amiro-blt / Target / Demo / ARMCM4_STM32F405_Power_Management_GCC / Boot / lib / stdperiphlib / STM32F4xx_StdPeriph_Driver / src / stm32f4xx_cryp_aes.c @ 69661903
History | View | Annotate | Download (56.4 KB)
1 |
/**
|
---|---|
2 |
******************************************************************************
|
3 |
* @file stm32f4xx_cryp_aes.c
|
4 |
* @author MCD Application Team
|
5 |
* @version V1.1.0
|
6 |
* @date 11-January-2013
|
7 |
* @brief This file provides high level functions to encrypt and decrypt an
|
8 |
* input message using AES in ECB/CBC/CTR/GCM/CCM modes.
|
9 |
* It uses the stm32f4xx_cryp.c/.h drivers to access the STM32F4xx CRYP
|
10 |
* peripheral.
|
11 |
* AES-ECB/CBC/CTR/GCM/CCM modes are available on STM32F437x Devices.
|
12 |
* For STM32F41xx Devices, only AES-ECB/CBC/CTR modes are available.
|
13 |
*
|
14 |
@verbatim
|
15 |
===================================================================
|
16 |
##### How to use this driver #####
|
17 |
===================================================================
|
18 |
[..]
|
19 |
(#) Enable The CRYP controller clock using
|
20 |
RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_CRYP, ENABLE); function.
|
21 |
|
22 |
(#) Encrypt and decrypt using AES in ECB Mode using CRYP_AES_ECB() function.
|
23 |
|
24 |
(#) Encrypt and decrypt using AES in CBC Mode using CRYP_AES_CBC() function.
|
25 |
|
26 |
(#) Encrypt and decrypt using AES in CTR Mode using CRYP_AES_CTR() function.
|
27 |
|
28 |
(#) Encrypt and decrypt using AES in GCM Mode using CRYP_AES_GCM() function.
|
29 |
|
30 |
(#) Encrypt and decrypt using AES in CCM Mode using CRYP_AES_CCM() function.
|
31 |
|
32 |
@endverbatim
|
33 |
*
|
34 |
******************************************************************************
|
35 |
* @attention
|
36 |
*
|
37 |
* <h2><center>© COPYRIGHT 2013 STMicroelectronics</center></h2>
|
38 |
*
|
39 |
* Licensed under MCD-ST Liberty SW License Agreement V2, (the "License");
|
40 |
* You may not use this file except in compliance with the License.
|
41 |
* You may obtain a copy of the License at:
|
42 |
*
|
43 |
* http://www.st.com/software_license_agreement_liberty_v2
|
44 |
*
|
45 |
* Unless required by applicable law or agreed to in writing, software
|
46 |
* distributed under the License is distributed on an "AS IS" BASIS,
|
47 |
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
48 |
* See the License for the specific language governing permissions and
|
49 |
* limitations under the License.
|
50 |
*
|
51 |
******************************************************************************
|
52 |
*/
|
53 |
|
54 |
/* Includes ------------------------------------------------------------------*/
|
55 |
#include "stm32f4xx_cryp.h" |
56 |
|
57 |
/** @addtogroup STM32F4xx_StdPeriph_Driver
|
58 |
* @{
|
59 |
*/
|
60 |
|
61 |
/** @defgroup CRYP
|
62 |
* @brief CRYP driver modules
|
63 |
* @{
|
64 |
*/
|
65 |
|
66 |
/* Private typedef -----------------------------------------------------------*/
|
67 |
/* Private define ------------------------------------------------------------*/
|
68 |
#define AESBUSY_TIMEOUT ((uint32_t) 0x00010000) |
69 |
|
70 |
/* Private macro -------------------------------------------------------------*/
|
71 |
/* Private variables ---------------------------------------------------------*/
|
72 |
/* Private function prototypes -----------------------------------------------*/
|
73 |
/* Private functions ---------------------------------------------------------*/
|
74 |
|
75 |
/** @defgroup CRYP_Private_Functions
|
76 |
* @{
|
77 |
*/
|
78 |
|
79 |
/** @defgroup CRYP_Group6 High Level AES functions
|
80 |
* @brief High Level AES functions
|
81 |
*
|
82 |
@verbatim
|
83 |
===============================================================================
|
84 |
##### High Level AES functions #####
|
85 |
===============================================================================
|
86 |
|
87 |
@endverbatim
|
88 |
* @{
|
89 |
*/
|
90 |
|
91 |
/**
|
92 |
* @brief Encrypt and decrypt using AES in ECB Mode
|
93 |
* @param Mode: encryption or decryption Mode.
|
94 |
* This parameter can be one of the following values:
|
95 |
* @arg MODE_ENCRYPT: Encryption
|
96 |
* @arg MODE_DECRYPT: Decryption
|
97 |
* @param Key: Key used for AES algorithm.
|
98 |
* @param Keysize: length of the Key, must be a 128, 192 or 256.
|
99 |
* @param Input: pointer to the Input buffer.
|
100 |
* @param Ilength: length of the Input buffer, must be a multiple of 16.
|
101 |
* @param Output: pointer to the returned buffer.
|
102 |
* @retval An ErrorStatus enumeration value:
|
103 |
* - SUCCESS: Operation done
|
104 |
* - ERROR: Operation failed
|
105 |
*/
|
106 |
ErrorStatus CRYP_AES_ECB(uint8_t Mode, uint8_t* Key, uint16_t Keysize, |
107 |
uint8_t* Input, uint32_t Ilength, uint8_t* Output) |
108 |
{ |
109 |
CRYP_InitTypeDef AES_CRYP_InitStructure; |
110 |
CRYP_KeyInitTypeDef AES_CRYP_KeyInitStructure; |
111 |
__IO uint32_t counter = 0;
|
112 |
uint32_t busystatus = 0;
|
113 |
ErrorStatus status = SUCCESS; |
114 |
uint32_t keyaddr = (uint32_t)Key; |
115 |
uint32_t inputaddr = (uint32_t)Input; |
116 |
uint32_t outputaddr = (uint32_t)Output; |
117 |
uint32_t i = 0;
|
118 |
|
119 |
/* Crypto structures initialisation*/
|
120 |
CRYP_KeyStructInit(&AES_CRYP_KeyInitStructure); |
121 |
|
122 |
switch(Keysize)
|
123 |
{ |
124 |
case 128: |
125 |
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_128b; |
126 |
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr)); |
127 |
keyaddr+=4;
|
128 |
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr)); |
129 |
keyaddr+=4;
|
130 |
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr)); |
131 |
keyaddr+=4;
|
132 |
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr)); |
133 |
break;
|
134 |
case 192: |
135 |
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_192b; |
136 |
AES_CRYP_KeyInitStructure.CRYP_Key1Left = __REV(*(uint32_t*)(keyaddr)); |
137 |
keyaddr+=4;
|
138 |
AES_CRYP_KeyInitStructure.CRYP_Key1Right= __REV(*(uint32_t*)(keyaddr)); |
139 |
keyaddr+=4;
|
140 |
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr)); |
141 |
keyaddr+=4;
|
142 |
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr)); |
143 |
keyaddr+=4;
|
144 |
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr)); |
145 |
keyaddr+=4;
|
146 |
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr)); |
147 |
break;
|
148 |
case 256: |
149 |
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_256b; |
150 |
AES_CRYP_KeyInitStructure.CRYP_Key0Left = __REV(*(uint32_t*)(keyaddr)); |
151 |
keyaddr+=4;
|
152 |
AES_CRYP_KeyInitStructure.CRYP_Key0Right= __REV(*(uint32_t*)(keyaddr)); |
153 |
keyaddr+=4;
|
154 |
AES_CRYP_KeyInitStructure.CRYP_Key1Left = __REV(*(uint32_t*)(keyaddr)); |
155 |
keyaddr+=4;
|
156 |
AES_CRYP_KeyInitStructure.CRYP_Key1Right= __REV(*(uint32_t*)(keyaddr)); |
157 |
keyaddr+=4;
|
158 |
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr)); |
159 |
keyaddr+=4;
|
160 |
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr)); |
161 |
keyaddr+=4;
|
162 |
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr)); |
163 |
keyaddr+=4;
|
164 |
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr)); |
165 |
break;
|
166 |
default:
|
167 |
break;
|
168 |
} |
169 |
|
170 |
/*------------------ AES Decryption ------------------*/
|
171 |
if(Mode == MODE_DECRYPT) /* AES decryption */ |
172 |
{ |
173 |
/* Flush IN/OUT FIFOs */
|
174 |
CRYP_FIFOFlush(); |
175 |
|
176 |
/* Crypto Init for Key preparation for decryption process */
|
177 |
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt; |
178 |
AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_Key; |
179 |
AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_32b; |
180 |
CRYP_Init(&AES_CRYP_InitStructure); |
181 |
|
182 |
/* Key Initialisation */
|
183 |
CRYP_KeyInit(&AES_CRYP_KeyInitStructure); |
184 |
|
185 |
/* Enable Crypto processor */
|
186 |
CRYP_Cmd(ENABLE); |
187 |
|
188 |
/* wait until the Busy flag is RESET */
|
189 |
do
|
190 |
{ |
191 |
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY); |
192 |
counter++; |
193 |
}while ((counter != AESBUSY_TIMEOUT) && (busystatus != RESET));
|
194 |
|
195 |
if (busystatus != RESET)
|
196 |
{ |
197 |
status = ERROR; |
198 |
} |
199 |
else
|
200 |
{ |
201 |
/* Crypto Init for decryption process */
|
202 |
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt; |
203 |
} |
204 |
} |
205 |
/*------------------ AES Encryption ------------------*/
|
206 |
else /* AES encryption */ |
207 |
{ |
208 |
|
209 |
CRYP_KeyInit(&AES_CRYP_KeyInitStructure); |
210 |
|
211 |
/* Crypto Init for Encryption process */
|
212 |
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Encrypt; |
213 |
} |
214 |
|
215 |
AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_ECB; |
216 |
AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_8b; |
217 |
CRYP_Init(&AES_CRYP_InitStructure); |
218 |
|
219 |
/* Flush IN/OUT FIFOs */
|
220 |
CRYP_FIFOFlush(); |
221 |
|
222 |
/* Enable Crypto processor */
|
223 |
CRYP_Cmd(ENABLE); |
224 |
|
225 |
if(CRYP_GetCmdStatus() == DISABLE)
|
226 |
{ |
227 |
/* The CRYP peripheral clock is not enabled or the device doesn't embedd
|
228 |
the CRYP peripheral (please check the device sales type. */
|
229 |
return(ERROR);
|
230 |
} |
231 |
|
232 |
for(i=0; ((i<Ilength) && (status != ERROR)); i+=16) |
233 |
{ |
234 |
|
235 |
/* Write the Input block in the IN FIFO */
|
236 |
CRYP_DataIn(*(uint32_t*)(inputaddr)); |
237 |
inputaddr+=4;
|
238 |
CRYP_DataIn(*(uint32_t*)(inputaddr)); |
239 |
inputaddr+=4;
|
240 |
CRYP_DataIn(*(uint32_t*)(inputaddr)); |
241 |
inputaddr+=4;
|
242 |
CRYP_DataIn(*(uint32_t*)(inputaddr)); |
243 |
inputaddr+=4;
|
244 |
|
245 |
/* Wait until the complete message has been processed */
|
246 |
counter = 0;
|
247 |
do
|
248 |
{ |
249 |
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY); |
250 |
counter++; |
251 |
}while ((counter != AESBUSY_TIMEOUT) && (busystatus != RESET));
|
252 |
|
253 |
if (busystatus != RESET)
|
254 |
{ |
255 |
status = ERROR; |
256 |
} |
257 |
else
|
258 |
{ |
259 |
|
260 |
/* Read the Output block from the Output FIFO */
|
261 |
*(uint32_t*)(outputaddr) = CRYP_DataOut(); |
262 |
outputaddr+=4;
|
263 |
*(uint32_t*)(outputaddr) = CRYP_DataOut(); |
264 |
outputaddr+=4;
|
265 |
*(uint32_t*)(outputaddr) = CRYP_DataOut(); |
266 |
outputaddr+=4;
|
267 |
*(uint32_t*)(outputaddr) = CRYP_DataOut(); |
268 |
outputaddr+=4;
|
269 |
} |
270 |
} |
271 |
|
272 |
/* Disable Crypto */
|
273 |
CRYP_Cmd(DISABLE); |
274 |
|
275 |
return status;
|
276 |
} |
277 |
|
278 |
/**
|
279 |
* @brief Encrypt and decrypt using AES in CBC Mode
|
280 |
* @param Mode: encryption or decryption Mode.
