amiro-blt / Target / Source / AMiRo / helper.c @ 69661903
History | View | Annotate | Download (10.77 KB)
| 1 |
#include "helper.h" |
|---|---|
| 2 |
#include <blt_conf.h> |
| 3 |
|
| 4 |
/*
|
| 5 |
* Initialized the system timer.
|
| 6 |
*/
|
| 7 |
void saTimerInit(void) { |
| 8 |
/* reset the timer configuration */
|
| 9 |
saTimerReset(); |
| 10 |
|
| 11 |
/* configure the systick frequency as a 1 ms event generator */
|
| 12 |
SysTick->LOAD = BOOT_CPU_SYSTEM_SPEED_KHZ - 1;
|
| 13 |
/* reset the current counter value */
|
| 14 |
SysTick->VAL = 0;
|
| 15 |
/* select core clock as source and enable the timer */
|
| 16 |
SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk | SysTick_CTRL_ENABLE_Msk; |
| 17 |
} |
| 18 |
|
| 19 |
/*
|
| 20 |
* Resets the systick status of the system timer.
|
| 21 |
*/
|
| 22 |
void saTimerReset(void) { |
| 23 |
/* set the systick's status and control register back into the default reset value */
|
| 24 |
SysTick->CTRL = 0;
|
| 25 |
} |
| 26 |
|
| 27 |
/*
|
| 28 |
* Updates the given timer variable.
|
| 29 |
* More specifically, the given variable in incremented if a millisecond event occurred.
|
| 30 |
*/
|
| 31 |
void saTimerUpdate(uint32_t* millisecond_counter) {
|
| 32 |
/* check if the millisecond event occurred */
|
| 33 |
if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) != 0) |
| 34 |
{
|
| 35 |
/* increment the millisecond counter */
|
| 36 |
++(*millisecond_counter); |
| 37 |
} |
| 38 |
|
| 39 |
return;
|
| 40 |
} |
| 41 |
|
| 42 |
/*
|
| 43 |
* Actively polls the standalone timer until the specified time has passed.
|
| 44 |
*/
|
| 45 |
void msleep(uint32_t ms)
|
| 46 |
{
|
| 47 |
uint32_t current; |
| 48 |
saTimerUpdate(¤t); |
| 49 |
uint32_t end = current + ms; |
| 50 |
|
| 51 |
while (current < end)
|
| 52 |
{
|
| 53 |
saTimerUpdate(¤t); |
| 54 |
} |
| 55 |
|
| 56 |
return;
|
| 57 |
} |
| 58 |
|
| 59 |
/*
|
| 60 |
* Actively reads the specified GPIO until it has the specified state.
|
| 61 |
*/
|
| 62 |
void waitForSignal(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin, BitAction state) {
|
| 63 |
/* check whether the signal has been set */
|
| 64 |
while (GPIO_ReadInputDataBit(GPIOx, GPIO_Pin) != state) {
|
| 65 |
continue;
|
| 66 |
} |
| 67 |
return;
|
| 68 |
} |
| 69 |
|
| 70 |
/*
|
| 71 |
* Actively reads the specified GPIO until it has the specified state, or the specified time has passed.
|
| 72 |
*/
|
| 73 |
uint8_t waitForSignalTimeout(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin, BitAction state, uint32_t timeout_ms) {
|
| 74 |
uint32_t current_time; |
| 75 |
saTimerUpdate(¤t_time); |
| 76 |
uint32_t timeout_time = current_time + timeout_ms; |
| 77 |
while ((GPIO_ReadInputDataBit(GPIOx, GPIO_Pin) != state) &&
|
| 78 |
(current_time < timeout_time)) {
|
| 79 |
saTimerUpdate(¤t_time); |
| 80 |
} |
| 81 |
if (current_time < timeout_time) {
|
| 82 |
return 1; |
| 83 |
} else {
|
| 84 |
return 0; |
| 85 |
} |
| 86 |
} |
| 87 |
|
| 88 |
/*
|
| 89 |
* Turns the board LED or or off respectively.
