?i" to get an up to date list of all intrinsics,
|
611 |
* Including the CMSIS ones.
|
612 |
*/
|
613 |
|
614 |
#endif
|
615 |
|
616 |
/*@}*/ /* end of group CMSIS_Core_InstructionInterface */ |
617 |
|
618 |
#endif /* __CORE_CMINSTR_H */ |