|
281 |
* This parameter can be one of the following values:
|
282 |
* @arg MODE_ENCRYPT: Encryption
|
283 |
* @arg MODE_DECRYPT: Decryption
|
284 |
* @param InitVectors: Initialisation Vectors used for AES algorithm.
|
285 |
* @param Key: Key used for AES algorithm.
|
286 |
* @param Keysize: length of the Key, must be a 128, 192 or 256.
|
287 |
* @param Input: pointer to the Input buffer.
|
288 |
* @param Ilength: length of the Input buffer, must be a multiple of 16.
|
289 |
* @param Output: pointer to the returned buffer.
|
290 |
* @retval An ErrorStatus enumeration value:
|
291 |
* - SUCCESS: Operation done
|
292 |
* - ERROR: Operation failed
|
293 |
*/
|
294 |
ErrorStatus CRYP_AES_CBC(uint8_t Mode, uint8_t InitVectors[16], uint8_t *Key,
|
295 |
uint16_t Keysize, uint8_t *Input, uint32_t Ilength, |
296 |
uint8_t *Output) |
297 |
{ |
298 |
CRYP_InitTypeDef AES_CRYP_InitStructure; |
299 |
CRYP_KeyInitTypeDef AES_CRYP_KeyInitStructure; |
300 |
CRYP_IVInitTypeDef AES_CRYP_IVInitStructure; |
301 |
__IO uint32_t counter = 0;
|
302 |
uint32_t busystatus = 0;
|
303 |
ErrorStatus status = SUCCESS; |
304 |
uint32_t keyaddr = (uint32_t)Key; |
305 |
uint32_t inputaddr = (uint32_t)Input; |
306 |
uint32_t outputaddr = (uint32_t)Output; |
307 |
uint32_t ivaddr = (uint32_t)InitVectors; |
308 |
uint32_t i = 0;
|
309 |
|
310 |
/* Crypto structures initialisation*/
|
311 |
CRYP_KeyStructInit(&AES_CRYP_KeyInitStructure); |
312 |
|
313 |
switch(Keysize)
|
314 |
{ |
315 |
case 128: |
316 |
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_128b; |
317 |
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr)); |
318 |
keyaddr+=4;
|
319 |
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr)); |
320 |
keyaddr+=4;
|
321 |
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr)); |
322 |
keyaddr+=4;
|
323 |
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr)); |
324 |
break;
|
325 |
case 192: |
326 |
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_192b; |
327 |
AES_CRYP_KeyInitStructure.CRYP_Key1Left = __REV(*(uint32_t*)(keyaddr)); |
328 |
keyaddr+=4;
|
329 |
AES_CRYP_KeyInitStructure.CRYP_Key1Right= __REV(*(uint32_t*)(keyaddr)); |
330 |
keyaddr+=4;
|
331 |
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr)); |
332 |
keyaddr+=4;
|
333 |
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr)); |
334 |
keyaddr+=4;
|
335 |
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr)); |
336 |
keyaddr+=4;
|
337 |
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr)); |
338 |
break;
|
339 |
case 256: |
340 |
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_256b; |
341 |
AES_CRYP_KeyInitStructure.CRYP_Key0Left = __REV(*(uint32_t*)(keyaddr)); |
342 |
keyaddr+=4;
|
343 |
AES_CRYP_KeyInitStructure.CRYP_Key0Right= __REV(*(uint32_t*)(keyaddr)); |
344 |
keyaddr+=4;
|
345 |
AES_CRYP_KeyInitStructure.CRYP_Key1Left = __REV(*(uint32_t*)(keyaddr)); |
346 |
keyaddr+=4;
|
347 |
AES_CRYP_KeyInitStructure.CRYP_Key1Right= __REV(*(uint32_t*)(keyaddr)); |
348 |
keyaddr+=4;
|
349 |
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr)); |
350 |
keyaddr+=4;
|
351 |
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr)); |
352 |
keyaddr+=4;
|
353 |
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr)); |
354 |
keyaddr+=4;
|
355 |
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr)); |
356 |
break;
|
357 |
default:
|
358 |
break;
|
359 |
} |
360 |
|
361 |
/* CRYP Initialization Vectors */
|
362 |
AES_CRYP_IVInitStructure.CRYP_IV0Left = __REV(*(uint32_t*)(ivaddr)); |
363 |
ivaddr+=4;
|
364 |
AES_CRYP_IVInitStructure.CRYP_IV0Right= __REV(*(uint32_t*)(ivaddr)); |
365 |
ivaddr+=4;
|
366 |
AES_CRYP_IVInitStructure.CRYP_IV1Left = __REV(*(uint32_t*)(ivaddr)); |
367 |
ivaddr+=4;
|
368 |
AES_CRYP_IVInitStructure.CRYP_IV1Right= __REV(*(uint32_t*)(ivaddr)); |
369 |
|
370 |
|
371 |
/*------------------ AES Decryption ------------------*/
|
372 |
if(Mode == MODE_DECRYPT) /* AES decryption */ |
373 |
{ |
374 |
/* Flush IN/OUT FIFOs */
|
375 |
CRYP_FIFOFlush(); |
376 |
|
377 |
/* Crypto Init for Key preparation for decryption process */
|
378 |
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt; |
379 |
AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_Key; |
380 |
AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_32b; |
381 |
|
382 |
CRYP_Init(&AES_CRYP_InitStructure); |
383 |
|
384 |
/* Key Initialisation */
|
385 |
CRYP_KeyInit(&AES_CRYP_KeyInitStructure); |
386 |
|
387 |
/* Enable Crypto processor */
|
388 |
CRYP_Cmd(ENABLE); |
389 |
|
390 |
/* wait until the Busy flag is RESET */
|
391 |
do
|
392 |
{ |
393 |
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY); |
394 |
counter++; |
395 |
}while ((counter != AESBUSY_TIMEOUT) && (busystatus != RESET));
|
396 |
|
397 |
if (busystatus != RESET)
|
398 |
{ |
399 |
status = ERROR; |
400 |
} |
401 |
else
|
402 |
{ |
403 |
/* Crypto Init for decryption process */
|
404 |
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt; |
405 |
} |
406 |
} |
407 |
/*------------------ AES Encryption ------------------*/
|
408 |
else /* AES encryption */ |
409 |
{ |
410 |
CRYP_KeyInit(&AES_CRYP_KeyInitStructure); |
411 |
|
412 |
/* Crypto Init for Encryption process */
|
413 |
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Encrypt; |
414 |
} |
415 |
AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_CBC; |
416 |
AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_8b; |
417 |
CRYP_Init(&AES_CRYP_InitStructure); |
418 |
|
419 |
/* CRYP Initialization Vectors */
|
420 |
CRYP_IVInit(&AES_CRYP_IVInitStructure); |
421 |
|
422 |
/* Flush IN/OUT FIFOs */
|
423 |
CRYP_FIFOFlush(); |
424 |
|
425 |
/* Enable Crypto processor */
|
426 |
CRYP_Cmd(ENABLE); |
427 |
|
428 |
if(CRYP_GetCmdStatus() == DISABLE)
|
429 |
{ |
430 |
/* The CRYP peripheral clock is not enabled or the device doesn't embedd
|
431 |
the CRYP peripheral (please check the device sales type. */
|
432 |
return(ERROR);
|
433 |
} |
434 |
|
435 |
for(i=0; ((i<Ilength) && (status != ERROR)); i+=16) |
436 |
{ |
437 |
|
438 |
/* Write the Input block in the IN FIFO */
|
439 |
CRYP_DataIn(*(uint32_t*)(inputaddr)); |
440 |
inputaddr+=4;
|
441 |
CRYP_DataIn(*(uint32_t*)(inputaddr)); |
442 |
inputaddr+=4;
|
443 |
CRYP_DataIn(*(uint32_t*)(inputaddr)); |
444 |
inputaddr+=4;
|
445 |
CRYP_DataIn(*(uint32_t*)(inputaddr)); |
446 |
inputaddr+=4;
|
447 |
/* Wait until the complete message has been processed */
|
448 |
counter = 0;
|
449 |
do
|
450 |
{ |
451 |
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY); |
452 |
counter++; |
453 |
}while ((counter != AESBUSY_TIMEOUT) && (busystatus != RESET));
|
454 |
|
455 |
if (busystatus != RESET)
|
456 |
{ |
457 |
status = ERROR; |
458 |
} |
459 |
else
|
460 |
{ |
461 |
|
462 |
/* Read the Output block from the Output FIFO */
|
463 |
*(uint32_t*)(outputaddr) = CRYP_DataOut(); |
464 |
outputaddr+=4;
|
465 |
*(uint32_t*)(outputaddr) = CRYP_DataOut(); |
466 |
outputaddr+=4;
|
467 |
*(uint32_t*)(outputaddr) = CRYP_DataOut(); |
468 |
outputaddr+=4;
|
469 |
*(uint32_t*)(outputaddr) = CRYP_DataOut(); |
470 |
outputaddr+=4;
|
471 |
} |
472 |
} |
473 |
|
474 |
/* Disable Crypto */
|
475 |
CRYP_Cmd(DISABLE); |
476 |
|
477 |
return status;
|
478 |
} |
479 |
|
480 |
/**
|
481 |
* @brief Encrypt and decrypt using AES in CTR Mode
|
482 |
* @param Mode: encryption or decryption Mode.