|
| 90 |
* If the argument is zero, the LED is switched off.
|
| 91 |
* If the argument is not zero, the LED is switched on.
|
| 92 |
*/
|
| 93 |
void setLed(uint8_t on) {
|
| 94 |
|
| 95 |
#if defined(AMIRO_MODULE_POWERMANAGEMENT)
|
| 96 |
#define LED_GPIO GPIOB
|
| 97 |
#define LED_PIN GPIO_Pin_12
|
| 98 |
#endif
|
| 99 |
#if defined(AMIRO_MODULE_DIWHEELDRIVE)
|
| 100 |
#define LED_GPIO GPIOA
|
| 101 |
#define LED_PIN GPIO_Pin_1
|
| 102 |
#endif
|
| 103 |
#if defined(AMIRO_MODULE_LIGHTRING)
|
| 104 |
/* This is just a pseudo LED, since the LightRing does not feature a status LED */
|
| 105 |
#define LED_GPIO GPIOA
|
| 106 |
#define LED_PIN GPIO_Pin_1
|
| 107 |
#endif
|
| 108 |
|
| 109 |
#if defined(LED_GPIO) && defined(LED_PIN)
|
| 110 |
if (on == 0) { |
| 111 |
GPIO_SetBits(LED_GPIO, LED_PIN); |
| 112 |
} else {
|
| 113 |
GPIO_ResetBits(LED_GPIO, LED_PIN); |
| 114 |
} |
| 115 |
#endif
|
| 116 |
|
| 117 |
return;
|
| 118 |
} |
| 119 |
|
| 120 |
/*
|
| 121 |
* Makes the LED blink 'SOS' in morese code (... --- ...).
|
| 122 |
* If the specified number of loops is zero, the function will loop infinitely.
|
| 123 |
*/
|
| 124 |
void blinkSOS(uint32_t loops) {
|
| 125 |
/* initialize some variables and constants */
|
| 126 |
enum State {BLINK_ERROR_S1,
|
| 127 |
BLINK_ERROR_O, |
| 128 |
BLINK_ERROR_S2, |
| 129 |
BLINK_ERROR_BREAK |
| 130 |
} state = BLINK_ERROR_S1; |
| 131 |
uint8_t led = 0;
|
| 132 |
uint32_t loop = 0;
|
| 133 |
const uint32_t sigS = 50; |
| 134 |
const uint32_t sigL = 200; |
| 135 |
const uint32_t sigB = 100; |
| 136 |
const uint32_t letterBreakTime = 200; |
| 137 |
const uint32_t wordBreakTime = 1000; |
| 138 |
uint32_t stateStartTime = 0;
|
| 139 |
saTimerUpdate(&stateStartTime); |
| 140 |
uint32_t currentTime = stateStartTime; |
| 141 |
|
| 142 |
/* either loop the specified number, or infinitely */
|
| 143 |
while (loop < loops || loops == 0) { |
| 144 |
/* make the LED blink "SOS" (morse code: ... --- ...)*/
|
| 145 |
led = 0;
|
| 146 |
saTimerUpdate(¤tTime); |
| 147 |
switch (state) {
|
| 148 |
case BLINK_ERROR_S1:
|
| 149 |
case BLINK_ERROR_S2:
|
| 150 |
{
|
| 151 |
if (currentTime < stateStartTime + sigS) {
