amiro-blt / Target / Modules / PowerManagement_1-1 / Boot / main.c @ ea906b44
History | View | Annotate | Download (56.668 KB)
1 |
/************************************************************************************//** |
---|---|
2 |
* \file Demo\ARMCM4_STM32_Olimex_STM32E407_GCC\Boot\main.c
|
3 |
* \brief Bootloader application source file.
|
4 |
* \ingroup Boot_ARMCM4_STM32_Olimex_STM32E407_GCC
|
5 |
* \internal
|
6 |
*----------------------------------------------------------------------------------------
|
7 |
* C O P Y R I G H T
|
8 |
*----------------------------------------------------------------------------------------
|
9 |
* Copyright (c) 2013 by Feaser http://www.feaser.com All rights reserved
|
10 |
*
|
11 |
*----------------------------------------------------------------------------------------
|
12 |
* L I C E N S E
|
13 |
*----------------------------------------------------------------------------------------
|
14 |
* This file is part of OpenBLT. OpenBLT is free software: you can redistribute it and/or
|
15 |
* modify it under the terms of the GNU General Public License as published by the Free
|
16 |
* Software Foundation, either version 3 of the License, or (at your option) any later
|
17 |
* version.
|
18 |
*
|
19 |
* OpenBLT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
|
20 |
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
21 |
* PURPOSE. See the GNU General Public License for more details.
|
22 |
*
|
23 |
* You should have received a copy of the GNU General Public License along with OpenBLT.
|
24 |
* If not, see <http://www.gnu.org/licenses/>.
|
25 |
*
|
26 |
* A special exception to the GPL is included to allow you to distribute a combined work
|
27 |
* that includes OpenBLT without being obliged to provide the source code for any
|
28 |
* proprietary components. The exception text is included at the bottom of the license
|
29 |
* file <license.html>.
|
30 |
*
|
31 |
* \endinternal
|
32 |
****************************************************************************************/
|
33 |
|
34 |
/****************************************************************************************
|
35 |
* Include files
|
36 |
****************************************************************************************/
|
37 |
#include "boot.h" /* bootloader generic header */ |
38 |
#include "com.h" |
39 |
#include "ARMCM4_STM32/types.h" |
40 |
#include "AMiRo/amiroblt.h" |
41 |
#include "helper.h" |
42 |
#include "iodef.h" |
43 |
|
44 |
/****************************************************************************************
|
45 |
* Defines
|
46 |
****************************************************************************************/
|
47 |
#define HIBERNATE_TIME_MS 5000 |
48 |
|
49 |
/****************************************************************************************
|
50 |
* Function prototypes and static variables
|
51 |
****************************************************************************************/
|
52 |
static void Init(void); |
53 |
|
54 |
static void initGpio(); |
55 |
static void initExti(); |
56 |
void configGpioForShutdown();
|
57 |
void systemPowerDown();
|
58 |
|
59 |
ErrorStatus handleColdReset(); |
60 |
ErrorStatus handleSoftwareReset(); |
61 |
ErrorStatus handleUartDnWakeup(); |
62 |
ErrorStatus handlePathDcWakeup(); |
63 |
ErrorStatus handleTouchWakeup(); |
64 |
ErrorStatus handleIwdgWakeup(); |
65 |
|
66 |
static void indicateHibernate(); |
67 |
static void AdcSingleMeasurement(); |
68 |
|
69 |
ADC_TypeDef* setupADC(ADC_TypeDef* adc, const uint16_t low_th, const uint16_t high_th); |
70 |
uint16_t configIwdg(const uint16_t ms);
|
71 |
|
72 |
ErrorStatus shutdownDisambiguationProcedure(const uint8_t type);
|
73 |
void shutdownToTransportation();
|
74 |
void shutdownToDeepsleep();
|
75 |
void shutdownToHibernate();
|
76 |
void shutdownAndRestart();
|
77 |
|
78 |
volatile blBackupRegister_t backup_reg;
|
79 |
|
80 |
/****************************************************************************************
|
81 |
* Callback configuration
|
82 |
****************************************************************************************/
|
83 |
void blCallbackShutdownTransportation(void); |
84 |
void blCallbackShutdownDeepsleep(void); |
85 |
void blCallbackShutdownHibernate(void); |
86 |
void blCallbackShutdownRestart(void); |
87 |
void blCallbackHandleShutdownRequest(void); |
88 |
|
89 |
const blCallbackTable_t cbtable __attribute__ ((section ("_callback_table"))) = { |
90 |
.magicNumber = BL_MAGIC_NUMBER, |
91 |
.vBootloader = {BL_VERSION_ID_AMiRoBLT_Beta, BL_VERSION_MAJOR, BL_VERSION_MINOR, 3},
|
92 |
.vSSSP = {BL_VERSION_ID_SSSP, BL_SSSP_VERSION_MAJOR, BL_SSSP_VERSION_MINOR, 0},
|
93 |
.vCompiler = {BL_VERSION_ID_GCC, __GNUC__, __GNUC_MINOR__, __GNUC_PATCHLEVEL__}, // currently only GCC is supported
|
94 |
.cbShutdownHibernate = blCallbackShutdownHibernate, |
95 |
.cbShutdownDeepsleep = blCallbackShutdownDeepsleep, |
96 |
.cbShutdownTransportation = blCallbackShutdownTransportation, |
97 |
.cbShutdownRestart = blCallbackShutdownRestart, |
98 |
.cbHandleShutdownRequest = blCallbackHandleShutdownRequest, |
99 |
.cb5 = (void*)0, |
100 |
.cb6 = (void*)0, |
101 |
.cb7 = (void*)0, |
102 |
.cb8 = (void*)0, |
103 |
.cb9 = (void*)0, |
104 |
.cb10 = (void*)0, |
105 |
.cb11 = (void*)0 |
106 |
}; |
107 |
|
108 |
/************************************************************************************//** |
109 |
** \brief This is the entry point for the bootloader application and is called
|
110 |
** by the reset interrupt vector after the C-startup routines executed.
|
111 |
** \return none.
|
112 |
**
|
113 |
****************************************************************************************/
|
114 |
void main(void) |
115 |
{ |
116 |
/* initialize the microcontroller */
|
117 |
Init(); |
118 |
|
119 |
/* activate some required clocks */
|
120 |
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA | RCC_AHB1Periph_GPIOB | RCC_AHB1Periph_GPIOC | RCC_AHB1Periph_GPIOD, ENABLE); |
121 |
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE); |
122 |
RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE); |
123 |
|
124 |
/* initialize GPIOs and EXTI lines */
|
125 |
initGpio(); |
126 |
setLed(BLT_TRUE); |
127 |
initExti(); |
128 |
|
129 |
/* initialize the timer */
|
130 |
TimerInit(); // do not use saTimerInit() in order to initialize the static variable.
