amiro-blt / Target / Source / AMiRo / helper.c @ a8ddce31
History | View | Annotate | Download (10.77 KB)
| 1 | 69661903 | Thomas Schöpping | #include "helper.h" |
|---|---|---|---|
| 2 | #include <blt_conf.h> |
||
| 3 | |||
| 4 | /*
|
||
| 5 | * Initialized the system timer.
|
||
| 6 | */
|
||
| 7 | void saTimerInit(void) { |
||
| 8 | /* reset the timer configuration */
|
||
| 9 | saTimerReset(); |
||
| 10 | |||
| 11 | /* configure the systick frequency as a 1 ms event generator */
|
||
| 12 | SysTick->LOAD = BOOT_CPU_SYSTEM_SPEED_KHZ - 1;
|
||
| 13 | /* reset the current counter value */
|
||
| 14 | SysTick->VAL = 0;
|
||
| 15 | /* select core clock as source and enable the timer */
|
||
| 16 | SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk | SysTick_CTRL_ENABLE_Msk; |
||
| 17 | } |
||
| 18 | |||
| 19 | /*
|
||
| 20 | * Resets the systick status of the system timer.
|
||
| 21 | */
|
||
| 22 | void saTimerReset(void) { |
||
| 23 | /* set the systick's status and control register back into the default reset value */
|
||
| 24 | SysTick->CTRL = 0;
|
||
| 25 | } |
||
| 26 | |||
| 27 | /*
|
||
| 28 | * Updates the given timer variable.
|
||
| 29 | * More specifically, the given variable in incremented if a millisecond event occurred.
|
||
| 30 | */
|
||
| 31 | void saTimerUpdate(uint32_t* millisecond_counter) {
|
||
| 32 | /* check if the millisecond event occurred */
|
||
| 33 | if ((SysTick->CTRL & SysTick_CTRL_COUNTFLAG_Msk) != 0) |
||
| 34 | {
|
||
| 35 | /* increment the millisecond counter */
|
||
| 36 | ++(*millisecond_counter); |
||
| 37 | } |
||
| 38 | |||
| 39 | return;
|
||
| 40 | } |
||
| 41 | |||
| 42 | /*
|
||
| 43 | * Actively polls the standalone timer until the specified time has passed.
|
||
| 44 | */
|
||
| 45 | void msleep(uint32_t ms)
|
||
| 46 | {
|
||
| 47 | uint32_t current; |
||
| 48 | saTimerUpdate(¤t); |
||
| 49 | uint32_t end = current + ms; |
||
| 50 | |||
| 51 | while (current < end)
|
||
| 52 | {
|
||
| 53 | saTimerUpdate(¤t); |
||
| 54 | } |
||
| 55 | |||
| 56 | return;
|
||
| 57 | } |
||
| 58 | |||
| 59 | /*
|
||
| 60 | * Actively reads the specified GPIO until it has the specified state.
|
||
| 61 | */
|
||
| 62 | void waitForSignal(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin, BitAction state) {
|
||
| 63 | /* check whether the signal has been set */
|
||
| 64 | while (GPIO_ReadInputDataBit(GPIOx, GPIO_Pin) != state) {
|
||
| 65 | continue;
|
||
| 66 | } |
||
| 67 | return;
|
||
| 68 | } |
||
| 69 | |||
| 70 | /*
|
||
| 71 | * Actively reads the specified GPIO until it has the specified state, or the specified time has passed.
|
||
| 72 | */
|
||
| 73 | uint8_t waitForSignalTimeout(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin, BitAction state, uint32_t timeout_ms) {
|
||
| 74 | uint32_t current_time; |
||
| 75 | saTimerUpdate(¤t_time); |
||
| 76 | uint32_t timeout_time = current_time + timeout_ms; |
||
| 77 | while ((GPIO_ReadInputDataBit(GPIOx, GPIO_Pin) != state) &&
|
||
| 78 | (current_time < timeout_time)) {
|
||
| 79 | saTimerUpdate(¤t_time); |
||
| 80 | } |
||
| 81 | if (current_time < timeout_time) {
|
||
| 82 | return 1; |
||
| 83 | } else {
|
||
| 84 | return 0; |
||
| 85 | } |
||
| 86 | } |
||
| 87 | |||
| 88 | /*
|
||
| 89 | * Turns the board LED or or off respectively.