|
483 |
* This parameter can be one of the following values:
|
484 |
* @arg MODE_ENCRYPT: Encryption
|
485 |
* @arg MODE_DECRYPT: Decryption
|
486 |
* @param InitVectors: Initialisation Vectors used for AES algorithm.
|
487 |
* @param Key: Key used for AES algorithm.
|
488 |
* @param Keysize: length of the Key, must be a 128, 192 or 256.
|
489 |
* @param Input: pointer to the Input buffer.
|
490 |
* @param Ilength: length of the Input buffer, must be a multiple of 16.
|
491 |
* @param Output: pointer to the returned buffer.
|
492 |
* @retval An ErrorStatus enumeration value:
|
493 |
* - SUCCESS: Operation done
|
494 |
* - ERROR: Operation failed
|
495 |
*/
|
496 |
ErrorStatus CRYP_AES_CTR(uint8_t Mode, uint8_t InitVectors[16], uint8_t *Key,
|
497 |
uint16_t Keysize, uint8_t *Input, uint32_t Ilength, |
498 |
uint8_t *Output) |
499 |
{ |
500 |
CRYP_InitTypeDef AES_CRYP_InitStructure; |
501 |
CRYP_KeyInitTypeDef AES_CRYP_KeyInitStructure; |
502 |
CRYP_IVInitTypeDef AES_CRYP_IVInitStructure; |
503 |
__IO uint32_t counter = 0;
|
504 |
uint32_t busystatus = 0;
|
505 |
ErrorStatus status = SUCCESS; |
506 |
uint32_t keyaddr = (uint32_t)Key; |
507 |
uint32_t inputaddr = (uint32_t)Input; |
508 |
uint32_t outputaddr = (uint32_t)Output; |
509 |
uint32_t ivaddr = (uint32_t)InitVectors; |
510 |
uint32_t i = 0;
|
511 |
|
512 |
/* Crypto structures initialisation*/
|
513 |
CRYP_KeyStructInit(&AES_CRYP_KeyInitStructure); |
514 |
|
515 |
switch(Keysize)
|
516 |
{ |
517 |
case 128: |
518 |
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_128b; |
519 |
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr)); |
520 |
keyaddr+=4;
|
521 |
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr)); |
522 |
keyaddr+=4;
|
523 |
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr)); |
524 |
keyaddr+=4;
|
525 |
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr)); |
526 |
break;
|
527 |
case 192: |
528 |
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_192b; |
529 |
AES_CRYP_KeyInitStructure.CRYP_Key1Left = __REV(*(uint32_t*)(keyaddr)); |
530 |
keyaddr+=4;
|
531 |
AES_CRYP_KeyInitStructure.CRYP_Key1Right= __REV(*(uint32_t*)(keyaddr)); |
532 |
keyaddr+=4;
|
533 |
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr)); |
534 |
keyaddr+=4;
|
535 |
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr)); |
536 |
keyaddr+=4;
|
537 |
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr)); |
538 |
keyaddr+=4;
|
539 |
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr)); |
540 |
break;
|
541 |
case 256: |
542 |
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_256b; |
543 |
AES_CRYP_KeyInitStructure.CRYP_Key0Left = __REV(*(uint32_t*)(keyaddr)); |
544 |
keyaddr+=4;
|
545 |
AES_CRYP_KeyInitStructure.CRYP_Key0Right= __REV(*(uint32_t*)(keyaddr)); |
546 |
keyaddr+=4;
|
547 |
AES_CRYP_KeyInitStructure.CRYP_Key1Left = __REV(*(uint32_t*)(keyaddr)); |
548 |
keyaddr+=4;
|
549 |
AES_CRYP_KeyInitStructure.CRYP_Key1Right= __REV(*(uint32_t*)(keyaddr)); |
550 |
keyaddr+=4;
|
551 |
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr)); |
552 |
keyaddr+=4;
|
553 |
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr)); |
554 |
keyaddr+=4;
|
555 |
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr)); |
556 |
keyaddr+=4;
|
557 |
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr)); |
558 |
break;
|
559 |
default:
|
560 |
break;
|
561 |
} |
562 |
/* CRYP Initialization Vectors */
|
563 |
AES_CRYP_IVInitStructure.CRYP_IV0Left = __REV(*(uint32_t*)(ivaddr)); |
564 |
ivaddr+=4;
|
565 |
AES_CRYP_IVInitStructure.CRYP_IV0Right= __REV(*(uint32_t*)(ivaddr)); |
566 |
ivaddr+=4;
|
567 |
AES_CRYP_IVInitStructure.CRYP_IV1Left = __REV(*(uint32_t*)(ivaddr)); |
568 |
ivaddr+=4;
|
569 |
AES_CRYP_IVInitStructure.CRYP_IV1Right= __REV(*(uint32_t*)(ivaddr)); |
570 |
|
571 |
/* Key Initialisation */
|
572 |
CRYP_KeyInit(&AES_CRYP_KeyInitStructure); |
573 |
|
574 |
/*------------------ AES Decryption ------------------*/
|
575 |
if(Mode == MODE_DECRYPT) /* AES decryption */ |
576 |
{ |
577 |
/* Crypto Init for decryption process */
|
578 |
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt; |
579 |
} |
580 |
/*------------------ AES Encryption ------------------*/
|
581 |
else /* AES encryption */ |
582 |
{ |
583 |
/* Crypto Init for Encryption process */
|
584 |
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Encrypt; |
585 |
} |
586 |
AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_CTR; |
587 |
AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_8b; |
588 |
CRYP_Init(&AES_CRYP_InitStructure); |
589 |
|
590 |
/* CRYP Initialization Vectors */
|
591 |
CRYP_IVInit(&AES_CRYP_IVInitStructure); |
592 |
|
593 |
/* Flush IN/OUT FIFOs */
|
594 |
CRYP_FIFOFlush(); |
595 |
|
596 |
/* Enable Crypto processor */
|
597 |
CRYP_Cmd(ENABLE); |
598 |
|
599 |
if(CRYP_GetCmdStatus() == DISABLE)
|
600 |
{ |
601 |
/* The CRYP peripheral clock is not enabled or the device doesn't embedd
|
602 |
the CRYP peripheral (please check the device sales type. */
|
603 |
return(ERROR);
|
604 |
} |
605 |
|
606 |
for(i=0; ((i<Ilength) && (status != ERROR)); i+=16) |
607 |
{ |
608 |
|
609 |
/* Write the Input block in the IN FIFO */
|
610 |
CRYP_DataIn(*(uint32_t*)(inputaddr)); |
611 |
inputaddr+=4;
|
612 |
CRYP_DataIn(*(uint32_t*)(inputaddr)); |
613 |
inputaddr+=4;
|
614 |
CRYP_DataIn(*(uint32_t*)(inputaddr)); |
615 |
inputaddr+=4;
|
616 |
CRYP_DataIn(*(uint32_t*)(inputaddr)); |
617 |
inputaddr+=4;
|
618 |
/* Wait until the complete message has been processed */
|
619 |
counter = 0;
|
620 |
do
|
621 |
{ |
622 |
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY); |
623 |
counter++; |
624 |
}while ((counter != AESBUSY_TIMEOUT) && (busystatus != RESET));
|
625 |
|
626 |
if (busystatus != RESET)
|
627 |
{ |
628 |
status = ERROR; |
629 |
} |
630 |
else
|
631 |
{ |
632 |
|
633 |
/* Read the Output block from the Output FIFO */
|
634 |
*(uint32_t*)(outputaddr) = CRYP_DataOut(); |
635 |
outputaddr+=4;
|
636 |
*(uint32_t*)(outputaddr) = CRYP_DataOut(); |
637 |
outputaddr+=4;
|
638 |
*(uint32_t*)(outputaddr) = CRYP_DataOut(); |
639 |
outputaddr+=4;
|
640 |
*(uint32_t*)(outputaddr) = CRYP_DataOut(); |
641 |
outputaddr+=4;
|
642 |
} |
643 |
} |
644 |
/* Disable Crypto */
|
645 |
CRYP_Cmd(DISABLE); |
646 |
|
647 |
return status;
|
648 |
} |
649 |
|
650 |
/**
|
651 |
* @brief Encrypt and decrypt using AES in GCM Mode. The GCM and CCM modes
|
652 |
* are available only on STM32F437x Devices.
|
653 |
* @param Mode: encryption or decryption Mode.
|
654 |
* This parameter can be one of the following values:
|
655 |
* @arg MODE_ENCRYPT: Encryption
|
656 |
* @arg MODE_DECRYPT: Decryption
|
657 |
* @param InitVectors: Initialisation Vectors used for AES algorithm.