|
131 |
|
132 |
/* read the backup register */
|
133 |
backup_reg.raw = RTC_ReadBackupRegister(BL_RTC_BACKUP_REG); |
134 |
|
135 |
/* detect the primary reason for this wakeup/restart */
|
136 |
backup_reg.wakeup_pri_reason = |
137 |
((RCC_GetFlagStatus(RCC_FLAG_LPWRRST) == SET) ? BL_WAKEUP_PRI_RSN_LPWRRST : 0) |
|
138 |
((RCC_GetFlagStatus(RCC_FLAG_WWDGRST) == SET) ? BL_WAKEUP_PRI_RSN_WWDGRST : 0) |
|
139 |
((RCC_GetFlagStatus(RCC_FLAG_IWDGRST) == SET) ? BL_WAKEUP_PRI_RSN_IWDGRST : 0) |
|
140 |
((RCC_GetFlagStatus(RCC_FLAG_SFTRST) == SET) ? BL_WAKEUP_PRI_RSN_SFTRST : 0) |
|
141 |
((RCC_GetFlagStatus(RCC_FLAG_PORRST) == SET) ? BL_WAKEUP_PRI_RSN_PORRST : 0) |
|
142 |
((RCC_GetFlagStatus(RCC_FLAG_PINRST) == SET) ? BL_WAKEUP_PRI_RSN_PINRST : 0) |
|
143 |
((RCC_GetFlagStatus(RCC_FLAG_BORRST) == SET) ? BL_WAKEUP_PRI_RSN_BORRST : 0) |
|
144 |
((PWR_GetFlagStatus(PWR_FLAG_WU) == SET) ? BL_WAKEUP_PRI_RSN_WKUP : 0);
|
145 |
|
146 |
/* when woken from standby mode, detect the secondary reason for this wakeup/reset */
|
147 |
if ( (backup_reg.wakeup_pri_reason & BL_WAKEUP_PRI_RSN_WKUP) && (PWR_GetFlagStatus(PWR_FLAG_SB) == SET) ) {
|
148 |
if (GPIO_ReadInputDataBit(SYS_UART_DN_GPIO, SYS_UART_DN_PIN) == Bit_RESET) {
|
149 |
backup_reg.wakeup_sec_reason = BL_WAKEUP_SEC_RSN_UART; |
150 |
} else if (GPIO_ReadInputDataBit(PATH_DC_GPIO, PATH_DC_PIN) == Bit_SET) { |
151 |
backup_reg.wakeup_sec_reason = BL_WAKEUP_SEC_RSN_PWRPLUG; |
152 |
} else {
|
153 |
backup_reg.wakeup_sec_reason = BL_WAKEUP_SEC_RSN_TOUCH; |
154 |
} |
155 |
} else {
|
156 |
backup_reg.wakeup_sec_reason = BL_WAKEUP_SEC_RSN_UNKNOWN; |
157 |
} |
158 |
|
159 |
/* store the information about this wakeup/restart in the backup register */
|
160 |
PWR_BackupAccessCmd(ENABLE); |
161 |
RTC_WriteBackupRegister(BL_RTC_BACKUP_REG, backup_reg.raw); |
162 |
|
163 |
/* clear the flags */
|
164 |
RCC_ClearFlag(); |
165 |
PWR_ClearFlag(PWR_FLAG_WU); |
166 |
|
167 |
setLed(BLT_FALSE); |
168 |
|
169 |
/* handle different wakeup/reset reasons */
|
170 |
ErrorStatus status = ERROR; |
171 |
if (backup_reg.wakeup_pri_reason & BL_WAKEUP_PRI_RSN_SFTRST) {
|
172 |
/* system was reset by software */
|
173 |
status = handleSoftwareReset(); |
174 |
} else if (backup_reg.wakeup_pri_reason & BL_WAKEUP_PRI_RSN_WKUP) { |
175 |
/* system was woken via WKUP pin */
|
176 |
/* differeciate between thre wakeup types */
|
177 |
switch (backup_reg.wakeup_sec_reason) {
|
178 |
case BL_WAKEUP_SEC_RSN_UART:
|
179 |
status = handleUartDnWakeup(); |
180 |
break;
|
181 |
case BL_WAKEUP_SEC_RSN_PWRPLUG:
|
182 |
status = handlePathDcWakeup(); |
183 |
break;
|
184 |
case BL_WAKEUP_SEC_RSN_TOUCH:
|
185 |
status = handleTouchWakeup(); |
186 |
break;
|
187 |
default:
|
188 |
status = ERROR; |
189 |
break;
|
190 |
} |
191 |
} else if (backup_reg.wakeup_pri_reason & BL_WAKEUP_PRI_RSN_IWDGRST) { |
192 |
/* system was woken by IWDG */
|
193 |
status = handleIwdgWakeup(); |
194 |
} else if (backup_reg.wakeup_pri_reason == BL_WAKEUP_PRI_RSN_PINRST) { |
195 |
/* system was reset via NRST pin */
|
196 |
status = handleColdReset(); |
197 |
} else {
|
198 |
/* system was woken/reset for an unexpected reason.
|
199 |
* In this case the LED blinks "SOS" (... --- ...) and the system resets.
|
200 |
*/
|
201 |
blinkSOS(1);
|
202 |
status = ERROR; |
203 |
backup_reg.shutdown_pri_reason = BL_SHUTDOWN_PRI_RSN_RESTART; |
204 |
backup_reg.shutdown_sec_reason = BL_SHUTDOWN_SEC_RSN_UNKNOWN; |
205 |
RTC_WriteBackupRegister(BL_RTC_BACKUP_REG, backup_reg.raw); |
206 |
NVIC_SystemReset(); |
207 |
} |
208 |
|
209 |
/* if something went wrong, signal this failure */
|
210 |
if (status != SUCCESS) {
|
211 |
blinkSOSinf(); |
212 |
} |
213 |
|
214 |
return;
|
215 |
} /*** end of main ***/
|
216 |
|
217 |
|
218 |
/************************************************************************************//** |
219 |
** \brief Initializes the microcontroller.
|
220 |
** \return none.
|
221 |
**
|
222 |
****************************************************************************************/
|
223 |
static void Init(void) |
224 |
{ |
225 |
#if (BOOT_COM_UART_ENABLE > 0 || BOOT_GATE_UART_ENABLE > 0) |
226 |
GPIO_InitTypeDef GPIO_InitStructure; |
227 |
#elif (BOOT_FILE_SYS_ENABLE > 0) |
228 |
GPIO_InitTypeDef GPIO_InitStructure; |
229 |
USART_InitTypeDef USART_InitStructure; |
230 |
#elif (BOOT_COM_CAN_ENABLE > 0 || BOOT_GATE_CAN_ENABLE > 0) |
231 |
GPIO_InitTypeDef GPIO_InitStructure; |
232 |
#endif
|
233 |
|
234 |
/* initialize the system and its clocks */
|
235 |
SystemInit(); |
236 |
#if (BOOT_COM_UART_ENABLE > 0 || BOOT_GATE_UART_ENABLE > 0) |
237 |
/* enable UART peripheral clock */
|
238 |
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1, ENABLE); |
239 |
/* enable GPIO peripheral clock for transmitter and receiver pins */
|
240 |
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); |
241 |
/* connect the pin to the peripherals alternate function */
|
242 |
GPIO_PinAFConfig(GPIOA, GPIO_PinSource9, GPIO_AF_USART1); |
243 |
GPIO_PinAFConfig(GPIOA, GPIO_PinSource10, GPIO_AF_USART1); |
244 |
/* configure USART Tx as alternate function */
|
245 |
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; |
246 |
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; |
247 |
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; |
248 |
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; |
249 |
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; |
250 |
GPIO_Init(GPIOA, &GPIO_InitStructure); |
251 |
/* configure USART Rx as alternate function */
|
252 |
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; |
253 |
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; |
254 |
GPIO_Init(GPIOA, &GPIO_InitStructure); |
255 |
#endif
|
256 |
|
257 |
#if (BOOT_COM_BLUETOOTH_UART_ENABLE > 0) |
258 |
/* enable UART peripheral clock */
|
259 |
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3, ENABLE); |
260 |
|
261 |
/* enable GPIO peripheral clock for transmitter and receiver pins */
|
262 |
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE); |
263 |
/* connect the pin to the peripherals alternate function */
|
264 |
GPIO_PinAFConfig(GPIOC, GPIO_PinSource10, GPIO_AF_USART3); |
265 |
GPIO_PinAFConfig(GPIOC, GPIO_PinSource11, GPIO_AF_USART3); |
266 |
/* configure USART Tx as alternate function */
|
267 |
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; |
268 |
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; |
269 |
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; |
270 |
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; |
271 |
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; |
272 |
GPIO_Init(GPIOC, &GPIO_InitStructure); |
273 |
/* configure USART Rx as alternate function */
|
274 |
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; |
275 |
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11; |
276 |
GPIO_Init(GPIOC, &GPIO_InitStructure); |
277 |
|
278 |
/* Configure Bluetooth reset pin */
|
279 |
GPIO_InitTypeDef gpio_init; |
280 |
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE); |
281 |
gpio_init.GPIO_Pin = BT_RST_PIN; |
282 |
gpio_init.GPIO_OType = GPIO_OType_OD; |
283 |
gpio_init.GPIO_PuPd = GPIO_PuPd_NOPULL; |
284 |
gpio_init.GPIO_Mode = GPIO_Mode_OUT; |
285 |
gpio_init.GPIO_Speed = GPIO_Speed_50MHz; |
286 |
GPIO_Init(BT_RST_GPIO, &gpio_init); |
287 |
/* Reset Bluetooth reset pin */
|
288 |
GPIO_ResetBits(BT_RST_GPIO, BT_RST_PIN); |
289 |
#endif
|
290 |
|
291 |
|
292 |
#if (BOOT_COM_CAN_ENABLE > 0 || BOOT_GATE_CAN_ENABLE > 0) |
293 |
/* enable clocks for CAN transmitter and receiver pins */
|
294 |
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); |
295 |
/* select alternate function for the CAN pins */
|
296 |
GPIO_PinAFConfig(GPIOA, GPIO_PinSource11, GPIO_AF_CAN1); |
297 |
GPIO_PinAFConfig(GPIOA, GPIO_PinSource12, GPIO_AF_CAN1); |