|
||
| 90 | * If the argument is zero, the LED is switched off.
|
||
| 91 | * If the argument is not zero, the LED is switched on.
|
||
| 92 | */
|
||
| 93 | void setLed(uint8_t on) {
|
||
| 94 | |||
| 95 | #if defined(AMIRO_MODULE_POWERMANAGEMENT)
|
||
| 96 | #define LED_GPIO GPIOB
|
||
| 97 | #define LED_PIN GPIO_Pin_12
|
||
| 98 | #endif
|
||
| 99 | #if defined(AMIRO_MODULE_DIWHEELDRIVE)
|
||
| 100 | #define LED_GPIO GPIOA
|
||
| 101 | #define LED_PIN GPIO_Pin_1
|
||
| 102 | #endif
|
||
| 103 | #if defined(AMIRO_MODULE_LIGHTRING)
|
||
| 104 | /* This is just a pseudo LED, since the LightRing does not feature a status LED */
|
||
| 105 | #define LED_GPIO GPIOA
|
||
| 106 | #define LED_PIN GPIO_Pin_1
|
||
| 107 | #endif
|
||
| 108 | |||
| 109 | #if defined(LED_GPIO) && defined(LED_PIN)
|
||
| 110 | if (on == 0) { |
||
| 111 | GPIO_SetBits(LED_GPIO, LED_PIN); |
||
| 112 | } else {
|
||
| 113 | GPIO_ResetBits(LED_GPIO, LED_PIN); |
||
| 114 | } |
||
| 115 | #endif
|
||
| 116 | |||
| 117 | return;
|
||
| 118 | } |
||
| 119 | |||
| 120 | /*
|
||
| 121 | * Makes the LED blink 'SOS' in morese code (... --- ...).
|
||
| 122 | * If the specified number of loops is zero, the function will loop infinitely.
|
||
| 123 | */
|
||
| 124 | void blinkSOS(uint32_t loops) {
|
||
| 125 | /* initialize some variables and constants */
|
||
| 126 | enum State {BLINK_ERROR_S1,
|
||
| 127 | BLINK_ERROR_O, |
||
| 128 | BLINK_ERROR_S2, |
||
| 129 | BLINK_ERROR_BREAK |
||
| 130 | } state = BLINK_ERROR_S1; |
||
| 131 | uint8_t led = 0;
|
||
| 132 | uint32_t loop = 0;
|
||
| 133 | const uint32_t sigS = 50; |
||
| 134 | const uint32_t sigL = 200; |
||
| 135 | const uint32_t sigB = 100; |
||
| 136 | const uint32_t letterBreakTime = 200; |
||
| 137 | const uint32_t wordBreakTime = 1000; |
||
| 138 | uint32_t stateStartTime = 0;
|
||
| 139 | saTimerUpdate(&stateStartTime); |
||
| 140 | uint32_t currentTime = stateStartTime; |
||
| 141 | |||
| 142 | /* either loop the specified number, or infinitely */
|
||
| 143 | while (loop < loops || loops == 0) { |
||
| 144 | /* make the LED blink "SOS" (morse code: ... --- ...)*/
|
||
| 145 | led = 0;
|
||
| 146 | saTimerUpdate(¤tTime); |
||
| 147 | switch (state) {
|
||
| 148 | case BLINK_ERROR_S1:
|
||
| 149 | case BLINK_ERROR_S2:
|
||
| 150 | {
|
||
| 151 | if (currentTime < stateStartTime + sigS) {
|
||