|
| 152 |
led = 1;
|
| 153 |
} else if (currentTime < stateStartTime + sigS+sigB) { |
| 154 |
led = 0;
|
| 155 |
} else if (currentTime < stateStartTime + sigS+sigB+sigS) { |
| 156 |
led = 1;
|
| 157 |
} else if (currentTime < stateStartTime + sigS+sigB+sigS+sigB) { |
| 158 |
led = 0;
|
| 159 |
} else if (currentTime < stateStartTime + sigS+sigB+sigS+sigB+sigS) { |
| 160 |
led = 1;
|
| 161 |
} else if (currentTime < stateStartTime + sigS+sigB+sigS+sigB+sigS+letterBreakTime) { |
| 162 |
led = 0;
|
| 163 |
} else {
|
| 164 |
if (state == BLINK_ERROR_S1) {
|
| 165 |
state = BLINK_ERROR_O; |
| 166 |
} else {
|
| 167 |
state = BLINK_ERROR_BREAK; |
| 168 |
++loop; |
| 169 |
} |
| 170 |
stateStartTime = currentTime; |
| 171 |
} |
| 172 |
break;
|
| 173 |
} |
| 174 |
case BLINK_ERROR_O:
|
| 175 |
{
|
| 176 |
if (currentTime < stateStartTime + sigL) {
|
| 177 |
led = 1;
|
| 178 |
} else if (currentTime < stateStartTime + sigL+sigB) { |
| 179 |
led = 0;
|
| 180 |
} else if (currentTime < stateStartTime + sigL+sigB+sigL) { |
| 181 |
led = 1;
|
| 182 |
} else if (currentTime < stateStartTime + sigL+sigB+sigL+sigB) { |
| 183 |
led = 0;
|
| 184 |
} else if (currentTime < stateStartTime + sigL+sigB+sigL+sigB+sigL) { |
| 185 |
led = 1;
|
| 186 |
} else if (currentTime < stateStartTime + sigL+sigB+sigL+sigB+sigL+letterBreakTime) { |
| 187 |
led = 0;
|
| 188 |
} else {
|
| 189 |
state = BLINK_ERROR_S2; |
| 190 |
stateStartTime = currentTime; |
| 191 |
} |
| 192 |
break;
|
| 193 |
} |
| 194 |
case BLINK_ERROR_BREAK:
|
| 195 |
{
|
| 196 |
if (currentTime >= stateStartTime + wordBreakTime) {
|
| 197 |
state = BLINK_ERROR_S1; |
| 198 |
stateStartTime = currentTime; |
| 199 |
} |
| 200 |
break;
|
| 201 |
} |
| 202 |
} |
| 203 |
|
| 204 |
setLed(led); |
| 205 |
} |
| 206 |
|
| 207 |
return;
|
| 208 |
} |
| 209 |
|
| 210 |
/*
|
| 211 |
* Shortcut to make the LED blink SOS infinitely.
|
| 212 |
*/
|
| 213 |
inline void blinkSOSinf() { |
| 214 |
blinkSOS(0);
|
| 215 |
return;
|
| 216 |
} |
| 217 |
|
| 218 |
/*
|
| 219 |
* Makes the LED blink 'OK' in morese code (... -.-).
|
| 220 |
* If the specified number of loops is zero, the function will loop infinitely.