|
658 |
* @param Key: Key used for AES algorithm.
|
659 |
* @param Keysize: length of the Key, must be a 128, 192 or 256.
|
660 |
* @param Input: pointer to the Input buffer.
|
661 |
* @param Ilength: length of the Input buffer in bytes, must be a multiple of 16.
|
662 |
* @param Header: pointer to the header buffer.
|
663 |
* @param Hlength: length of the header buffer in bytes, must be a multiple of 16.
|
664 |
* @param Output: pointer to the returned buffer.
|
665 |
* @param AuthTAG: pointer to the authentication TAG buffer.
|
666 |
* @retval An ErrorStatus enumeration value:
|
667 |
* - SUCCESS: Operation done
|
668 |
* - ERROR: Operation failed
|
669 |
*/
|
670 |
ErrorStatus CRYP_AES_GCM(uint8_t Mode, uint8_t InitVectors[16],
|
671 |
uint8_t *Key, uint16_t Keysize, |
672 |
uint8_t *Input, uint32_t ILength, |
673 |
uint8_t *Header, uint32_t HLength, |
674 |
uint8_t *Output, uint8_t *AuthTAG) |
675 |
{ |
676 |
CRYP_InitTypeDef AES_CRYP_InitStructure; |
677 |
CRYP_KeyInitTypeDef AES_CRYP_KeyInitStructure; |
678 |
CRYP_IVInitTypeDef AES_CRYP_IVInitStructure; |
679 |
__IO uint32_t counter = 0;
|
680 |
uint32_t busystatus = 0;
|
681 |
ErrorStatus status = SUCCESS; |
682 |
uint32_t keyaddr = (uint32_t)Key; |
683 |
uint32_t inputaddr = (uint32_t)Input; |
684 |
uint32_t outputaddr = (uint32_t)Output; |
685 |
uint32_t ivaddr = (uint32_t)InitVectors; |
686 |
uint32_t headeraddr = (uint32_t)Header; |
687 |
uint32_t tagaddr = (uint32_t)AuthTAG; |
688 |
uint64_t headerlength = HLength * 8;/* header length in bits */ |
689 |
uint64_t inputlength = ILength * 8;/* input length in bits */ |
690 |
uint32_t loopcounter = 0;
|
691 |
|
692 |
/* Crypto structures initialisation*/
|
693 |
CRYP_KeyStructInit(&AES_CRYP_KeyInitStructure); |
694 |
|
695 |
switch(Keysize)
|
696 |
{ |
697 |
case 128: |
698 |
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_128b; |
699 |
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr)); |
700 |
keyaddr+=4;
|
701 |
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr)); |
702 |
keyaddr+=4;
|
703 |
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr)); |
704 |
keyaddr+=4;
|
705 |
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr)); |
706 |
break;
|
707 |
case 192: |
708 |
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_192b; |
709 |
AES_CRYP_KeyInitStructure.CRYP_Key1Left = __REV(*(uint32_t*)(keyaddr)); |
710 |
keyaddr+=4;
|
711 |
AES_CRYP_KeyInitStructure.CRYP_Key1Right= __REV(*(uint32_t*)(keyaddr)); |
712 |
keyaddr+=4;
|
713 |
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr)); |
714 |
keyaddr+=4;
|
715 |
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr)); |
716 |
keyaddr+=4;
|
717 |
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr)); |
718 |
keyaddr+=4;
|
719 |
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr)); |
720 |
break;
|
721 |
case 256: |
722 |
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_256b; |
723 |
AES_CRYP_KeyInitStructure.CRYP_Key0Left = __REV(*(uint32_t*)(keyaddr)); |
724 |
keyaddr+=4;
|
725 |
AES_CRYP_KeyInitStructure.CRYP_Key0Right= __REV(*(uint32_t*)(keyaddr)); |
726 |
keyaddr+=4;
|
727 |
AES_CRYP_KeyInitStructure.CRYP_Key1Left = __REV(*(uint32_t*)(keyaddr)); |
728 |
keyaddr+=4;
|
729 |
AES_CRYP_KeyInitStructure.CRYP_Key1Right= __REV(*(uint32_t*)(keyaddr)); |
730 |
keyaddr+=4;
|
731 |
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr)); |
732 |
keyaddr+=4;
|
733 |
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr)); |
734 |
keyaddr+=4;
|
735 |
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr)); |
736 |
keyaddr+=4;
|
737 |
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr)); |
738 |
break;
|
739 |
default:
|
740 |
break;
|
741 |
} |
742 |
|
743 |
/* CRYP Initialization Vectors */
|
744 |
AES_CRYP_IVInitStructure.CRYP_IV0Left = __REV(*(uint32_t*)(ivaddr)); |
745 |
ivaddr+=4;
|
746 |
AES_CRYP_IVInitStructure.CRYP_IV0Right= __REV(*(uint32_t*)(ivaddr)); |
747 |
ivaddr+=4;
|
748 |
AES_CRYP_IVInitStructure.CRYP_IV1Left = __REV(*(uint32_t*)(ivaddr)); |
749 |
ivaddr+=4;
|
750 |
AES_CRYP_IVInitStructure.CRYP_IV1Right= __REV(*(uint32_t*)(ivaddr)); |
751 |
|
752 |
/*------------------ AES Encryption ------------------*/
|
753 |
if(Mode == MODE_ENCRYPT) /* AES encryption */ |
754 |
{ |
755 |
/* Flush IN/OUT FIFOs */
|
756 |
CRYP_FIFOFlush(); |
757 |
|
758 |
/* Key Initialisation */
|
759 |
CRYP_KeyInit(&AES_CRYP_KeyInitStructure); |
760 |
|
761 |
/* CRYP Initialization Vectors */
|
762 |
CRYP_IVInit(&AES_CRYP_IVInitStructure); |
763 |
|
764 |
/* Crypto Init for Key preparation for decryption process */
|
765 |
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Encrypt; |
766 |
AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_GCM; |
767 |
AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_8b; |
768 |
CRYP_Init(&AES_CRYP_InitStructure); |
769 |
|
770 |
/***************************** Init phase *********************************/
|
771 |
/* Select init phase */
|
772 |
CRYP_PhaseConfig(CRYP_Phase_Init); |
773 |
|
774 |
/* Enable Crypto processor */
|
775 |
CRYP_Cmd(ENABLE); |
776 |
|
777 |
/* Wait for CRYPEN bit to be 0 */
|
778 |
while(CRYP_GetCmdStatus() == ENABLE)
|
779 |
{ |
780 |
} |
781 |
|
782 |
/***************************** header phase *******************************/
|
783 |
if(HLength != 0) |
784 |
{ |
785 |
/* Select header phase */
|
786 |
CRYP_PhaseConfig(CRYP_Phase_Header); |
787 |
|
788 |
/* Enable Crypto processor */
|
789 |
CRYP_Cmd(ENABLE); |
790 |
|
791 |
if(CRYP_GetCmdStatus() == DISABLE)
|
792 |
{ |
793 |
/* The CRYP peripheral clock is not enabled or the device doesn't embedd
|
794 |
the CRYP peripheral (please check the device sales type. */
|
795 |
return(ERROR);
|
796 |
} |
797 |
|
798 |
for(loopcounter = 0; (loopcounter < HLength); loopcounter+=16) |
799 |
{ |
800 |
/* Wait until the IFEM flag is reset */
|
801 |
while(CRYP_GetFlagStatus(CRYP_FLAG_IFEM) == RESET)
|
802 |
{ |
803 |
} |
804 |
|
805 |
/* Write the Input block in the IN FIFO */
|
806 |
CRYP_DataIn(*(uint32_t*)(headeraddr)); |
807 |
headeraddr+=4;
|
808 |
CRYP_DataIn(*(uint32_t*)(headeraddr)); |
809 |
headeraddr+=4;
|
810 |
CRYP_DataIn(*(uint32_t*)(headeraddr)); |
811 |
headeraddr+=4;
|
812 |
CRYP_DataIn(*(uint32_t*)(headeraddr)); |
813 |
headeraddr+=4;
|
814 |
} |
815 |
|
816 |
/* Wait until the complete message has been processed */
|
817 |
counter = 0;
|
818 |
do
|
819 |
{ |
820 |
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY); |
821 |
counter++; |
822 |
}while ((counter != AESBUSY_TIMEOUT) && (busystatus != RESET));
|
823 |
|
824 |
if (busystatus != RESET)
|
825 |
{ |
826 |
status = ERROR; |
827 |
} |
828 |
} |
829 |
|
830 |
/**************************** payload phase *******************************/
|
831 |
if(ILength != 0) |
832 |
{ |
833 |
/* Select payload phase */
|
834 |
CRYP_PhaseConfig(CRYP_Phase_Payload); |
835 |
|
836 |
/* Enable Crypto processor */
|
837 |
CRYP_Cmd(ENABLE); |
838 |
|
839 |
if(CRYP_GetCmdStatus() == DISABLE)
|
840 |
{ |
841 |
/* The CRYP peripheral clock is not enabled or the device doesn't embedd
|
842 |
the CRYP peripheral (please check the device sales type. */
|
843 |
return(ERROR);
|
844 |
} |
845 |
|
846 |
for(loopcounter = 0; ((loopcounter < ILength) && (status != ERROR)); loopcounter+=16) |
847 |
{ |
848 |
/* Wait until the IFEM flag is reset */
|
849 |
while(CRYP_GetFlagStatus(CRYP_FLAG_IFEM) == RESET)
|
850 |
{ |
851 |
} |
852 |
/* Write the Input block in the IN FIFO */
|
853 |
CRYP_DataIn(*(uint32_t*)(inputaddr)); |
854 |
inputaddr+=4;
|
855 |
CRYP_DataIn(*(uint32_t*)(inputaddr)); |
856 |
inputaddr+=4;
|
857 |
CRYP_DataIn(*(uint32_t*)(inputaddr)); |
858 |
inputaddr+=4;
|
859 |
CRYP_DataIn(*(uint32_t*)(inputaddr)); |
860 |
inputaddr+=4;
|
861 |
|
862 |
/* Wait until the complete message has been processed */
|
863 |
counter = 0;
|
864 |
do
|
865 |
{ |
866 |
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY); |
867 |