| 152 | led = 1;
|
||
| 153 | } else if (currentTime < stateStartTime + sigS+sigB) { |
||
| 154 | led = 0;
|
||
| 155 | } else if (currentTime < stateStartTime + sigS+sigB+sigS) { |
||
| 156 | led = 1;
|
||
| 157 | } else if (currentTime < stateStartTime + sigS+sigB+sigS+sigB) { |
||
| 158 | led = 0;
|
||
| 159 | } else if (currentTime < stateStartTime + sigS+sigB+sigS+sigB+sigS) { |
||
| 160 | led = 1;
|
||
| 161 | } else if (currentTime < stateStartTime + sigS+sigB+sigS+sigB+sigS+letterBreakTime) { |
||
| 162 | led = 0;
|
||
| 163 | } else {
|
||
| 164 | if (state == BLINK_ERROR_S1) {
|
||
| 165 | state = BLINK_ERROR_O; |
||
| 166 | } else {
|
||
| 167 | state = BLINK_ERROR_BREAK; |
||
| 168 | ++loop; |
||
| 169 | } |
||
| 170 | stateStartTime = currentTime; |
||
| 171 | } |
||
| 172 | break;
|
||
| 173 | } |
||
| 174 | case BLINK_ERROR_O:
|
||
| 175 | {
|
||
| 176 | if (currentTime < stateStartTime + sigL) {
|
||
| 177 | led = 1;
|
||
| 178 | } else if (currentTime < stateStartTime + sigL+sigB) { |
||
| 179 | led = 0;
|
||
| 180 | } else if (currentTime < stateStartTime + sigL+sigB+sigL) { |
||
| 181 | led = 1;
|
||
| 182 | } else if (currentTime < stateStartTime + sigL+sigB+sigL+sigB) { |
||
| 183 | led = 0;
|
||
| 184 | } else if (currentTime < stateStartTime + sigL+sigB+sigL+sigB+sigL) { |
||
| 185 | led = 1;
|
||
| 186 | } else if (currentTime < stateStartTime + sigL+sigB+sigL+sigB+sigL+letterBreakTime) { |
||
| 187 | led = 0;
|
||
| 188 | } else {
|
||
| 189 | state = BLINK_ERROR_S2; |
||
| 190 | stateStartTime = currentTime; |
||
| 191 | } |
||
| 192 | break;
|
||
| 193 | } |
||
| 194 | case BLINK_ERROR_BREAK:
|
||
| 195 | {
|
||
| 196 | if (currentTime >= stateStartTime + wordBreakTime) {
|
||
| 197 | state = BLINK_ERROR_S1; |
||
| 198 | stateStartTime = currentTime; |
||
| 199 | } |
||
| 200 | break;
|
||
| 201 | } |
||
| 202 | } |
||
| 203 | |||
| 204 | setLed(led); |
||
| 205 | } |
||
| 206 | |||
| 207 | return;
|
||
| 208 | } |
||
| 209 | |||
| 210 | /*
|
||
| 211 | * Shortcut to make the LED blink SOS infinitely.
|
||
| 212 | */
|
||
| 213 | inline void blinkSOSinf() { |
||
| 214 | blinkSOS(0);
|
||
| 215 | return;
|
||
| 216 | } |
||
| 217 | |||
| 218 | /*
|
||
| 219 | * Makes the LED blink 'OK' in morese code (... -.-).
|
||
| 220 | * If the specified number of loops is zero, the function will loop infinitely.