298 |
/* configure CAN RX and TX pins */
|
299 |
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11; |
300 |
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; |
301 |
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; |
302 |
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; |
303 |
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; |
304 |
GPIO_Init(GPIOA, &GPIO_InitStructure); |
305 |
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12; |
306 |
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; |
307 |
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; |
308 |
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; |
309 |
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; |
310 |
GPIO_Init(GPIOA, &GPIO_InitStructure); |
311 |
#endif
|
312 |
} /*** end of Init ***/
|
313 |
|
314 |
/*
|
315 |
* Initializes all GPIO used by the bootloader
|
316 |
*/
|
317 |
static void initGpio() { |
318 |
GPIO_InitTypeDef gpio_init; |
319 |
|
320 |
/*
|
321 |
* OUTPUTS
|
322 |
*/
|
323 |
|
324 |
/* initialize LED and push it up (inactive) */
|
325 |
GPIO_SetBits(LED_GPIO, LED_PIN); |
326 |
gpio_init.GPIO_Pin = LED_PIN; |
327 |
gpio_init.GPIO_Mode = GPIO_Mode_OUT; |
328 |
gpio_init.GPIO_Speed = GPIO_Speed_50MHz; |
329 |
gpio_init.GPIO_OType = GPIO_OType_PP; |
330 |
gpio_init.GPIO_PuPd = GPIO_PuPd_NOPULL; |
331 |
GPIO_Init(LED_GPIO, &gpio_init); |
332 |
|
333 |
/* initialize SYS_PD_N and push it up (inactive) */
|
334 |
GPIO_SetBits(SYS_PD_N_GPIO, SYS_PD_N_PIN); |
335 |
gpio_init.GPIO_Pin = SYS_PD_N_PIN; |
336 |
gpio_init.GPIO_Mode = GPIO_Mode_OUT; |
337 |
gpio_init.GPIO_Speed = GPIO_Speed_50MHz; |
338 |
gpio_init.GPIO_OType = GPIO_OType_OD; |
339 |
gpio_init.GPIO_PuPd = GPIO_PuPd_NOPULL; |
340 |
GPIO_Init(SYS_PD_N_GPIO, &gpio_init); |
341 |
|
342 |
/* initialize SYS_SYNC_N and pull it down (active) */
|
343 |
GPIO_ResetBits(SYS_SYNC_N_GPIO, SYS_SYNC_N_PIN); |
344 |
gpio_init.GPIO_Pin = SYS_SYNC_N_PIN; |
345 |
gpio_init.GPIO_Mode = GPIO_Mode_OUT; |
346 |
gpio_init.GPIO_Speed = GPIO_Speed_50MHz; |
347 |
gpio_init.GPIO_OType = GPIO_OType_OD; |
348 |
gpio_init.GPIO_PuPd = GPIO_PuPd_NOPULL; |
349 |
GPIO_Init(SYS_SYNC_N_GPIO, &gpio_init); |
350 |
|
351 |
/* initialize SYS_WARMRST_N and pull it down (active) */
|
352 |
GPIO_ResetBits(SYS_WARMRST_N_GPIO, SYS_WARMRST_N_PIN); |
353 |
gpio_init.GPIO_Pin = SYS_WARMRST_N_PIN; |
354 |
gpio_init.GPIO_Mode = GPIO_Mode_OUT; |
355 |
gpio_init.GPIO_Speed = GPIO_Speed_50MHz; |
356 |
gpio_init.GPIO_OType = GPIO_OType_OD; |
357 |
gpio_init.GPIO_PuPd = GPIO_PuPd_NOPULL; |
358 |
GPIO_Init(SYS_WARMRST_N_GPIO, &gpio_init); |
359 |
|
360 |
/* initialize SYS_UART_DN and push it up (inactive) */
|
361 |
GPIO_SetBits(SYS_UART_DN_GPIO, SYS_UART_DN_PIN); |
362 |
gpio_init.GPIO_Pin = SYS_UART_DN_PIN; |
363 |
gpio_init.GPIO_Mode = GPIO_Mode_OUT; |
364 |
gpio_init.GPIO_Speed = GPIO_Speed_50MHz; |
365 |
gpio_init.GPIO_OType = GPIO_OType_OD; |
366 |
gpio_init.GPIO_PuPd = GPIO_PuPd_NOPULL; |
367 |
GPIO_Init(SYS_UART_DN_GPIO, &gpio_init); |
368 |
|
369 |
/* initialize POWER_EN and pull it down (inactive) */
|
370 |
GPIO_ResetBits(POWER_EN_GPIO, POWER_EN_PIN); |
371 |
gpio_init.GPIO_Pin = POWER_EN_PIN; |
372 |
gpio_init.GPIO_Mode = GPIO_Mode_OUT; |
373 |
gpio_init.GPIO_Speed = GPIO_Speed_50MHz; |
374 |
gpio_init.GPIO_OType = GPIO_OType_PP; |
375 |
gpio_init.GPIO_PuPd = GPIO_PuPd_NOPULL; |
376 |
GPIO_Init(POWER_EN_GPIO, &gpio_init); |
377 |
|
378 |
/* initialize SYS_REG_EN and pull it down (inactive) */
|
379 |
GPIO_ResetBits(SYS_REG_EN_GPIO, SYS_REG_EN_PIN); |
380 |
gpio_init.GPIO_Pin = SYS_REG_EN_PIN; |
381 |
gpio_init.GPIO_Mode = GPIO_Mode_OUT; |
382 |
gpio_init.GPIO_Speed = GPIO_Speed_50MHz; |
383 |
gpio_init.GPIO_OType = GPIO_OType_PP; |
384 |
gpio_init.GPIO_PuPd = GPIO_PuPd_NOPULL; |
385 |
GPIO_Init(SYS_REG_EN_GPIO, &gpio_init); |
386 |
|
387 |
/* initialize CHARGE_EN1_N and CHARGE_EN2_N and push them up (inactive) */
|
388 |
GPIO_SetBits(CHARGE_EN1_N_GPIO, CHARGE_EN1_N_PIN); |
389 |
GPIO_SetBits(CHARGE_EN2_N_GPIO, CHARGE_EN2_N_PIN); |
390 |
gpio_init.GPIO_Pin = CHARGE_EN1_N_PIN; |
391 |
gpio_init.GPIO_Mode = GPIO_Mode_OUT; |
392 |
gpio_init.GPIO_Speed = GPIO_Speed_50MHz; |
393 |
gpio_init.GPIO_OType = GPIO_OType_PP; |
394 |
gpio_init.GPIO_PuPd = GPIO_PuPd_NOPULL; |
395 |
GPIO_Init(CHARGE_EN1_N_GPIO, &gpio_init); |
396 |
gpio_init.GPIO_Pin = CHARGE_EN2_N_PIN; |
397 |
GPIO_Init(CHARGE_EN2_N_GPIO, &gpio_init); |
398 |
|
399 |
/*
|
400 |
* INPUTS
|
401 |
*/
|
402 |
|
403 |
/* initialize PATH_DC */
|
404 |
gpio_init.GPIO_Pin = PATH_DC_PIN; |
405 |
gpio_init.GPIO_Mode = GPIO_Mode_IN; |
406 |
gpio_init.GPIO_Speed = GPIO_Speed_50MHz; |
407 |
gpio_init.GPIO_OType = GPIO_OType_PP; |
408 |
gpio_init.GPIO_PuPd = GPIO_PuPd_NOPULL; |
409 |
GPIO_Init(PATH_DC_GPIO, &gpio_init); |
410 |
|
411 |
/* initialize TOUCH_INT_N */
|
412 |
gpio_init.GPIO_Pin = TOUCH_INT_N_PIN; |
413 |
gpio_init.GPIO_Mode = GPIO_Mode_IN; |
414 |
gpio_init.GPIO_Speed = GPIO_Speed_50MHz; |
415 |
gpio_init.GPIO_OType = GPIO_OType_PP; |
416 |
gpio_init.GPIO_PuPd = GPIO_PuPd_NOPULL; |
417 |
GPIO_Init(TOUCH_INT_N_GPIO, &gpio_init); |
418 |
|
419 |
/* initialize VSYS_SENSE as analog input */
|
420 |
gpio_init.GPIO_Pin = VSYS_SENSE_PIN; |
421 |
gpio_init.GPIO_Mode = GPIO_Mode_AN; |
422 |
gpio_init.GPIO_Speed = GPIO_Speed_50MHz; |
423 |
gpio_init.GPIO_OType = GPIO_OType_PP; |
424 |
gpio_init.GPIO_PuPd = GPIO_PuPd_NOPULL; |
425 |
GPIO_Init(VSYS_SENSE_GPIO, &gpio_init); |
426 |
|
427 |
/* initialize GPIOB4, since it is configured in alternate function mode on reset */
|
428 |
gpio_init.GPIO_Pin = CHARGE_STAT2A_PIN; |
429 |
gpio_init.GPIO_Mode = GPIO_Mode_IN; |
430 |
gpio_init.GPIO_Speed = GPIO_Speed_50MHz; |
431 |
gpio_init.GPIO_OType = GPIO_OType_PP; |
432 |
gpio_init.GPIO_PuPd = GPIO_PuPd_NOPULL; |
433 |
GPIO_Init(CHARGE_STAT2A_GPIO, &gpio_init); |
434 |
|
435 |
return;
|
436 |
} /*** end of initGpio ***/
|
437 |
|
438 |
/*
|
439 |
* Initialize all EXTI lines
|
440 |
*/
|
441 |
static void initExti() { |
442 |
/* configure EXTI lines */
|
443 |
SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOB, EXTI_PinSource0); // IR_INT1_N
|
444 |
SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOC, EXTI_PinSource0); // CHARGE_STAT1A
|
445 |
SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOC, EXTI_PinSource1); // GAUGE_BATLOW1
|
446 |
SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOC, EXTI_PinSource2); // GAUGE_BATGD1_N
|
447 |
SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOB, EXTI_PinSource3); // SYS_UART_DN
|
448 |
SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOB, EXTI_PinSource4); // CHARGE_STAT2A
|
449 |
SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOC, EXTI_PinSource4); // IR_INT2_N
|
450 |
SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOC, EXTI_PinSource5); // TOUCH_INT_N
|
451 |
SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOB, EXTI_PinSource6); // GAUGE_BATLOW2
|
452 |
SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOB, EXTI_PinSource7); // GAUGE_BATGD2_N
|
453 |
SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOC, EXTI_PinSource8); // PATH_DC
|
454 |
SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOC, EXTI_PinSource9); // SYS_SPI_DIR
|
455 |
SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOC, EXTI_PinSource12); // SYS_SYNC_N
|
456 |
SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOC, EXTI_PinSource13); // SYS_PD_N
|
457 |
SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOC, EXTI_PinSource14); // SYS_WARMRST_N
|
458 |
SYSCFG_EXTILineConfig(EXTI_PortSourceGPIOB, EXTI_PinSource15); // SYS_UART_UP
|
459 |
|
460 |
return;
|
461 |
} /*** end of initExti ***/
|
462 |
|
463 |
/*
|
464 |
* Signals, which type of low-power mode the system shall enter after the shutdown sequence.