counter++; |
868 |
}while ((counter != AESBUSY_TIMEOUT) && (busystatus != RESET));
|
869 |
|
870 |
if (busystatus != RESET)
|
871 |
{ |
872 |
status = ERROR; |
873 |
} |
874 |
else
|
875 |
{ |
876 |
/* Wait until the OFNE flag is reset */
|
877 |
while(CRYP_GetFlagStatus(CRYP_FLAG_OFNE) == RESET)
|
878 |
{ |
879 |
} |
880 |
|
881 |
/* Read the Output block from the Output FIFO */
|
882 |
*(uint32_t*)(outputaddr) = CRYP_DataOut(); |
883 |
outputaddr+=4;
|
884 |
*(uint32_t*)(outputaddr) = CRYP_DataOut(); |
885 |
outputaddr+=4;
|
886 |
*(uint32_t*)(outputaddr) = CRYP_DataOut(); |
887 |
outputaddr+=4;
|
888 |
*(uint32_t*)(outputaddr) = CRYP_DataOut(); |
889 |
outputaddr+=4;
|
890 |
} |
891 |
} |
892 |
} |
893 |
|
894 |
/***************************** final phase ********************************/
|
895 |
/* Select final phase */
|
896 |
CRYP_PhaseConfig(CRYP_Phase_Final); |
897 |
|
898 |
/* Enable Crypto processor */
|
899 |
CRYP_Cmd(ENABLE); |
900 |
|
901 |
if(CRYP_GetCmdStatus() == DISABLE)
|
902 |
{ |
903 |
/* The CRYP peripheral clock is not enabled or the device doesn't embedd
|
904 |
the CRYP peripheral (please check the device sales type. */
|
905 |
return(ERROR);
|
906 |
} |
907 |
|
908 |
/* Write number of bits concatenated with header in the IN FIFO */
|
909 |
CRYP_DataIn(__REV(headerlength>>32));
|
910 |
CRYP_DataIn(__REV(headerlength)); |
911 |
CRYP_DataIn(__REV(inputlength>>32));
|
912 |
CRYP_DataIn(__REV(inputlength)); |
913 |
/* Wait until the OFNE flag is reset */
|
914 |
while(CRYP_GetFlagStatus(CRYP_FLAG_OFNE) == RESET)
|
915 |
{ |
916 |
} |
917 |
|
918 |
tagaddr = (uint32_t)AuthTAG; |
919 |
/* Read the Auth TAG in the IN FIFO */
|
920 |
*(uint32_t*)(tagaddr) = CRYP_DataOut(); |
921 |
tagaddr+=4;
|
922 |
*(uint32_t*)(tagaddr) = CRYP_DataOut(); |
923 |
tagaddr+=4;
|
924 |
*(uint32_t*)(tagaddr) = CRYP_DataOut(); |
925 |
tagaddr+=4;
|
926 |
*(uint32_t*)(tagaddr) = CRYP_DataOut(); |
927 |
tagaddr+=4;
|
928 |
} |
929 |
/*------------------ AES Decryption ------------------*/
|
930 |
else /* AES decryption */ |
931 |
{ |
932 |
/* Flush IN/OUT FIFOs */
|
933 |
CRYP_FIFOFlush(); |
934 |
|
935 |
/* Key Initialisation */
|
936 |
CRYP_KeyInit(&AES_CRYP_KeyInitStructure); |
937 |
|
938 |
/* CRYP Initialization Vectors */
|
939 |
CRYP_IVInit(&AES_CRYP_IVInitStructure); |
940 |
|
941 |
/* Crypto Init for Key preparation for decryption process */
|
942 |
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt; |
943 |
AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_GCM; |
944 |
AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_8b; |
945 |
CRYP_Init(&AES_CRYP_InitStructure); |
946 |
|
947 |
/***************************** Init phase *********************************/
|
948 |
/* Select init phase */
|
949 |
CRYP_PhaseConfig(CRYP_Phase_Init); |
950 |
|
951 |
/* Enable Crypto processor */
|
952 |
CRYP_Cmd(ENABLE); |
953 |
|
954 |
/* Wait for CRYPEN bit to be 0 */
|
955 |
while(CRYP_GetCmdStatus() == ENABLE);
|
956 |
|
957 |
/***************************** header phase *******************************/
|
958 |
if(HLength != 0) |
959 |
{ |
960 |
/* Select header phase */
|
961 |
CRYP_PhaseConfig(CRYP_Phase_Header); |
962 |
|
963 |
/* Enable Crypto processor */
|
964 |
CRYP_Cmd(ENABLE); |
965 |
|
966 |
if(CRYP_GetCmdStatus() == DISABLE)
|
967 |
{ |
968 |
/* The CRYP peripheral clock is not enabled or the device doesn't embedd
|
969 |
the CRYP peripheral (please check the device sales type. */
|
970 |
return(ERROR);
|
971 |
} |
972 |
|
973 |
for(loopcounter = 0; (loopcounter < HLength); loopcounter+=16) |
974 |
{ |
975 |
/* Wait until the IFEM flag is reset */
|
976 |
while(CRYP_GetFlagStatus(CRYP_FLAG_IFEM) == RESET);
|
977 |
|
978 |
/* Write the Input block in the IN FIFO */
|
979 |
CRYP_DataIn(*(uint32_t*)(headeraddr)); |
980 |
headeraddr+=4;
|
981 |
CRYP_DataIn(*(uint32_t*)(headeraddr)); |
982 |
headeraddr+=4;
|
983 |
CRYP_DataIn(*(uint32_t*)(headeraddr)); |
984 |
headeraddr+=4;
|
985 |
CRYP_DataIn(*(uint32_t*)(headeraddr)); |
986 |
headeraddr+=4;
|
987 |
} |
988 |
|
989 |
/* Wait until the complete message has been processed */
|
990 |
counter = 0;
|
991 |
do
|
992 |
{ |
993 |
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY); |
994 |
counter++; |
995 |
}while ((counter != AESBUSY_TIMEOUT) && (busystatus != RESET));
|
996 |
|
997 |
if (busystatus != RESET)
|
998 |
{ |
999 |
status = ERROR; |
1000 |
} |
1001 |
} |
1002 |
|
1003 |
/**************************** payload phase *******************************/
|
1004 |
if(ILength != 0) |
1005 |
{ |
1006 |
/* Select payload phase */
|
1007 |
CRYP_PhaseConfig(CRYP_Phase_Payload); |
1008 |
|
1009 |
/* Enable Crypto processor */
|
1010 |
CRYP_Cmd(ENABLE); |
1011 |
|
1012 |
if(CRYP_GetCmdStatus() == DISABLE)
|
1013 |
{ |
1014 |
/* The CRYP peripheral clock is not enabled or the device doesn't embedd
|
1015 |
the CRYP peripheral (please check the device sales type. */
|
1016 |
return(ERROR);
|
1017 |
} |
1018 |
|
1019 |
for(loopcounter = 0; ((loopcounter < ILength) && (status != ERROR)); loopcounter+=16) |
1020 |
{ |
1021 |
/* Wait until the IFEM flag is reset */
|
1022 |
while(CRYP_GetFlagStatus(CRYP_FLAG_IFEM) == RESET);
|
1023 |
/* Write the Input block in the IN FIFO */
|
1024 |
CRYP_DataIn(*(uint32_t*)(inputaddr)); |
1025 |
inputaddr+=4;
|
1026 |
CRYP_DataIn(*(uint32_t*)(inputaddr)); |
1027 |
inputaddr+=4;
|
1028 |
CRYP_DataIn(*(uint32_t*)(inputaddr)); |
1029 |
inputaddr+=4;
|
1030 |
CRYP_DataIn(*(uint32_t*)(inputaddr)); |
1031 |
inputaddr+=4;
|
1032 |
|
1033 |
/* Wait until the complete message has been processed */
|
1034 |
counter = 0;
|
1035 |
do
|
1036 |
{ |
1037 |
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY); |
1038 |
counter++; |
1039 |
}while ((counter != AESBUSY_TIMEOUT) && (busystatus != RESET));
|
1040 |
|
1041 |
if (busystatus != RESET)
|
1042 |
{ |
1043 |
status = ERROR; |
1044 |
} |
1045 |
else
|
1046 |
{ |
1047 |
/* Wait until the OFNE flag is reset */
|
1048 |
while(CRYP_GetFlagStatus(CRYP_FLAG_OFNE) == RESET);
|
1049 |
|
1050 |
/* Read the Output block from the Output FIFO */
|
1051 |
*(uint32_t*)(outputaddr) = CRYP_DataOut(); |
1052 |
outputaddr+=4;
|
1053 |
*(uint32_t*)(outputaddr) = CRYP_DataOut(); |
1054 |
outputaddr+=4;
|
1055 |
*(uint32_t*)(outputaddr) = CRYP_DataOut(); |
1056 |
outputaddr+=4;
|
1057 |
*(uint32_t*)(outputaddr) = CRYP_DataOut(); |
1058 |
outputaddr+=4;
|
1059 |
} |
1060 |
} |
1061 |
} |
1062 |
|
1063 |
/***************************** final phase ********************************/
|
1064 |
/* Select final phase */
|
1065 |
CRYP_PhaseConfig(CRYP_Phase_Final); |
1066 |
|
1067 |
/* Enable Crypto processor */
|
1068 |
CRYP_Cmd(ENABLE); |
1069 |
|
1070 |
if(CRYP_GetCmdStatus() == DISABLE)
|
1071 |
{ |
1072 |
/* The CRYP peripheral clock is not enabled or the device doesn't embedd
|
1073 |
the CRYP peripheral (please check the device sales type. */
|
1074 |
return(ERROR);
|
1075 |
} |
1076 |
|
1077 |
/* Write number of bits concatenated with header in the IN FIFO */
|
1078 |
CRYP_DataIn(__REV(headerlength>>32));
|
1079 |
CRYP_DataIn(__REV(headerlength)); |
1080 |
CRYP_DataIn(__REV(inputlength>>32));
|
1081 |
CRYP_DataIn(__REV(inputlength)); |
1082 |
/* Wait until the OFNE flag is reset */
|
1083 |
while(CRYP_GetFlagStatus(CRYP_FLAG_OFNE) == RESET);
|
1084 |
|
1085 |
tagaddr = (uint32_t)AuthTAG; |
1086 |
/* Read the Auth TAG in the IN FIFO */
|
1087 |
*(uint32_t*)(tagaddr) = CRYP_DataOut(); |
1088 |
tagaddr+=4;
|
1089 |
*(uint32_t*)(tagaddr) = CRYP_DataOut(); |
1090 |
tagaddr+=4;
|
1091 |
*(uint32_t*)(tagaddr) = CRYP_DataOut(); |
1092 |
tagaddr+=4;
|
1093 |
*(uint32_t*)(tagaddr) = CRYP_DataOut(); |
1094 |
tagaddr+=4;
|
1095 |
} |
1096 |
/* Disable Crypto */
|
1097 |
CRYP_Cmd(DISABLE); |
1098 |
|
1099 |
return status;
|
1100 |
} |
1101 |
|
1102 |
/**
|
1103 |
* @brief Encrypt and decrypt using AES in CCM Mode. The GCM and CCM modes
|
1104 |
* are available only on STM32F437x Devices.