|
||
| 221 | */
|
||
| 222 | void blinkOK(uint32_t loops) {
|
||
| 223 | /* initialize some variables and constants */
|
||
| 224 | enum State {BLINK_SUCCESS_O,
|
||
| 225 | BLINK_SUCCESS_K, |
||
| 226 | BLINK_SUCCESS_BREAK |
||
| 227 | } state = BLINK_SUCCESS_O; |
||
| 228 | uint8_t led = 0;
|
||
| 229 | uint32_t loop = 0;
|
||
| 230 | const uint32_t sigS = 50; |
||
| 231 | const uint32_t sigL = 200; |
||
| 232 | const uint32_t sigB = 100; |
||
| 233 | const uint32_t letterBreakTime = 200; |
||
| 234 | const uint32_t wordBreakTime = 1000; |
||
| 235 | uint32_t stateStartTime = 0;
|
||
| 236 | saTimerUpdate(&stateStartTime); |
||
| 237 | uint32_t currentTime = stateStartTime; |
||
| 238 | |||
| 239 | /* either loop the specified number, or infinitely */
|
||
| 240 | while (loop < loops || loops == 0) |
||
| 241 | {
|
||
| 242 | /* make the LED blink "OK" (morse code: --- -.-)*/
|
||
| 243 | led = 0;
|
||
| 244 | saTimerUpdate(¤tTime); |
||
| 245 | switch (state) {
|
||
| 246 | case BLINK_SUCCESS_O:
|
||
| 247 | {
|
||
| 248 | if (currentTime < stateStartTime + sigL) {
|
||
| 249 | led = 1;
|
||
| 250 | } else if (currentTime < stateStartTime + sigL+sigB) { |
||
| 251 | led = 0;
|
||
| 252 | } else if (currentTime < stateStartTime + sigL+sigB+sigL) { |
||
| 253 | led = 1;
|
||
| 254 | } else if (currentTime < stateStartTime + sigL+sigB+sigL+sigB) { |
||
| 255 | led = 0;
|
||
| 256 | } else if (currentTime < stateStartTime + sigL+sigB+sigL+sigB+sigL) { |
||
| 257 | led = 1;
|
||
| 258 | } else if (currentTime < stateStartTime + sigL+sigB+sigL+sigB+sigL+letterBreakTime) { |
||
| 259 | led = 0;
|
||
| 260 | } else {
|
||
| 261 | state = BLINK_SUCCESS_K; |
||
| 262 | stateStartTime = currentTime; |
||
| 263 | } |
||
| 264 | break;
|
||
| 265 | } |
||
| 266 | case BLINK_SUCCESS_K:
|
||
| 267 | {
|
||
| 268 | if (currentTime < stateStartTime + sigL) {
|
||
| 269 | led = 1;
|
||
| 270 | } else if (currentTime < stateStartTime + sigL+sigB) { |
||
| 271 | led = 0;
|
||
| 272 | } else if (currentTime < stateStartTime + sigL+sigB+sigS) { |
||
| 273 | led = 1;
|
||
| 274 | } else if (currentTime < stateStartTime + sigL+sigB+sigS+sigB) { |
||
| 275 | led = 0;
|
||
| 276 | } else if (currentTime < stateStartTime + sigL+sigB+sigS+sigB+sigL) { |
||
| 277 | led = 1;
|
||
| 278 | } else if (currentTime < stateStartTime + sigL+sigB+sigS+sigB+sigL+letterBreakTime) { |
||
| 279 | led = 0;
|
||
| 280 | } else {
|
||
| 281 | state = BLINK_SUCCESS_BREAK; |
||
| 282 | ++loop; |
||
| 283 | stateStartTime = currentTime; |
||
| 284 | } |
||
| 285 | break;
|
||
| 286 | } |
||
| 287 | case BLINK_SUCCESS_BREAK:
|
||
| 288 | {
|
||
| 289 | if (currentTime >= stateStartTime + wordBreakTime) {
|
||
| 290 | state = BLINK_SUCCESS_O; |
||
| 291 | stateStartTime = currentTime; |
||
| 292 | } |
||
| 293 | break;
|
||
| 294 | } |
||
| 295 | } |
||
| 296 | |||
| 297 | setLed(led); |
||
| 298 | } |
||
| 299 | |||
| 300 | return;
|
||
| 301 | } |
||
| 302 | |||
| 303 | /*
|
||
| 304 | * Shortcut to make the LED blink OK infinitely.
|
||
| 305 | */
|
||
| 306 | inline void blinkOKinf() { |
||
| 307 | blinkOK(0);
|
||
| 308 | return;
|
||
| 309 | } |
||
| 310 | |||
| 311 | /*
|
||
| 312 | * Makes the LED visualize the specified data.
|
||
| 313 | * Starting with the MSB of the first of the 'n' bytes, zeros are visualized as short flash and ones as long flash.
|
||
| 314 | * If the specified number of loops is zero, the function will loop infinitely.