|
465 |
*/
|
466 |
ErrorStatus shutdownDisambiguationProcedure(const uint8_t type) {
|
467 |
GPIO_SetBits(SYS_SYNC_N_GPIO, SYS_SYNC_N_PIN); |
468 |
ErrorStatus ret_val = ERROR; |
469 |
|
470 |
switch (type) {
|
471 |
case BL_SHUTDOWN_PRI_RSN_UNKNOWN:
|
472 |
case BL_SHUTDOWN_PRI_RSN_HIBERNATE:
|
473 |
case BL_SHUTDOWN_PRI_RSN_DEEPSLEEP:
|
474 |
case BL_SHUTDOWN_PRI_RSN_TRANSPORT:
|
475 |
{ |
476 |
// broadcast a number of pulses, depending on the argument
|
477 |
uint8_t pulse_counter = 0;
|
478 |
for (pulse_counter = 0; pulse_counter < type; ++pulse_counter) { |
479 |
msleep(1);
|
480 |
GPIO_ResetBits(SYS_SYNC_N_GPIO, SYS_SYNC_N_PIN); |
481 |
msleep(1);
|
482 |
GPIO_SetBits(SYS_SYNC_N_GPIO, SYS_SYNC_N_PIN); |
483 |
} |
484 |
// wait for timeout
|
485 |
msleep(10);
|
486 |
ret_val = SUCCESS; |
487 |
break;
|
488 |
} |
489 |
case BL_SHUTDOWN_PRI_RSN_RESTART:
|
490 |
{ |
491 |
// since there is no ambiguity for restart requests, no pulses are generated
|
492 |
msleep(10);
|
493 |
ret_val = SUCCESS; |
494 |
break;
|
495 |
} |
496 |
default:
|
497 |
ret_val = ERROR; |
498 |
break;
|
499 |
} |
500 |
|
501 |
return ret_val;
|
502 |
} /*** end of shutdownDisambiguationProcedure ***/
|
503 |
|
504 |
/*
|
505 |
* Final shutdown of the system to enter transportation mode.
|
506 |
*/
|
507 |
void shutdownToTransportation() {
|
508 |
/* configure some criticpal GPIOs as input
|
509 |
* This is required, because otherwise some hardware might be powered through these signals */
|
510 |
configGpioForShutdown(); |
511 |
|
512 |
/* power down the system */
|
513 |
systemPowerDown(); |
514 |
|
515 |
/* deactivate the WKUP pin */
|
516 |
PWR_WakeUpPinCmd(DISABLE); |
517 |
|
518 |
/* deactivate any RTC related events */
|
519 |
RTC_WakeUpCmd(DISABLE); |
520 |
RTC_TamperCmd(RTC_Tamper_1, DISABLE); |
521 |
RTC_TimeStampCmd(RTC_TimeStampEdge_Rising, DISABLE); |
522 |
RTC_TimeStampCmd(RTC_TimeStampEdge_Falling, DISABLE); |
523 |
RTC_ClearFlag(~0);
|
524 |
|
525 |
/* disable the IWDG */
|
526 |
IWDG_ReloadCounter(); |
527 |
|
528 |
/* write some information to the backup register */
|
529 |
blBackupRegister_t backup; |
530 |
backup.shutdown_pri_reason = BL_SHUTDOWN_PRI_RSN_TRANSPORT; |
531 |
backup.shutdown_sec_reason = BL_SHUTDOWN_SEC_RSN_UNKNOWN; |
532 |
backup.wakeup_pri_reason = BL_WAKEUP_PRI_RSN_UNKNOWN; |
533 |
backup.wakeup_sec_reason = BL_WAKEUP_SEC_RSN_UNKNOWN; |
534 |
PWR_BackupAccessCmd(ENABLE); |
535 |
RTC_WriteBackupRegister(BL_RTC_BACKUP_REG, backup.raw); |
536 |
|
537 |
/* morse 'OK' via the LED to signal that shutdown was successful */
|
538 |
blinkOK(1);
|
539 |
|
540 |
/* enter standby mode */
|
541 |
PWR_EnterSTANDBYMode(); |
542 |
|
543 |
return;
|
544 |
} /*** end of shutdownToTransportation ***/
|
545 |
|
546 |
/*
|
547 |
* Final shutdown of the system to enter deepsleep mode.
|
548 |
*/
|
549 |
void shutdownToDeepsleep() {
|
550 |
/* configure some criticpal GPIOs as input
|
551 |
* This is required, because otherwise some hardware might be powered through these signals */
|
552 |
configGpioForShutdown(); |
553 |
|
554 |
/* power down the system */
|
555 |
systemPowerDown(); |
556 |
|
557 |
/* activate the WKUP pin */
|
558 |
PWR_WakeUpPinCmd(ENABLE); |
559 |
|
560 |
/*
|
561 |
* Configuration of RTC and IWDG belongs to the OS.
|
562 |
*/
|
563 |
|
564 |
/* write some information to the backup register */
|
565 |
blBackupRegister_t backup; |
566 |
backup.shutdown_pri_reason = BL_SHUTDOWN_PRI_RSN_DEEPSLEEP; |
567 |
backup.shutdown_sec_reason = BL_SHUTDOWN_SEC_RSN_UNKNOWN; |
568 |
backup.wakeup_pri_reason = BL_WAKEUP_PRI_RSN_UNKNOWN; |
569 |
backup.wakeup_sec_reason = BL_WAKEUP_SEC_RSN_UNKNOWN; |
570 |
PWR_BackupAccessCmd(ENABLE); |
571 |
RTC_WriteBackupRegister(BL_RTC_BACKUP_REG, backup.raw); |
572 |
|
573 |
/* morse 'OK' via the LED to signal that shutdown was successful */
|
574 |
blinkOK(1);
|
575 |
|
576 |
/* enter standby mode or restart the system in case a power plug is already present */
|
577 |
if (GPIO_ReadInputDataBit(PATH_DC_GPIO, PATH_DC_PIN) != Bit_SET) {
|
578 |
PWR_EnterSTANDBYMode(); |
579 |
} else {
|
580 |
NVIC_SystemReset(); |
581 |
} |
582 |
|
583 |
return;
|
584 |
} /*** end of shutdownToDeepsleep ***/
|
585 |
|
586 |
/*
|
587 |
* Final shutdown of the system to enter hibernate mode.
|
588 |
*/
|
589 |
void shutdownToHibernate() {
|
590 |
/* configure some criticpal GPIOs as input
|
591 |
* This is required, because otherwise some hardware might be powered through these signals */
|
592 |
configGpioForShutdown(); |
593 |
|
594 |
/* power down the system */
|
595 |
systemPowerDown(); |
596 |
|
597 |
/* write some information to the backup register */
|
598 |
blBackupRegister_t backup; |
599 |
backup.shutdown_pri_reason = BL_SHUTDOWN_PRI_RSN_HIBERNATE; |
600 |
backup.shutdown_sec_reason = BL_SHUTDOWN_SEC_RSN_UNKNOWN; |
601 |
backup.wakeup_pri_reason = BL_WAKEUP_PRI_RSN_UNKNOWN; |
602 |
backup.wakeup_sec_reason = BL_WAKEUP_SEC_RSN_UNKNOWN; |
603 |
PWR_BackupAccessCmd(ENABLE); |
604 |
RTC_WriteBackupRegister(BL_RTC_BACKUP_REG, backup.raw); |
605 |
|
606 |
/* morse 'OK' via the LED to signal that shutdown was successful */
|
607 |
blinkOK(1);
|
608 |
|
609 |
/* reset the MCU */
|
610 |
NVIC_SystemReset(); |
611 |
|
612 |
return;
|
613 |
} /*** end of shutdownToHibernate ***/
|
614 |
|
615 |
/*
|
616 |
* Final shutdown of the system and restart.
|
617 |
*/
|
618 |
void shutdownAndRestart() {
|
619 |
/* configure some criticpal GPIOs as input
|
620 |
* This is required, because otherwise some hardware might be powered through these signals */
|
621 |
configGpioForShutdown(); |
622 |
|
623 |
/* power down the system */
|
624 |
systemPowerDown(); |
625 |
|
626 |
/* write some information to the backup register */
|
627 |
blBackupRegister_t backup; |
628 |
backup.shutdown_pri_reason = BL_SHUTDOWN_PRI_RSN_RESTART; |
629 |
backup.shutdown_sec_reason = BL_SHUTDOWN_SEC_RSN_UNKNOWN; |
630 |
backup.wakeup_pri_reason = BL_WAKEUP_PRI_RSN_UNKNOWN; |
631 |
backup.wakeup_sec_reason = BL_WAKEUP_SEC_RSN_UNKNOWN; |
632 |
PWR_BackupAccessCmd(ENABLE); |
633 |
RTC_WriteBackupRegister(BL_RTC_BACKUP_REG, backup.raw); |
634 |
|
635 |
/* morse 'OK' via the LED to signal that shutdown was successful */
|
636 |
blinkOK(1);
|
637 |
|
638 |
/* reset the MCU */
|
639 |
NVIC_SystemReset(); |
640 |
|
641 |
return;
|
642 |
} /*** end of shutdownAndRestart ***/
|
643 |
|
644 |
/*
|
645 |
* Configures some GPIO pins as inputs for safety reasons.