|
1105 |
* @param Mode: encryption or decryption Mode.
|
1106 |
* This parameter can be one of the following values:
|
1107 |
* @arg MODE_ENCRYPT: Encryption
|
1108 |
* @arg MODE_DECRYPT: Decryption
|
1109 |
* @param Nonce: the nounce used for AES algorithm. It shall be unique for each processing.
|
1110 |
* @param Key: Key used for AES algorithm.
|
1111 |
* @param Keysize: length of the Key, must be a 128, 192 or 256.
|
1112 |
* @param Input: pointer to the Input buffer.
|
1113 |
* @param Ilength: length of the Input buffer in bytes, must be a multiple of 16.
|
1114 |
* @param Header: pointer to the header buffer.
|
1115 |
* @param Hlength: length of the header buffer in bytes.
|
1116 |
* @param HBuffer: pointer to temporary buffer used to append the header
|
1117 |
* HBuffer size must be equal to Hlength + 21
|
1118 |
* @param Output: pointer to the returned buffer.
|
1119 |
* @param AuthTAG: pointer to the authentication TAG buffer.
|
1120 |
* @param TAGSize: the size of the TAG (called also MAC).
|
1121 |
* @retval An ErrorStatus enumeration value:
|
1122 |
* - SUCCESS: Operation done
|
1123 |
* - ERROR: Operation failed
|
1124 |
*/
|
1125 |
ErrorStatus CRYP_AES_CCM(uint8_t Mode, |
1126 |
uint8_t* Nonce, uint32_t NonceSize, |
1127 |
uint8_t *Key, uint16_t Keysize, |
1128 |
uint8_t *Input, uint32_t ILength, |
1129 |
uint8_t *Header, uint32_t HLength, uint8_t *HBuffer, |
1130 |
uint8_t *Output, |
1131 |
uint8_t *AuthTAG, uint32_t TAGSize) |
1132 |
{ |
1133 |
CRYP_InitTypeDef AES_CRYP_InitStructure; |
1134 |
CRYP_KeyInitTypeDef AES_CRYP_KeyInitStructure; |
1135 |
CRYP_IVInitTypeDef AES_CRYP_IVInitStructure; |
1136 |
__IO uint32_t counter = 0;
|
1137 |
uint32_t busystatus = 0;
|
1138 |
ErrorStatus status = SUCCESS; |
1139 |
uint32_t keyaddr = (uint32_t)Key; |
1140 |
uint32_t inputaddr = (uint32_t)Input; |
1141 |
uint32_t outputaddr = (uint32_t)Output; |
1142 |
uint32_t headeraddr = (uint32_t)Header; |
1143 |
uint32_t tagaddr = (uint32_t)AuthTAG; |
1144 |
uint32_t headersize = HLength; |
1145 |
uint32_t loopcounter = 0;
|
1146 |
uint32_t bufferidx = 0;
|
1147 |
uint8_t blockb0[16] = {0};/* Block B0 */ |
1148 |
uint8_t ctr[16] = {0}; /* Counter */ |
1149 |
uint32_t temptag[4] = {0}; /* temporary TAG (MAC) */ |
1150 |
uint32_t ctraddr = (uint32_t)ctr; |
1151 |
uint32_t b0addr = (uint32_t)blockb0; |
1152 |
|
1153 |
/************************ Formatting the header block ***********************/
|
1154 |
if(headersize != 0) |
1155 |
{ |
1156 |
/* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
|
1157 |
if(headersize < 65280) |
1158 |
{ |
1159 |
HBuffer[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF); |
1160 |
HBuffer[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
|
1161 |
headersize += 2;
|
1162 |
} |
1163 |
else
|
1164 |
{ |
1165 |
/* header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
|
1166 |
HBuffer[bufferidx++] = 0xFF;
|
1167 |
HBuffer[bufferidx++] = 0xFE;
|
1168 |
HBuffer[bufferidx++] = headersize & 0xff000000;
|
1169 |
HBuffer[bufferidx++] = headersize & 0x00ff0000;
|
1170 |
HBuffer[bufferidx++] = headersize & 0x0000ff00;
|
1171 |
HBuffer[bufferidx++] = headersize & 0x000000ff;
|
1172 |
headersize += 6;
|
1173 |
} |
1174 |
/* Copy the header buffer in internal buffer "HBuffer" */
|
1175 |
for(loopcounter = 0; loopcounter < headersize; loopcounter++) |
1176 |
{ |
1177 |
HBuffer[bufferidx++] = Header[loopcounter]; |
1178 |
} |
1179 |
/* Check if the header size is modulo 16 */
|
1180 |
if ((headersize % 16) != 0) |
1181 |
{ |
1182 |
/* Padd the header buffer with 0s till the HBuffer length is modulo 16 */
|
1183 |
for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++) |
1184 |
{ |
1185 |
HBuffer[loopcounter] = 0;
|
1186 |
} |
1187 |
/* Set the header size to modulo 16 */
|
1188 |
headersize = ((headersize/16) + 1) * 16; |
1189 |
} |
1190 |
/* set the pointer headeraddr to HBuffer */
|
1191 |
headeraddr = (uint32_t)HBuffer; |
1192 |
} |
1193 |
/************************* Formatting the block B0 **************************/
|
1194 |
if(headersize != 0) |
1195 |
{ |
1196 |
blockb0[0] = 0x40; |
1197 |
} |
1198 |
/* Flags byte */
|
1199 |
blockb0[0] |= 0u | (((( (uint8_t) TAGSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - NonceSize) - 1) & 0x07); |
1200 |
|
1201 |
for (loopcounter = 0; loopcounter < NonceSize; loopcounter++) |
1202 |
{ |
1203 |
blockb0[loopcounter+1] = Nonce[loopcounter];
|
1204 |
} |
1205 |
for ( ; loopcounter < 13; loopcounter++) |
1206 |
{ |
1207 |
blockb0[loopcounter+1] = 0; |
1208 |
} |
1209 |
|
1210 |
blockb0[14] = ((ILength >> 8) & 0xFF); |
1211 |
blockb0[15] = (ILength & 0xFF); |
1212 |
|
1213 |
/************************* Formatting the initial counter *******************/
|
1214 |
/* Byte 0:
|
1215 |
Bits 7 and 6 are reserved and shall be set to 0
|
1216 |
Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter blocks
|
1217 |
are distinct from B0
|
1218 |
Bits 0, 1, and 2 contain the same encoding of q as in B0
|
1219 |
*/
|
1220 |
ctr[0] = blockb0[0] & 0x07; |
1221 |
/* byte 1 to NonceSize is the IV (Nonce) */
|
1222 |
for(loopcounter = 1; loopcounter < NonceSize + 1; loopcounter++) |
1223 |
{ |
1224 |
ctr[loopcounter] = blockb0[loopcounter]; |
1225 |
} |
1226 |
/* Set the LSB to 1 */
|
1227 |
ctr[15] |= 0x01; |
1228 |
|
1229 |
/* Crypto structures initialisation*/
|
1230 |
CRYP_KeyStructInit(&AES_CRYP_KeyInitStructure); |
1231 |
|
1232 |
switch(Keysize)
|
1233 |
{ |
1234 |
case 128: |
1235 |
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_128b; |
1236 |
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr)); |
1237 |
keyaddr+=4;
|
1238 |
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr)); |
1239 |
keyaddr+=4;
|
1240 |
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr)); |
1241 |
keyaddr+=4;
|
1242 |
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr)); |
1243 |
break;
|
1244 |
case 192: |
1245 |
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_192b; |
1246 |
AES_CRYP_KeyInitStructure.CRYP_Key1Left = __REV(*(uint32_t*)(keyaddr)); |
1247 |
keyaddr+=4;
|
1248 |
AES_CRYP_KeyInitStructure.CRYP_Key1Right= __REV(*(uint32_t*)(keyaddr)); |
1249 |
keyaddr+=4;
|
1250 |
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr)); |
1251 |
keyaddr+=4;
|
1252 |
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr)); |
1253 |
keyaddr+=4;
|
1254 |
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr)); |
1255 |
keyaddr+=4;
|
1256 |
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr)); |
1257 |
break;
|
1258 |
case 256: |
1259 |
AES_CRYP_InitStructure.CRYP_KeySize = CRYP_KeySize_256b; |
1260 |
AES_CRYP_KeyInitStructure.CRYP_Key0Left = __REV(*(uint32_t*)(keyaddr)); |
1261 |
keyaddr+=4;
|
1262 |
AES_CRYP_KeyInitStructure.CRYP_Key0Right= __REV(*(uint32_t*)(keyaddr)); |
1263 |
keyaddr+=4;
|
1264 |
AES_CRYP_KeyInitStructure.CRYP_Key1Left = __REV(*(uint32_t*)(keyaddr)); |
1265 |
keyaddr+=4;
|
1266 |
AES_CRYP_KeyInitStructure.CRYP_Key1Right= __REV(*(uint32_t*)(keyaddr)); |