|
| 221 |
*/
|
| 222 |
void blinkOK(uint32_t loops) {
|
| 223 |
/* initialize some variables and constants */
|
| 224 |
enum State {BLINK_SUCCESS_O,
|
| 225 |
BLINK_SUCCESS_K, |
| 226 |
BLINK_SUCCESS_BREAK |
| 227 |
} state = BLINK_SUCCESS_O; |
| 228 |
uint8_t led = 0;
|
| 229 |
uint32_t loop = 0;
|
| 230 |
const uint32_t sigS = 50; |
| 231 |
const uint32_t sigL = 200; |
| 232 |
const uint32_t sigB = 100; |
| 233 |
const uint32_t letterBreakTime = 200; |
| 234 |
const uint32_t wordBreakTime = 1000; |
| 235 |
uint32_t stateStartTime = 0;
|
| 236 |
saTimerUpdate(&stateStartTime); |
| 237 |
uint32_t currentTime = stateStartTime; |
| 238 |
|
| 239 |
/* either loop the specified number, or infinitely */
|
| 240 |
while (loop < loops || loops == 0) |
| 241 |
{
|
| 242 |
/* make the LED blink "OK" (morse code: --- -.-)*/
|
| 243 |
led = 0;
|
| 244 |
saTimerUpdate(¤tTime); |
| 245 |
switch (state) {
|
| 246 |
case BLINK_SUCCESS_O:
|
| 247 |
{
|
| 248 |
if (currentTime < stateStartTime + sigL) {
|
| 249 |
led = 1;
|
| 250 |
} else if (currentTime < stateStartTime + sigL+sigB) { |
| 251 |
led = 0;
|
| 252 |
} else if (currentTime < stateStartTime + sigL+sigB+sigL) { |
| 253 |
led = 1;
|
| 254 |
} else if (currentTime < stateStartTime + sigL+sigB+sigL+sigB) { |
| 255 |
led = 0;
|
| 256 |
} else if (currentTime < stateStartTime + sigL+sigB+sigL+sigB+sigL) { |
| 257 |
led = 1;
|
| 258 |
} else if (currentTime < stateStartTime + sigL+sigB+sigL+sigB+sigL+letterBreakTime) { |
| 259 |
led = 0;
|
| 260 |
} else {
|
| 261 |
state = BLINK_SUCCESS_K; |
| 262 |
stateStartTime = currentTime; |
| 263 |
} |
| 264 |
break;
|
| 265 |
} |
| 266 |
case BLINK_SUCCESS_K:
|
| 267 |
{
|
| 268 |
if (currentTime < stateStartTime + sigL) {
|
| 269 |
led = 1;
|
| 270 |
} else if (currentTime < stateStartTime + sigL+sigB) { |
| 271 |
led = 0;
|
| 272 |
} else if (currentTime < stateStartTime + sigL+sigB+sigS) { |
| 273 |
led = 1;
|
| 274 |
} else if (currentTime < stateStartTime + sigL+sigB+sigS+sigB) { |
| 275 |
led = 0;
|
| 276 |
} else if (currentTime < stateStartTime + sigL+sigB+sigS+sigB+sigL) { |
| 277 |
led = 1;
|
| 278 |
} else if (currentTime < stateStartTime + sigL+sigB+sigS+sigB+sigL+letterBreakTime) { |
| 279 |
led = 0;
|
| 280 |
} else {
|
| 281 |
state = BLINK_SUCCESS_BREAK; |
| 282 |
++loop; |
| 283 |
stateStartTime = currentTime; |
| 284 |
} |
| 285 |
break;
|
| 286 |
} |
| 287 |
case BLINK_SUCCESS_BREAK:
|
| 288 |
{
|
| 289 |
if (currentTime >= stateStartTime + wordBreakTime) {
|
| 290 |
state = BLINK_SUCCESS_O; |
| 291 |
stateStartTime = currentTime; |
| 292 |
} |
| 293 |
break;
|
| 294 |
} |
| 295 |
} |
| 296 |
|
| 297 |
setLed(led); |
| 298 |
} |
| 299 |
|
| 300 |
return;
|
| 301 |
} |
| 302 |
|
| 303 |
/*
|
| 304 |
* Shortcut to make the LED blink OK infinitely.
|
| 305 |
*/
|
| 306 |
inline void blinkOKinf() { |
| 307 |
blinkOK(0);
|
| 308 |
return;
|
| 309 |
} |
| 310 |
|
| 311 |
/*
|
| 312 |
* Makes the LED visualize the specified data.
|
| 313 |
* Starting with the MSB of the first of the 'n' bytes, zeros are visualized as short flash and ones as long flash.
|
| 314 |
* If the specified number of loops is zero, the function will loop infinitely.