|
646 |
* Under certain circumstances, these pins might power hardware that is supposed to be shut down.
|
647 |
*/
|
648 |
void configGpioForShutdown() {
|
649 |
/* setup the configuration */
|
650 |
GPIO_InitTypeDef gpio_init; |
651 |
gpio_init.GPIO_Mode = GPIO_Mode_IN; |
652 |
gpio_init.GPIO_Speed = GPIO_Speed_50MHz; |
653 |
gpio_init.GPIO_OType = GPIO_OType_PP; |
654 |
gpio_init.GPIO_PuPd = GPIO_PuPd_NOPULL; |
655 |
|
656 |
/* configure SYS_UART_TX */
|
657 |
gpio_init.GPIO_Pin = SYS_UART_TX_PIN; |
658 |
GPIO_Init(SYS_UART_TX_GPIO, &gpio_init); |
659 |
|
660 |
/* configure all SYS_SPI signals */
|
661 |
gpio_init.GPIO_Pin = SYS_SPI_SS0_N_PIN; |
662 |
GPIO_Init(SYS_SPI_SS0_N_GPIO, &gpio_init); |
663 |
gpio_init.GPIO_Pin = SYS_SPI_SCLK_PIN; |
664 |
GPIO_Init(SYS_SPI_SCLK_GPIO, &gpio_init); |
665 |
gpio_init.GPIO_Pin = SYS_SPI_MISO_PIN; |
666 |
GPIO_Init(SYS_SPI_MISO_GPIO, &gpio_init); |
667 |
gpio_init.GPIO_Pin = SYS_SPI_MOSI_PIN; |
668 |
GPIO_Init(SYS_SPI_MOSI_GPIO, &gpio_init); |
669 |
gpio_init.GPIO_Pin = SYS_SPI_SS1_N_PIN; |
670 |
GPIO_Init(SYS_SPI_SS1_N_GPIO, &gpio_init); |
671 |
gpio_init.GPIO_Pin = SYS_SPI_DIR_PIN; |
672 |
GPIO_Init(SYS_SPI_DIR_GPIO, &gpio_init); |
673 |
|
674 |
/* configure CAN_TX */
|
675 |
gpio_init.GPIO_Pin = CAN_TX_PIN; |
676 |
GPIO_Init(CAN_TX_GPIO, &gpio_init); |
677 |
|
678 |
/* configure all Bluetooth signals */
|
679 |
gpio_init.GPIO_Pin = BT_CTS_PIN; |
680 |
GPIO_Init(BT_CTS_GPIO, &gpio_init); |
681 |
gpio_init.GPIO_Pin = BT_RX_PIN; |
682 |
GPIO_Init(BT_RX_GPIO, &gpio_init); |
683 |
|
684 |
return;
|
685 |
} /*** end of configGpioForShutdown ***/
|
686 |
|
687 |
/*
|
688 |
* Disables all regulated voltages and finally cuts power to the rest of the system.
|
689 |
*/
|
690 |
void systemPowerDown() {
|
691 |
setLed(BLT_TRUE); |
692 |
|
693 |
/* make sure that all other modules are shut down */
|
694 |
msleep(10);
|
695 |
|
696 |
/* reset slave modules */
|
697 |
GPIO_ResetBits(SYS_WARMRST_N_GPIO, SYS_WARMRST_N_PIN); |
698 |
|
699 |
/* disable voltage regulators */
|
700 |
GPIO_ResetBits(SYS_REG_EN_GPIO, SYS_REG_EN_PIN); |
701 |
|
702 |
/* cut power */
|
703 |
GPIO_ResetBits(POWER_EN_GPIO, POWER_EN_PIN); |
704 |
|
705 |
/* make sure, all capacitors are discharged */
|
706 |
msleep(100);
|
707 |
|
708 |
setLed(BLT_FALSE); |
709 |
|
710 |
return;
|
711 |
} /*** end of systemPowerDown ***/
|
712 |
|
713 |
/*
|
714 |
* Cofigures the independent watchdog (IWDG) to fire after the specified time when it is enabled.
|
715 |
* The argument is the requested time in milliseconds.
|
716 |
* The time that was actually set for the IWDG is returned by the function (again in milliseconds).
|
717 |
* In some cases the returned value might differ from the requested one, but if so, it will alwyas be smaller.
|
718 |
* Although the IWDG provides higher resolutions than milliseconds, these are not supported by this function.
|
719 |
*/
|
720 |
uint16_t configIwdg(const uint16_t ms) {
|
721 |
/* apply an upper bound to the ms argument */
|
722 |
uint16_t ms_capped = (ms >= 0x8000) ? 0x7FFF : ms; |
723 |
|
724 |
/* detect the best fitting prescaler and compute the according reload value */
|
725 |
uint8_t prescaler = 0;
|
726 |
uint16_t reload_val = 0;
|
727 |
if (ms_capped >= 0x4000) { |
728 |
prescaler = IWDG_Prescaler_256; |
729 |
reload_val = ms_capped >> 3; // note: this corresponds to a floor function |
730 |
ms_capped = reload_val << 3; // this applies the floor function to ms_capped |
731 |
} else if (ms_capped >= 0x2000) { |
732 |
prescaler = IWDG_Prescaler_128; |
733 |
reload_val = ms_capped >> 2; // note: this corresponds to a floor function |
734 |
ms_capped = reload_val << 2; // this applies the floor function to ms_capped |
735 |
} else if (ms_capped >= 0x1000) { |
736 |
ms_capped &= ~(0x0001);
|
737 |
prescaler = IWDG_Prescaler_64; |
738 |
reload_val = ms_capped >> 1; // note: this corresponds to a floor function |
739 |
ms_capped = reload_val << 1; // this applies the floor function to ms_capped |
740 |
} else {
|
741 |
prescaler = IWDG_Prescaler_32; |
742 |
reload_val = ms_capped; |
743 |
} |
744 |
|
745 |
/* configure the IWDG */
|
746 |
if (reload_val > 0) { |
747 |
IWDG_WriteAccessCmd(IWDG_WriteAccess_Enable); |
748 |
IWDG_SetPrescaler(prescaler); |
749 |
IWDG_SetReload(reload_val); |
750 |
IWDG_WriteAccessCmd(IWDG_WriteAccess_Disable); |
751 |
} |
752 |
|
753 |
return ms_capped;
|
754 |
} /*** end of configIWDG ***/
|
755 |
|
756 |
/*
|
757 |
* System was reset via the NRST pin or the reason could not be detected.
|
758 |
* In this case, everything is started up.
|
759 |
* If an attempt for an OS update is detected, flashing mode is entered.
|
760 |
* Otherwise, the system will boot the OS.
|
761 |
*/
|
762 |
ErrorStatus handleColdReset() { |
763 |
/* activate system power and wait some time to ensure stable voltages */
|
764 |
setLed(BLT_TRUE); |
765 |
GPIO_SetBits(POWER_EN_GPIO, POWER_EN_PIN); |
766 |
msleep(10);
|
767 |
GPIO_SetBits(SYS_REG_EN_GPIO, SYS_REG_EN_PIN); |
768 |
msleep(10);
|
769 |
setLed(BLT_FALSE); |
770 |
|
771 |
/* drive SYS_WARMRST_N high (inactive) */
|
772 |
GPIO_SetBits(SYS_WARMRST_N_GPIO, SYS_WARMRST_N_PIN); |
773 |
|
774 |
/* enable CAN clock
|
775 |
* Note that CAN1 shares reception filters with CAN1 so for CAN2 the CAN1 peripheral also needs to be enabled. */
|
776 |
RCC_APB1PeriphClockCmd(RCC_APB1Periph_CAN2 | RCC_APB1Periph_CAN1, ENABLE); |
777 |
|
778 |
/* wait 1ms to make sure that all modules are running and started the bootloader */
|
779 |
msleep(1);
|
780 |
|
781 |
/* initialize the bootloader */
|
782 |
BootInit(); |
783 |
|
784 |
/* start the infinite program loop */
|
785 |
uint32_t loopStartTime = 0;
|
786 |
saTimerUpdate(&loopStartTime); |
787 |
uint32_t currentTime = loopStartTime; |
788 |
while (1) |
789 |
{ |
790 |
// /* make the LED "double-blink" */
|
791 |
// saTimerUpdate(¤tTime);
|
792 |
// if (currentTime < loopStartTime + 50) {
|
793 |
// setLed(BLT_TRUE);
|
794 |
// } else if (currentTime < loopStartTime + 50+100) {
|
795 |
// setLed(BLT_FALSE);
|
796 |
// } else if (currentTime < loopStartTime + 50+100+50) {
|
797 |
// setLed(BLT_TRUE);
|
798 |
// } else if (currentTime < loopStartTime + 50+100+50+300) {
|
799 |
// setLed(BLT_FALSE);
|
800 |
// } else {
|
801 |
// loopStartTime = currentTime;
|
802 |
// }
|
803 |
|
804 |
/* run the bootloader task */
|
805 |
BootTask(); |
806 |
|
807 |
/* check the SYS_PD_N signal */
|
808 |
if (GPIO_ReadInputDataBit(SYS_PD_N_GPIO, SYS_PD_N_PIN) == Bit_RESET) {
|
809 |
blCallbackHandleShutdownRequest(); |
810 |
return SUCCESS;
|
811 |
} |
812 |
} |
813 |
|
814 |
return ERROR;
|
815 |
} /*** end of handleColdReset ***/
|
816 |
|
817 |
/*
|
818 |
* System was reset by software.