1267 |
keyaddr+=4;
|
1268 |
AES_CRYP_KeyInitStructure.CRYP_Key2Left = __REV(*(uint32_t*)(keyaddr)); |
1269 |
keyaddr+=4;
|
1270 |
AES_CRYP_KeyInitStructure.CRYP_Key2Right= __REV(*(uint32_t*)(keyaddr)); |
1271 |
keyaddr+=4;
|
1272 |
AES_CRYP_KeyInitStructure.CRYP_Key3Left = __REV(*(uint32_t*)(keyaddr)); |
1273 |
keyaddr+=4;
|
1274 |
AES_CRYP_KeyInitStructure.CRYP_Key3Right= __REV(*(uint32_t*)(keyaddr)); |
1275 |
break;
|
1276 |
default:
|
1277 |
break;
|
1278 |
} |
1279 |
|
1280 |
/* CRYP Initialization Vectors */
|
1281 |
AES_CRYP_IVInitStructure.CRYP_IV0Left = (__REV(*(uint32_t*)(ctraddr))); |
1282 |
ctraddr+=4;
|
1283 |
AES_CRYP_IVInitStructure.CRYP_IV0Right= (__REV(*(uint32_t*)(ctraddr))); |
1284 |
ctraddr+=4;
|
1285 |
AES_CRYP_IVInitStructure.CRYP_IV1Left = (__REV(*(uint32_t*)(ctraddr))); |
1286 |
ctraddr+=4;
|
1287 |
AES_CRYP_IVInitStructure.CRYP_IV1Right= (__REV(*(uint32_t*)(ctraddr))); |
1288 |
|
1289 |
/*------------------ AES Encryption ------------------*/
|
1290 |
if(Mode == MODE_ENCRYPT) /* AES encryption */ |
1291 |
{ |
1292 |
/* Flush IN/OUT FIFOs */
|
1293 |
CRYP_FIFOFlush(); |
1294 |
|
1295 |
/* Key Initialisation */
|
1296 |
CRYP_KeyInit(&AES_CRYP_KeyInitStructure); |
1297 |
|
1298 |
/* CRYP Initialization Vectors */
|
1299 |
CRYP_IVInit(&AES_CRYP_IVInitStructure); |
1300 |
|
1301 |
/* Crypto Init for Key preparation for decryption process */
|
1302 |
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Encrypt; |
1303 |
AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_CCM; |
1304 |
AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_8b; |
1305 |
CRYP_Init(&AES_CRYP_InitStructure); |
1306 |
|
1307 |
/***************************** Init phase *********************************/
|
1308 |
/* Select init phase */
|
1309 |
CRYP_PhaseConfig(CRYP_Phase_Init); |
1310 |
|
1311 |
b0addr = (uint32_t)blockb0; |
1312 |
/* Write the blockb0 block in the IN FIFO */
|
1313 |
CRYP_DataIn((*(uint32_t*)(b0addr))); |
1314 |
b0addr+=4;
|
1315 |
CRYP_DataIn((*(uint32_t*)(b0addr))); |
1316 |
b0addr+=4;
|
1317 |
CRYP_DataIn((*(uint32_t*)(b0addr))); |
1318 |
b0addr+=4;
|
1319 |
CRYP_DataIn((*(uint32_t*)(b0addr))); |
1320 |
|
1321 |
/* Enable Crypto processor */
|
1322 |
CRYP_Cmd(ENABLE); |
1323 |
|
1324 |
/* Wait for CRYPEN bit to be 0 */
|
1325 |
while(CRYP_GetCmdStatus() == ENABLE);
|
1326 |
|
1327 |
/***************************** header phase *******************************/
|
1328 |
if(headersize != 0) |
1329 |
{ |
1330 |
/* Select header phase */
|
1331 |
CRYP_PhaseConfig(CRYP_Phase_Header); |
1332 |
|
1333 |
/* Enable Crypto processor */
|
1334 |
CRYP_Cmd(ENABLE); |
1335 |
|
1336 |
if(CRYP_GetCmdStatus() == DISABLE)
|
1337 |
{ |
1338 |
/* The CRYP peripheral clock is not enabled or the device doesn't embedd
|
1339 |
the CRYP peripheral (please check the device sales type. */
|
1340 |
return(ERROR);
|
1341 |
} |
1342 |
|
1343 |
for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16) |
1344 |
{ |
1345 |
/* Wait until the IFEM flag is reset */
|
1346 |
while(CRYP_GetFlagStatus(CRYP_FLAG_IFEM) == RESET);
|
1347 |
|
1348 |
/* Write the Input block in the IN FIFO */
|
1349 |
CRYP_DataIn(*(uint32_t*)(headeraddr)); |
1350 |
headeraddr+=4;
|
1351 |
CRYP_DataIn(*(uint32_t*)(headeraddr)); |
1352 |
headeraddr+=4;
|
1353 |
CRYP_DataIn(*(uint32_t*)(headeraddr)); |
1354 |
headeraddr+=4;
|
1355 |
CRYP_DataIn(*(uint32_t*)(headeraddr)); |
1356 |
headeraddr+=4;
|
1357 |
} |
1358 |
|
1359 |
/* Wait until the complete message has been processed */
|
1360 |
counter = 0;
|
1361 |
do
|
1362 |
{ |
1363 |
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY); |
1364 |
counter++; |
1365 |
}while ((counter != AESBUSY_TIMEOUT) && (busystatus != RESET));
|
1366 |
|
1367 |
if (busystatus != RESET)
|
1368 |
{ |
1369 |
status = ERROR; |
1370 |
} |
1371 |
} |
1372 |
|
1373 |
/**************************** payload phase *******************************/
|
1374 |
if(ILength != 0) |
1375 |
{ |
1376 |
/* Select payload phase */
|
1377 |
CRYP_PhaseConfig(CRYP_Phase_Payload); |
1378 |
|
1379 |
/* Enable Crypto processor */
|
1380 |
CRYP_Cmd(ENABLE); |
1381 |
|
1382 |
if(CRYP_GetCmdStatus() == DISABLE)
|
1383 |
{ |
1384 |
/* The CRYP peripheral clock is not enabled or the device doesn't embedd
|
1385 |
the CRYP peripheral (please check the device sales type. */
|
1386 |
return(ERROR);
|
1387 |
} |
1388 |
|
1389 |
for(loopcounter = 0; ((loopcounter < ILength) && (status != ERROR)); loopcounter+=16) |
1390 |
{ |
1391 |
/* Wait until the IFEM flag is reset */
|
1392 |
while(CRYP_GetFlagStatus(CRYP_FLAG_IFEM) == RESET);
|
1393 |
/* Write the Input block in the IN FIFO */
|
1394 |
CRYP_DataIn(*(uint32_t*)(inputaddr)); |
1395 |
inputaddr+=4;
|
1396 |
CRYP_DataIn(*(uint32_t*)(inputaddr)); |
1397 |
inputaddr+=4;
|
1398 |
CRYP_DataIn(*(uint32_t*)(inputaddr)); |
1399 |
inputaddr+=4;
|
1400 |
CRYP_DataIn(*(uint32_t*)(inputaddr)); |
1401 |
inputaddr+=4;
|
1402 |
|
1403 |
/* Wait until the complete message has been processed */
|
1404 |
counter = 0;
|
1405 |
do
|
1406 |
{ |
1407 |
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY); |
1408 |
counter++; |
1409 |
}while ((counter != AESBUSY_TIMEOUT) && (busystatus != RESET));
|
1410 |
|
1411 |
if (busystatus != RESET)
|
1412 |
{ |
1413 |
status = ERROR; |
1414 |
} |
1415 |
else
|
1416 |
{ |
1417 |
/* Wait until the OFNE flag is reset */
|
1418 |
while(CRYP_GetFlagStatus(CRYP_FLAG_OFNE) == RESET);
|
1419 |
|
1420 |
/* Read the Output block from the Output FIFO */
|
1421 |
*(uint32_t*)(outputaddr) = CRYP_DataOut(); |
1422 |
outputaddr+=4;
|
1423 |
*(uint32_t*)(outputaddr) = CRYP_DataOut(); |
1424 |
outputaddr+=4;
|
1425 |
*(uint32_t*)(outputaddr) = CRYP_DataOut(); |
1426 |
outputaddr+=4;
|
1427 |
*(uint32_t*)(outputaddr) = CRYP_DataOut(); |
1428 |
outputaddr+=4;
|
1429 |
} |
1430 |
} |
1431 |
} |
1432 |
|
1433 |
/***************************** final phase ********************************/
|
1434 |
/* Select final phase */
|
1435 |
CRYP_PhaseConfig(CRYP_Phase_Final); |
1436 |
|
1437 |
/* Enable Crypto processor */
|
1438 |
CRYP_Cmd(ENABLE); |
1439 |
|
1440 |
if(CRYP_GetCmdStatus() == DISABLE)
|
1441 |
{ |
1442 |
/* The CRYP peripheral clock is not enabled or the device doesn't embedd
|
1443 |
the CRYP peripheral (please check the device sales type. */
|
1444 |
return(ERROR);
|
1445 |
} |
1446 |
|
1447 |
ctraddr = (uint32_t)ctr; |
1448 |
/* Write the counter block in the IN FIFO */
|
1449 |
CRYP_DataIn(*(uint32_t*)(ctraddr)); |
1450 |
ctraddr+=4;
|
1451 |
CRYP_DataIn(*(uint32_t*)(ctraddr)); |
1452 |
ctraddr+=4;
|
1453 |
CRYP_DataIn(*(uint32_t*)(ctraddr)); |
1454 |
ctraddr+=4;
|
1455 |
/* Reset bit 0 (after 8-bit swap) is equivalent to reset bit 24 (before 8-bit swap) */
|
1456 |
CRYP_DataIn(*(uint32_t*)(ctraddr) & 0xfeffffff);
|
1457 |
|
1458 |
/* Wait until the OFNE flag is reset */
|
1459 |
while(CRYP_GetFlagStatus(CRYP_FLAG_OFNE) == RESET);
|
1460 |
|
1461 |
/* Read the Auth TAG in the IN FIFO */
|
1462 |
temptag[0] = CRYP_DataOut();