|
||
| 315 | */
|
||
| 316 | void visualizeData(uint8_t* data, uint32_t bytes, uint32_t loops) {
|
||
| 317 | /* initialize some variables and constants */
|
||
| 318 | enum State {BLINK_DATA_BIT,
|
||
| 319 | BLINK_DATA_BYTE_BREAK, |
||
| 320 | BLINK_DATA_LOOP_BREAK |
||
| 321 | } state = BLINK_DATA_BIT; |
||
| 322 | uint8_t led = 0;
|
||
| 323 | uint8_t mask = 0x80;
|
||
| 324 | uint32_t byte = 0;
|
||
| 325 | uint32_t loop = 0;
|
||
| 326 | const uint32_t sigS = 50; |
||
| 327 | const uint32_t sigL = 200; |
||
| 328 | const uint32_t interBitBreak = 500; |
||
| 329 | const uint32_t interByteBreak = 1000; |
||
| 330 | const uint32_t interLoopBreak = 2500; |
||
| 331 | uint32_t flash_dur = 0;
|
||
| 332 | uint32_t stateStartTime = 0;
|
||
| 333 | saTimerUpdate(&stateStartTime); |
||
| 334 | uint32_t currentTime = stateStartTime; |
||
| 335 | |||
| 336 | /* either loop the specified number, or infinetly */
|
||
| 337 | while (loop < loops || loops == 0) { |
||
| 338 | led = 0;
|
||
| 339 | saTimerUpdate(¤tTime); |
||
| 340 | switch (state) {
|
||
| 341 | case BLINK_DATA_BIT:
|
||
| 342 | {
|
||
| 343 | if (data[byte] & mask) {
|
||
| 344 | flash_dur = sigL; |
||
| 345 | } else {
|
||
| 346 | flash_dur = sigS; |
||
| 347 | } |
||
| 348 | if (currentTime < stateStartTime + flash_dur) {
|
||
| 349 | led = 1;
|
||
| 350 | } else if (currentTime < stateStartTime + flash_dur+interBitBreak) { |
||
| 351 | led = 0;
|
||
| 352 | } else {
|
||
| 353 | mask = mask >> 1;
|
||
| 354 | if (mask > 0) { |
||
| 355 | state = BLINK_DATA_BIT; |
||
| 356 | } else if (byte < bytes-1) { |
||
| 357 | state = BLINK_DATA_BYTE_BREAK; |
||
| 358 | } else {
|
||
| 359 | state = BLINK_DATA_LOOP_BREAK; |
||
| 360 | ++loop; |
||
| 361 | } |
||
| 362 | stateStartTime = currentTime; |
||
| 363 | } |
||
| 364 | break;
|
||
| 365 | } |
||
| 366 | case BLINK_DATA_BYTE_BREAK:
|
||
| 367 | {
|
||
| 368 | if (currentTime >= stateStartTime + interByteBreak) {
|
||
| 369 | mask = 0x80;
|
||
| 370 | state = BLINK_DATA_BIT; |
||
| 371 | ++byte; |
||
| 372 | stateStartTime = currentTime; |
||
| 373 | } |
||
| 374 | break;
|
||
| 375 | } |
||
| 376 | case BLINK_DATA_LOOP_BREAK:
|
||
| 377 | {
|
||
| 378 | if (currentTime >= stateStartTime + interLoopBreak) {
|
||
| 379 | mask = 0x80;
|
||
| 380 | state = BLINK_DATA_BIT; |
||
| 381 | byte = 0;
|
||
| 382 | stateStartTime = currentTime; |
||
| 383 | } |
||
| 384 | break;
|
||
| 385 | } |
||
| 386 | } |
||
| 387 | |||
| 388 | setLed(led); |
||
| 389 | } |
||
| 390 | |||
| 391 | return;
|
||
| 392 | } |
||
| 393 | |||
| 394 | /*
|
||
| 395 | * Makes the LED visualize the specified byte.
|
||
| 396 | * Starting with the MSB, zeros are visualized as short flash and ones as long flash.
|
||
| 397 | * If the specified number of loops is zero, the function will loop infinitely.
|
||
| 398 | */
|
||
| 399 | void visualizeByte(uint8_t byte, uint32_t loops) {
|
||
| 400 | visualizeData(&byte, 1, loops);
|
||
| 401 | return;
|
||
| 402 | } |