|
819 |
* Depending on the argument, which was read from the 1st backup register (see main function) the effect of this function differs.
|
820 |
* There are three cases that can occur:
|
821 |
* - The system was reset to enter hibernate mode.
|
822 |
* In this case the system will enter a medium power saving mode (hibernate mode), but can be charged via the charging pins.
|
823 |
* The system can be woken up in the same way as in deepsleep mode (cf. blCallbackShutdownDeepsleep() function).
|
824 |
* - The system was reset to reboot.
|
825 |
* In this case the system will restart in the same way as after a cold reset.
|
826 |
* - The reason is unknown.
|
827 |
* This case will cause an error.
|
828 |
*/
|
829 |
ErrorStatus handleSoftwareReset() { |
830 |
/* action depends on original shutdown reason */
|
831 |
switch (backup_reg.shutdown_pri_reason) {
|
832 |
case BL_SHUTDOWN_PRI_RSN_HIBERNATE:
|
833 |
{ |
834 |
/* activate the WKUP pin */
|
835 |
PWR_WakeUpPinCmd(ENABLE); |
836 |
|
837 |
/* deactivate any RTC related events */
|
838 |
RTC_WakeUpCmd(DISABLE); |
839 |
RTC_TamperCmd(RTC_Tamper_1, DISABLE); |
840 |
RTC_TimeStampCmd(RTC_TimeStampEdge_Rising, DISABLE); |
841 |
RTC_TimeStampCmd(RTC_TimeStampEdge_Falling, DISABLE); |
842 |
|
843 |
/* configure the IWDG to wake the system from standby mode */
|
844 |
uint16_t iwdg_ms = 1;
|
845 |
if (GPIO_ReadInputDataBit(PATH_DC_GPIO, PATH_DC_PIN) != Bit_SET) {
|
846 |
/* if a power plug is detected, fire immediately (1ms), else fire after the defined hibernate time */
|
847 |
iwdg_ms = HIBERNATE_TIME_MS; |
848 |
} |
849 |
configIwdg(iwdg_ms); |
850 |
IWDG_Enable(); |
851 |
|
852 |
/* enter standby mode */
|
853 |
PWR_EnterSTANDBYMode(); |
854 |
|
855 |
return SUCCESS;
|
856 |
break;
|
857 |
} |
858 |
case BL_SHUTDOWN_PRI_RSN_RESTART:
|
859 |
{ |
860 |
return handleColdReset();
|
861 |
break;
|
862 |
} |
863 |
case BL_SHUTDOWN_PRI_RSN_DEEPSLEEP:
|
864 |
{ |
865 |
if (GPIO_ReadInputDataBit(PATH_DC_GPIO, PATH_DC_PIN) == Bit_SET) {
|
866 |
return handlePathDcWakeup();
|
867 |
} else {
|
868 |
blCallbackShutdownDeepsleep(); |
869 |
} |
870 |
break;
|
871 |
} |
872 |
default:
|
873 |
return ERROR;
|
874 |
} |
875 |
return ERROR;
|
876 |
} /*** end of handleSoftwareReset ***/
|
877 |
|
878 |
/*
|
879 |
* System was woken up via the WKUP pin and the SYS_UART_DN signal was found to be responsible.
|
880 |
* In this case, the system starts as after a cold reset.
|
881 |
* this function is identical to handleTouchWakeup().
|
882 |
*/
|
883 |
ErrorStatus handleUartDnWakeup() { |
884 |
return handleColdReset();
|
885 |
} /*** end of hanldeUartDnWakeup ***/
|
886 |
|
887 |
/*
|
888 |
* System was woken up via the WKUP pin and the PATH_DC signal was found to be responsible.
|
889 |
* If the system was woken from deepsleep mode, it will enter hibernate mode to enable charging as long as the power plug is present.
|
890 |
* In any other case, the system will just enter the previous low-power mode again.
|
891 |
*/
|
892 |
ErrorStatus handlePathDcWakeup() { |
893 |
/* reenter the previous low-power mode */
|
894 |
switch (backup_reg.shutdown_pri_reason) {
|
895 |
case BL_SHUTDOWN_PRI_RSN_HIBERNATE:
|
896 |
blCallbackShutdownHibernate(); |
897 |
return SUCCESS;
|
898 |
break;
|
899 |
case BL_SHUTDOWN_PRI_RSN_DEEPSLEEP:
|
900 |
/* visualize that the power plug was detected
|
901 |
* This is helpful for feedback, and required for the follwing reason:
|
902 |
* When the power plug is detected, it takes some additional time for the ADC to detect a high voltage.
|
903 |
* If the ADC detects a low voltage at the first attempt, the system will enter hibernate mode.
|
904 |
* Thus, the ADC will measure the voltage again after several seconds and charging will start.
|
905 |
* However, this behaviour does not meet the user expection.
|
906 |
* Hence, the voltage has some to adapt at this point
|
907 |
*/
|
908 |
setLed(BLT_TRUE); |
909 |
msleep(500);
|
910 |
setLed(BLT_FALSE); |
911 |
|
912 |
return handleIwdgWakeup();
|
913 |
break;
|
914 |
case BL_SHUTDOWN_PRI_RSN_TRANSPORT:
|
915 |
blCallbackShutdownTransportation(); |
916 |
return SUCCESS;
|
917 |
break;
|
918 |
default:
|
919 |
return ERROR;
|
920 |
break;
|
921 |
} |
922 |
|
923 |
return ERROR;
|
924 |
} /*** end of handlePathDcWakeup ***/
|
925 |
|
926 |
/*
|
927 |
* System was woken up via the WKUP pin and the touch sensors were found to be responsible.
|
928 |
* In this case the system starts as after an cold reset.
|
929 |
* This function is identical to handleUartDnWakeup().
|
930 |
*/
|
931 |
ErrorStatus handleTouchWakeup() { |
932 |
return handleColdReset();
|
933 |
} /*** end of handleTouchWakeup ***/
|
934 |
|
935 |
/*
|
936 |
* System was woken up via the IWDG.
|
937 |
* In this case the ADC is configured and VSYS is measured once.
|
938 |
* If VSYS is found to be high enough to charge the batteries, the system will stay active until VSYS drops or an EXTI event occurs.
|
939 |
* Otherwise, the system will configure the IWDG to wake the system again after five seconds and enter standby mode.
|
940 |
*/
|
941 |
ErrorStatus handleIwdgWakeup() { |
942 |
/* handle different situations, depending on the backup data */
|
943 |
if ((backup_reg.shutdown_pri_reason == BL_SHUTDOWN_PRI_RSN_HIBERNATE) ||
|
944 |
(backup_reg.shutdown_pri_reason == BL_SHUTDOWN_PRI_RSN_DEEPSLEEP)) { |
945 |
/* handle periodic wakeup in hibernate mode and in deepsleep mode when a power plug was detetced */
|
946 |
|
947 |
/* if in hibernate mode, indicate the DiWheelDrive to enter hibernate mode as well, so it will activate the charging pins */
|
948 |
if (backup_reg.shutdown_pri_reason == BL_SHUTDOWN_PRI_RSN_HIBERNATE) {
|
949 |
indicateHibernate(); |
950 |
} |
951 |
|
952 |
/* measure the current voltage of VSYS */
|
953 |
AdcSingleMeasurement(); |
954 |
|
955 |
/* evaluate the value
|
956 |
* The ADC value represents the analog voltage between Vref- (= GND = 0.0V) and Vref+ (= VDD = 3.3V) as 12-bit value.
|
957 |
* Hence, the value read from the register is first scaled to [0V .. 3.3V].
|
958 |
* Then, an additional factor 5.33 is applied to account the downscaling on the board.
|
959 |
* Actually, the factor should be 5.0, but due to too large resistors it was corrected to 5.33.
|
960 |
*/
|
961 |
if ( (((float)(ADC_GetConversionValue(ADC1)) / (float)(0x0FFF)) * 3.3f * 5.33f) < 9.0f ) { |
962 |
/* VSYS was found to be < 9V */
|
963 |
|
964 |
/* re-enter power saving mode
|
965 |
* If the system was shut down to deepsleep mode and the power plug was removed, re-enter deepsleep mode.