|
1463 |
temptag[1] = CRYP_DataOut();
|
1464 |
temptag[2] = CRYP_DataOut();
|
1465 |
temptag[3] = CRYP_DataOut();
|
1466 |
} |
1467 |
/*------------------ AES Decryption ------------------*/
|
1468 |
else /* AES decryption */ |
1469 |
{ |
1470 |
/* Flush IN/OUT FIFOs */
|
1471 |
CRYP_FIFOFlush(); |
1472 |
|
1473 |
/* Key Initialisation */
|
1474 |
CRYP_KeyInit(&AES_CRYP_KeyInitStructure); |
1475 |
|
1476 |
/* CRYP Initialization Vectors */
|
1477 |
CRYP_IVInit(&AES_CRYP_IVInitStructure); |
1478 |
|
1479 |
/* Crypto Init for Key preparation for decryption process */
|
1480 |
AES_CRYP_InitStructure.CRYP_AlgoDir = CRYP_AlgoDir_Decrypt; |
1481 |
AES_CRYP_InitStructure.CRYP_AlgoMode = CRYP_AlgoMode_AES_CCM; |
1482 |
AES_CRYP_InitStructure.CRYP_DataType = CRYP_DataType_8b; |
1483 |
CRYP_Init(&AES_CRYP_InitStructure); |
1484 |
|
1485 |
/***************************** Init phase *********************************/
|
1486 |
/* Select init phase */
|
1487 |
CRYP_PhaseConfig(CRYP_Phase_Init); |
1488 |
|
1489 |
b0addr = (uint32_t)blockb0; |
1490 |
/* Write the blockb0 block in the IN FIFO */
|
1491 |
CRYP_DataIn((*(uint32_t*)(b0addr))); |
1492 |
b0addr+=4;
|
1493 |
CRYP_DataIn((*(uint32_t*)(b0addr))); |
1494 |
b0addr+=4;
|
1495 |
CRYP_DataIn((*(uint32_t*)(b0addr))); |
1496 |
b0addr+=4;
|
1497 |
CRYP_DataIn((*(uint32_t*)(b0addr))); |
1498 |
|
1499 |
/* Enable Crypto processor */
|
1500 |
CRYP_Cmd(ENABLE); |
1501 |
|
1502 |
/* Wait for CRYPEN bit to be 0 */
|
1503 |
while(CRYP_GetCmdStatus() == ENABLE);
|
1504 |
|
1505 |
/***************************** header phase *******************************/
|
1506 |
if(headersize != 0) |
1507 |
{ |
1508 |
/* Select header phase */
|
1509 |
CRYP_PhaseConfig(CRYP_Phase_Header); |
1510 |
|
1511 |
/* Enable Crypto processor */
|
1512 |
CRYP_Cmd(ENABLE); |
1513 |
|
1514 |
if(CRYP_GetCmdStatus() == DISABLE)
|
1515 |
{ |
1516 |
/* The CRYP peripheral clock is not enabled or the device doesn't embedd
|
1517 |
the CRYP peripheral (please check the device sales type. */
|
1518 |
return(ERROR);
|
1519 |
} |
1520 |
|
1521 |
for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16) |
1522 |
{ |
1523 |
/* Wait until the IFEM flag is reset */
|
1524 |
while(CRYP_GetFlagStatus(CRYP_FLAG_IFEM) == RESET);
|
1525 |
|
1526 |
/* Write the Input block in the IN FIFO */
|
1527 |
CRYP_DataIn(*(uint32_t*)(headeraddr)); |
1528 |
headeraddr+=4;
|
1529 |
CRYP_DataIn(*(uint32_t*)(headeraddr)); |
1530 |
headeraddr+=4;
|
1531 |
CRYP_DataIn(*(uint32_t*)(headeraddr)); |
1532 |
headeraddr+=4;
|
1533 |
CRYP_DataIn(*(uint32_t*)(headeraddr)); |
1534 |
headeraddr+=4;
|
1535 |
} |
1536 |
|
1537 |
/* Wait until the complete message has been processed */
|
1538 |
counter = 0;
|
1539 |
do
|
1540 |
{ |
1541 |
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY); |
1542 |
counter++; |
1543 |
}while ((counter != AESBUSY_TIMEOUT) && (busystatus != RESET));
|
1544 |
|
1545 |
if (busystatus != RESET)
|
1546 |
{ |
1547 |
status = ERROR; |
1548 |
} |
1549 |
} |
1550 |
|
1551 |
/**************************** payload phase *******************************/
|
1552 |
if(ILength != 0) |
1553 |
{ |
1554 |
/* Select payload phase */
|
1555 |
CRYP_PhaseConfig(CRYP_Phase_Payload); |
1556 |
|
1557 |
/* Enable Crypto processor */
|
1558 |
CRYP_Cmd(ENABLE); |
1559 |
|
1560 |
if(CRYP_GetCmdStatus() == DISABLE)
|
1561 |
{ |
1562 |
/* The CRYP peripheral clock is not enabled or the device doesn't embedd
|
1563 |
the CRYP peripheral (please check the device sales type. */
|
1564 |
return(ERROR);
|
1565 |
} |
1566 |
|
1567 |
for(loopcounter = 0; ((loopcounter < ILength) && (status != ERROR)); loopcounter+=16) |
1568 |
{ |
1569 |
/* Wait until the IFEM flag is reset */
|
1570 |
while(CRYP_GetFlagStatus(CRYP_FLAG_IFEM) == RESET);
|
1571 |
/* Write the Input block in the IN FIFO */
|
1572 |
CRYP_DataIn(*(uint32_t*)(inputaddr)); |
1573 |
inputaddr+=4;
|
1574 |
CRYP_DataIn(*(uint32_t*)(inputaddr)); |
1575 |
inputaddr+=4;
|
1576 |
CRYP_DataIn(*(uint32_t*)(inputaddr)); |
1577 |
inputaddr+=4;
|
1578 |
CRYP_DataIn(*(uint32_t*)(inputaddr)); |
1579 |
inputaddr+=4;
|
1580 |
|
1581 |
/* Wait until the complete message has been processed */
|
1582 |
counter = 0;
|
1583 |
do
|
1584 |
{ |
1585 |
busystatus = CRYP_GetFlagStatus(CRYP_FLAG_BUSY); |
1586 |
counter++; |
1587 |
}while ((counter != AESBUSY_TIMEOUT) && (busystatus != RESET));
|
1588 |
|
1589 |
if (busystatus != RESET)
|
1590 |
{ |
1591 |
status = ERROR; |
1592 |
} |
1593 |
else
|
1594 |
{ |
1595 |
/* Wait until the OFNE flag is reset */
|
1596 |
while(CRYP_GetFlagStatus(CRYP_FLAG_OFNE) == RESET);
|
1597 |
|
1598 |
/* Read the Output block from the Output FIFO */
|
1599 |
*(uint32_t*)(outputaddr) = CRYP_DataOut(); |
1600 |
outputaddr+=4;
|
1601 |
*(uint32_t*)(outputaddr) = CRYP_DataOut(); |
1602 |
outputaddr+=4;
|
1603 |
*(uint32_t*)(outputaddr) = CRYP_DataOut(); |
1604 |
outputaddr+=4;
|
1605 |
*(uint32_t*)(outputaddr) = CRYP_DataOut(); |
1606 |
outputaddr+=4;
|
1607 |
} |
1608 |
} |
1609 |
} |
1610 |
|
1611 |
/***************************** final phase ********************************/
|
1612 |
/* Select final phase */
|
1613 |
CRYP_PhaseConfig(CRYP_Phase_Final); |
1614 |
|
1615 |
/* Enable Crypto processor */
|
1616 |
CRYP_Cmd(ENABLE); |
1617 |
|
1618 |
if(CRYP_GetCmdStatus() == DISABLE)
|
1619 |
{ |
1620 |
/* The CRYP peripheral clock is not enabled or the device doesn't embedd
|
1621 |
the CRYP peripheral (please check the device sales type. */
|
1622 |
return(ERROR);
|
1623 |
} |
1624 |
|
1625 |
ctraddr = (uint32_t)ctr; |
1626 |
/* Write the counter block in the IN FIFO */
|
1627 |
CRYP_DataIn(*(uint32_t*)(ctraddr)); |
1628 |
ctraddr+=4;
|
1629 |
CRYP_DataIn(*(uint32_t*)(ctraddr)); |
1630 |
ctraddr+=4;
|
1631 |
CRYP_DataIn(*(uint32_t*)(ctraddr)); |
1632 |
ctraddr+=4;
|
1633 |
/* Reset bit 0 (after 8-bit swap) is equivalent to reset bit 24 (before 8-bit swap) */
|
1634 |
CRYP_DataIn(*(uint32_t*)(ctraddr) & 0xfeffffff);
|
1635 |
|
1636 |
/* Wait until the OFNE flag is reset */
|
1637 |
while(CRYP_GetFlagStatus(CRYP_FLAG_OFNE) == RESET);
|
1638 |
|
1639 |
/* Read the Authentaication TAG (MAC) in the IN FIFO */
|
1640 |
temptag[0] = CRYP_DataOut();
|
1641 |
temptag[1] = CRYP_DataOut();
|
1642 |
temptag[2] = CRYP_DataOut();
|
1643 |
temptag[3] = CRYP_DataOut();
|
1644 |
} |
1645 |
|
1646 |
/* Copy temporary authentication TAG in user TAG buffer */
|
1647 |
for(loopcounter = 0; (loopcounter < TAGSize); loopcounter++) |
1648 |
{ |
1649 |
/* Set the authentication TAG buffer */
|
1650 |
*((uint8_t*)tagaddr+loopcounter) = *((uint8_t*)temptag+loopcounter); |
1651 |
} |
1652 |
|
1653 |
/* Disable Crypto */
|
1654 |
CRYP_Cmd(DISABLE); |
1655 |
|
1656 |
return status;
|
1657 |
} |
1658 |
|
1659 |
/**
|
1660 |
* @}
|
1661 |
*/
|
1662 |
|
1663 |
/**
|
1664 |
* @}
|
1665 |
*/
|
1666 |
|
1667 |
/**
|
1668 |
* @}
|
1669 |
*/
|
1670 |
|
1671 |
/**
|
1672 |
* @}
|
1673 |
*/
|
1674 |
|
1675 |
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|
1676 |
|