|
| 315 |
*/
|
| 316 |
void visualizeData(uint8_t* data, uint32_t bytes, uint32_t loops) {
|
| 317 |
/* initialize some variables and constants */
|
| 318 |
enum State {BLINK_DATA_BIT,
|
| 319 |
BLINK_DATA_BYTE_BREAK, |
| 320 |
BLINK_DATA_LOOP_BREAK |
| 321 |
} state = BLINK_DATA_BIT; |
| 322 |
uint8_t led = 0;
|
| 323 |
uint8_t mask = 0x80;
|
| 324 |
uint32_t byte = 0;
|
| 325 |
uint32_t loop = 0;
|
| 326 |
const uint32_t sigS = 50; |
| 327 |
const uint32_t sigL = 200; |
| 328 |
const uint32_t interBitBreak = 500; |
| 329 |
const uint32_t interByteBreak = 1000; |
| 330 |
const uint32_t interLoopBreak = 2500; |
| 331 |
uint32_t flash_dur = 0;
|
| 332 |
uint32_t stateStartTime = 0;
|
| 333 |
saTimerUpdate(&stateStartTime); |
| 334 |
uint32_t currentTime = stateStartTime; |
| 335 |
|
| 336 |
/* either loop the specified number, or infinetly */
|
| 337 |
while (loop < loops || loops == 0) { |
| 338 |
led = 0;
|
| 339 |
saTimerUpdate(¤tTime); |
| 340 |
switch (state) {
|
| 341 |
case BLINK_DATA_BIT:
|
| 342 |
{
|
| 343 |
if (data[byte] & mask) {
|
| 344 |
flash_dur = sigL; |
| 345 |
} else {
|
| 346 |
flash_dur = sigS; |
| 347 |
} |
| 348 |
if (currentTime < stateStartTime + flash_dur) {
|
| 349 |
led = 1;
|
| 350 |
} else if (currentTime < stateStartTime + flash_dur+interBitBreak) { |
| 351 |
led = 0;
|
| 352 |
} else {
|
| 353 |
mask = mask >> 1;
|
| 354 |
if (mask > 0) { |
| 355 |
state = BLINK_DATA_BIT; |
| 356 |
} else if (byte < bytes-1) { |
| 357 |
state = BLINK_DATA_BYTE_BREAK; |
| 358 |
} else {
|
| 359 |
state = BLINK_DATA_LOOP_BREAK; |
| 360 |
++loop; |
| 361 |
} |
| 362 |
stateStartTime = currentTime; |
| 363 |
} |
| 364 |
break;
|
| 365 |
} |
| 366 |
case BLINK_DATA_BYTE_BREAK:
|
| 367 |
{
|
| 368 |
if (currentTime >= stateStartTime + interByteBreak) {
|
| 369 |
mask = 0x80;
|
| 370 |
state = BLINK_DATA_BIT; |
| 371 |
++byte; |
| 372 |
stateStartTime = currentTime; |
| 373 |
} |
| 374 |
break;
|
| 375 |
} |
| 376 |
case BLINK_DATA_LOOP_BREAK:
|
| 377 |
{
|
| 378 |
if (currentTime >= stateStartTime + interLoopBreak) {
|
| 379 |
mask = 0x80;
|
| 380 |
state = BLINK_DATA_BIT; |
| 381 |
byte = 0;
|
| 382 |
stateStartTime = currentTime; |
| 383 |
} |
| 384 |
break;
|
| 385 |
} |
| 386 |
} |
| 387 |
|
| 388 |
setLed(led); |
| 389 |
} |
| 390 |
|
| 391 |
return;
|
| 392 |
} |
| 393 |
|
| 394 |
/*
|
| 395 |
* Makes the LED visualize the specified byte.
|
| 396 |
* Starting with the MSB, zeros are visualized as short flash and ones as long flash.
|
| 397 |
* If the specified number of loops is zero, the function will loop infinitely.
|
| 398 |
*/
|
| 399 |
void visualizeByte(uint8_t byte, uint32_t loops) {
|
| 400 |
visualizeData(&byte, 1, loops);
|
| 401 |
return;
|
| 402 |
} |
| 403 |
|