|
966 |
* (This could be done earlier in this function, but since charging via the pins of the DeWheelDrive may be
|
967 |
* supported in the future, this is done after measuring VSYS)
|
968 |
*/
|
969 |
if (backup_reg.shutdown_pri_reason == BL_SHUTDOWN_PRI_RSN_DEEPSLEEP &&
|
970 |
GPIO_ReadInputDataBit(PATH_DC_GPIO, PATH_DC_PIN) == Bit_RESET) { |
971 |
blCallbackShutdownDeepsleep(); |
972 |
} else {
|
973 |
/* reconfigure the IWDG and power down for five seconds */
|
974 |
configIwdg(HIBERNATE_TIME_MS); |
975 |
IWDG_Enable(); |
976 |
|
977 |
/* enter standby mode */
|
978 |
PWR_EnterSTANDBYMode(); |
979 |
} |
980 |
|
981 |
return SUCCESS;
|
982 |
} else {
|
983 |
/* VSYS was found to be >= 9V */
|
984 |
setLed(BLT_TRUE); |
985 |
|
986 |
/* charge the battieries */
|
987 |
GPIO_ResetBits(CHARGE_EN1_N_GPIO, CHARGE_EN1_N_PIN); |
988 |
GPIO_ResetBits(CHARGE_EN2_N_GPIO, CHARGE_EN2_N_PIN); |
989 |
|
990 |
/* configure analog watchdoch to fire as soon as the voltage drops below 9V */
|
991 |
ADC_DeInit(); |
992 |
setupADC(ADC1, (uint16_t)(9.0f / 5.33f / 3.3f * (float)0x0FFF), 0x0FFF); |
993 |
|
994 |
EXTI_InitTypeDef exti; |
995 |
/* configure UART_DN EXTI */
|
996 |
exti.EXTI_Line = EXTI_Line3; |
997 |
exti.EXTI_Mode = EXTI_Mode_Interrupt; |
998 |
exti.EXTI_Trigger = EXTI_Trigger_Falling; |
999 |
exti.EXTI_LineCmd = ENABLE; |
1000 |
EXTI_Init(&exti); |
1001 |
|
1002 |
/* configure TOUCH_INT_N EXTI */
|
1003 |
exti.EXTI_Line = EXTI_Line5; |
1004 |
exti.EXTI_Mode = EXTI_Mode_Interrupt; |
1005 |
exti.EXTI_Trigger = EXTI_Trigger_Falling; |
1006 |
exti.EXTI_LineCmd = ENABLE; |
1007 |
EXTI_Init(&exti); |
1008 |
|
1009 |
/* configure PATH_DC EXTI */
|
1010 |
if (backup_reg.shutdown_pri_reason == BL_SHUTDOWN_PRI_RSN_DEEPSLEEP) {
|
1011 |
exti.EXTI_Line = EXTI_Line8; |
1012 |
exti.EXTI_Mode = EXTI_Mode_Interrupt; |
1013 |
exti.EXTI_Trigger = EXTI_Trigger_Falling; |
1014 |
exti.EXTI_LineCmd = ENABLE; |
1015 |
EXTI_Init(&exti); |
1016 |
} |
1017 |
|
1018 |
/* configure the NVIC so ADC and EXTI will be handled */
|
1019 |
NVIC_InitTypeDef nvic; |
1020 |
nvic.NVIC_IRQChannel = ADC_IRQn; |
1021 |
nvic.NVIC_IRQChannelPreemptionPriority = 6;
|
1022 |
nvic.NVIC_IRQChannelSubPriority = 6;
|
1023 |
nvic.NVIC_IRQChannelCmd = ENABLE; |
1024 |
NVIC_Init(&nvic); |
1025 |
nvic.NVIC_IRQChannel = EXTI3_IRQn; |
1026 |
nvic.NVIC_IRQChannelPreemptionPriority = 6;
|
1027 |
nvic.NVIC_IRQChannelSubPriority = 6;
|
1028 |
nvic.NVIC_IRQChannelCmd = ENABLE; |
1029 |
NVIC_Init(&nvic); |
1030 |
NVIC_EnableIRQ(EXTI3_IRQn); |
1031 |
nvic.NVIC_IRQChannel = EXTI9_5_IRQn; |
1032 |
nvic.NVIC_IRQChannelPreemptionPriority = 6;
|
1033 |
nvic.NVIC_IRQChannelSubPriority = 6;
|
1034 |
nvic.NVIC_IRQChannelCmd = ENABLE; |
1035 |
NVIC_Init(&nvic); |
1036 |
NVIC_EnableIRQ(EXTI9_5_IRQn); |
1037 |
|
1038 |
/* activate the ADC */
|
1039 |
ADC_SoftwareStartConv(ADC1); |
1040 |
|
1041 |
/* sleep until something happens */
|
1042 |
__WFI(); |
1043 |
|
1044 |
/* disable the chargers */
|
1045 |
GPIO_SetBits(CHARGE_EN1_N_GPIO, CHARGE_EN1_N_PIN); |
1046 |
GPIO_SetBits(CHARGE_EN2_N_GPIO, CHARGE_EN2_N_PIN); |
1047 |
setLed(BLT_FALSE); |
1048 |
|
1049 |
/* evaluate wakeup reason */
|
1050 |
// note: since I (tschoepp) don't know the difference between 'pending' and 'active' IRQs, both flags are ORed.
|
1051 |
uint8_t wkup_rsn = BL_WAKEUP_SEC_RSN_UNKNOWN; |
1052 |
if ((NVIC_GetActive(ADC_IRQn) != 0 || NVIC_GetPendingIRQ(ADC_IRQn) != 0) && |
1053 |
ADC_GetITStatus(ADC1, ADC_IT_AWD) == SET && |
1054 |
ADC_GetFlagStatus(ADC1, ADC_FLAG_AWD) == SET) { |
1055 |
wkup_rsn |= BL_WAKEUP_SEC_RSN_VSYSLOW; |
1056 |
} |
1057 |
if ((NVIC_GetActive(EXTI3_IRQn) != 0 || NVIC_GetPendingIRQ(EXTI3_IRQn) != 0) && |
1058 |
EXTI_GetFlagStatus(EXTI_Line3) == SET) { |
1059 |
wkup_rsn |= BL_WAKEUP_SEC_RSN_UART; |
1060 |
} |
1061 |
if ((NVIC_GetActive(EXTI9_5_IRQn) != 0 || NVIC_GetPendingIRQ(EXTI9_5_IRQn) != 0) && |
1062 |
EXTI_GetFlagStatus(EXTI_Line5) == SET) { |
1063 |
wkup_rsn |= BL_WAKEUP_SEC_RSN_TOUCH; |
1064 |
} |
1065 |
if ((NVIC_GetActive(EXTI9_5_IRQn) != 0 || NVIC_GetPendingIRQ(EXTI9_5_IRQn) != 0) && |
1066 |
EXTI_GetFlagStatus(EXTI_Line8) == SET) { |
1067 |
wkup_rsn |= BL_WAKEUP_SEC_RSN_PWRPLUG; |
1068 |
} |
1069 |
|
1070 |
/* since only the first interrupt will be handles, clear any pending ones */
|
1071 |
NVIC_DisableIRQ(ADC_IRQn); |
1072 |
NVIC_DisableIRQ(EXTI3_IRQn); |
1073 |
NVIC_DisableIRQ(EXTI9_5_IRQn); |
1074 |
NVIC_ClearPendingIRQ(ADC_IRQn); |
1075 |
NVIC_ClearPendingIRQ(EXTI3_IRQn); |
1076 |
NVIC_ClearPendingIRQ(EXTI9_5_IRQn); |
1077 |
|
1078 |
/* clear all pending EXTI events */
|
1079 |
EXTI_DeInit(); |
1080 |
EXTI_ClearFlag(EXTI_Line3); |
1081 |
EXTI_ClearFlag(EXTI_Line5); |
1082 |
EXTI_ClearFlag(EXTI_Line8); |
1083 |
|
1084 |
/* make sure the LED was visibly turned off */
|
1085 |
msleep(100);
|
1086 |
|
1087 |
/* depending on the wakup reason, handle accordingly */
|
1088 |
if (wkup_rsn & BL_WAKEUP_SEC_RSN_TOUCH) {
|
1089 |
/* the system was interrupted via the TOUCH_INT_N signal */
|
1090 |
|
1091 |
/* act as if this was a normal touch wakeup */
|
1092 |
backup_reg.wakeup_pri_reason = BL_WAKEUP_PRI_RSN_WKUP; |
1093 |
backup_reg.wakeup_sec_reason = BL_WAKEUP_SEC_RSN_TOUCH; |
1094 |
RTC_WriteBackupRegister(BL_RTC_BACKUP_REG, backup_reg.raw); |
1095 |
return handleTouchWakeup();
|
1096 |
} else if (wkup_rsn & BL_WAKEUP_SEC_RSN_UART) { |
1097 |
/* the system was interrupted via the SYS_UARTDN signal */
|
1098 |
|
1099 |
/* act as if this was a normal UART wakeup */
|
1100 |
backup_reg.wakeup_pri_reason = BL_WAKEUP_PRI_RSN_WKUP; |
1101 |
backup_reg.wakeup_sec_reason = BL_WAKEUP_SEC_RSN_UART; |
1102 |
RTC_WriteBackupRegister(BL_RTC_BACKUP_REG, backup_reg.raw); |
1103 |
return handleUartDnWakeup();
|
1104 |
} else if (wkup_rsn & BL_WAKEUP_SEC_RSN_VSYSLOW) { |
1105 |
/* VSYS has dropped below 9V */
|
1106 |
|
1107 |
/* depending on the original reason for shutdown, act differenty */
|
1108 |
switch (backup_reg.shutdown_pri_reason) {
|
1109 |
case BL_SHUTDOWN_PRI_RSN_HIBERNATE:
|
1110 |
{ |
1111 |
blCallbackShutdownHibernate(); |
1112 |
return SUCCESS;
|
1113 |
} |
1114 |
case BL_SHUTDOWN_PRI_RSN_DEEPSLEEP:
|
1115 |
{ |
1116 |
NVIC_SystemReset(); |
1117 |
return SUCCESS;
|
1118 |
} |
1119 |
default:
|
1120 |
return ERROR;
|
1121 |
} |
1122 |
} else if (wkup_rsn & BL_WAKEUP_SEC_RSN_PWRPLUG) { |
1123 |
/* system was interrupted because the power plug was removed
|
1124 |
* note: when a power cord is plugged in, this will not trigger an interrupt because the NVIC is configured for a falling edge only */
|
1125 |
if (backup_reg.shutdown_pri_reason == BL_SHUTDOWN_PRI_RSN_DEEPSLEEP) {
|
1126 |
blCallbackShutdownDeepsleep(); |
1127 |
return SUCCESS;
|
1128 |
} else {
|
1129 |
/* this state is undefined, because the PATH_DC inerrupt is only configured when the primary shutdown reason was to enter deepsleep mode */
|
1130 |
return ERROR;
|
1131 |
} |
1132 |
} else {
|
1133 |
/* the system was interrupted for an unknown reason */
|
1134 |
return ERROR;
|
1135 |
} |
1136 |
} // end of ADC evaluation
|
1137 |
} else {
|
1138 |
/* since it is unknown why the IWDG was configured, act as after a cold reset */
|
1139 |
return handleColdReset();
|
1140 |
} |
1141 |
|
1142 |
return ERROR;
|
1143 |
} /*** end of handleIwdgWakeup ***/
|
1144 |
|
1145 |
/*
|
1146 |
* Indicates the DiWheelDrive module to enter hibernate mode at wakeup.
|
1147 |
* This function should be called quite at the beginning of the according handleXXXReset/Wakeup() methods.
|
1148 |
*/
|
1149 |
static void indicateHibernate() { |
1150 |
/* signal the DiWheelDrive to enter hibernate mode as well, so it will activate the charging pins */
|
1151 |
GPIO_ResetBits(SYS_UART_DN_GPIO, SYS_UART_DN_PIN); |
1152 |
msleep(10); // this must be that long, because the DiWheelDrive sleeps some time before evaluating any signals |
1153 |
GPIO_SetBits(SYS_UART_DN_GPIO, SYS_UART_DN_PIN); |
1154 |
|
1155 |
/* if the DiWheeDrive needs some time for setup it may pull down the signal */
|
1156 |
waitForSignal(SYS_UART_DN_GPIO, SYS_UART_DN_PIN, Bit_SET); |
1157 |
|
1158 |
return;
|
1159 |
} /*** end of indicateHibernate ***/
|
1160 |
|
1161 |
/*
|
1162 |
*Performs a one-shot measurement of the VSYS voltage.
|
1163 |
*/
|
1164 |
static void AdcSingleMeasurement() { |
1165 |
/* reset and initialize ADC for single-shot measurement */
|
1166 |
// ADC_DeInit();
|
1167 |
setupADC(ADC1, 0, 0); |
1168 |
|
1169 |
/* initialize the NVIC so ADC interrupts are handled */
|
1170 |
NVIC_InitTypeDef nvic; |
1171 |
nvic.NVIC_IRQChannel = ADC_IRQn; |
1172 |
nvic.NVIC_IRQChannelPreemptionPriority = 6;
|
1173 |
nvic.NVIC_IRQChannelSubPriority = 6;
|
1174 |
nvic.NVIC_IRQChannelCmd = ENABLE; |
1175 |
NVIC_Init(&nvic); |
1176 |
|
1177 |
/* measure the voltage once */
|
1178 |
setLed(BLT_TRUE); |
1179 |
ADC_ClearITPendingBit(ADC1, ADC_IT_EOC); |
1180 |
ADC_ClearFlag(ADC1, ADC_FLAG_EOC); |
1181 |
NVIC_EnableIRQ(ADC_IRQn); |
1182 |
ADC_SoftwareStartConv(ADC1); |
1183 |
while (ADC_GetITStatus(ADC1, ADC_IT_EOC) != SET && ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC) != SET) {
|
1184 |
__WFI(); |
1185 |
} |
1186 |
NVIC_DisableIRQ(ADC_IRQn); |
1187 |
ADC_ClearITPendingBit(ADC1, ADC_IT_EOC); |
1188 |
ADC_ClearFlag(ADC1, ADC_FLAG_EOC); |
1189 |
NVIC_ClearPendingIRQ(ADC_IRQn); |
1190 |
setLed(BLT_FALSE); |
1191 |
|
1192 |
return;
|
1193 |
} /*** end of AdcSingleMeasurement ***/
|
1194 |
|
1195 |
/*
|
1196 |
* Configures the ADC for measuring VSYS.
|
1197 |
* ADCx is the ADC object to initialize.
|
1198 |
* low_th and high_th are the threshold values for the analog watchdor (must be 12-bit!).
|
1199 |
* If low_th >= high_th, the ADC is configured for single-shot measurements.
|
1200 |
* Otherwise, the watchdog is configured with the corresponding thresholds.
|
1201 |
*/
|
1202 |
ADC_TypeDef* setupADC(ADC_TypeDef* adc, const uint16_t low_th, const uint16_t high_th) { |
1203 |
/* evaluate the arguments */
|
1204 |
blt_bool awd_enable = BLT_FALSE; |
1205 |
if (low_th < high_th) {
|
1206 |
awd_enable = BLT_TRUE; |
1207 |
} |
1208 |
|
1209 |
/* enable the clock */
|
1210 |
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); |
1211 |
|
1212 |
/* enable the ADC (wakes it from low-power mode) */
|
1213 |
ADC_Cmd(adc, ENABLE); |
1214 |
|
1215 |
/* initialize the common registers */
|
1216 |
ADC_CommonInitTypeDef adc_cinit; |
1217 |
ADC_CommonStructInit(&adc_cinit); |
1218 |
adc_cinit.ADC_Prescaler = ADC_Prescaler_Div8; // clock as slow as possible
|
1219 |
ADC_CommonInit(&adc_cinit); |
1220 |
|
1221 |
/* initialize the ADC */
|
1222 |
ADC_InitTypeDef adc_init; |
1223 |
ADC_StructInit(&adc_init); |
1224 |
adc_init.ADC_ContinuousConvMode = (awd_enable == BLT_TRUE) ? ENABLE : DISABLE; |
1225 |
ADC_Init(adc, &adc_init); |
1226 |
|
1227 |
/* disable internal sensors */
|
1228 |
ADC_TempSensorVrefintCmd(DISABLE); |
1229 |
ADC_VBATCmd(DISABLE); |
1230 |
|
1231 |
/* configure ADC channel and speed */
|
1232 |
ADC_RegularChannelConfig(adc, ADC_Channel_9, 1, ADC_SampleTime_480Cycles);
|
1233 |
ADC_EOCOnEachRegularChannelCmd(adc, (awd_enable == BLT_TRUE) ? DISABLE : ENABLE); |
1234 |
ADC_DiscModeCmd(adc, DISABLE); |
1235 |
|
1236 |
/* disable DMA */
|
1237 |
ADC_DMACmd(adc, DISABLE); |
1238 |
|
1239 |
/* disable injected mode */
|
1240 |
ADC_AutoInjectedConvCmd(adc, DISABLE); |
1241 |
ADC_InjectedDiscModeCmd(adc, DISABLE); |
1242 |
|
1243 |
/* configure the analog watchdog */
|
1244 |
if (awd_enable == BLT_TRUE) {
|
1245 |
ADC_AnalogWatchdogSingleChannelConfig(adc, ADC_Channel_9); |
1246 |
ADC_AnalogWatchdogThresholdsConfig(adc, high_th, low_th); |
1247 |
ADC_AnalogWatchdogCmd(adc, ADC_AnalogWatchdog_SingleRegEnable); |
1248 |
} else {
|
1249 |
ADC_AnalogWatchdogCmd(adc, ADC_AnalogWatchdog_None); |
1250 |
} |
1251 |
|
1252 |
/* configure the interrupts to be generated by the ADC */
|
1253 |
ADC_ITConfig(adc, ADC_IT_EOC, (awd_enable == BLT_TRUE) ? DISABLE : ENABLE); |
1254 |
ADC_ITConfig(adc, ADC_IT_AWD, (awd_enable == BLT_TRUE) ? ENABLE : DISABLE); |
1255 |
ADC_ITConfig(adc, ADC_IT_JEOC, DISABLE); |
1256 |
ADC_ITConfig(adc, ADC_IT_OVR, DISABLE); |
1257 |
|
1258 |
return adc;
|
1259 |
} |
1260 |
|
1261 |
/*
|
1262 |
* Callback function that handles the system shutdown and enters transportation mode.
|
1263 |
* When called from a multithreaded environment, it must be ensured that no other thread will preempt this function.
|
1264 |
* In transportation low-power mode the system can only be woken up by pulling down the NRST signal.
|
1265 |
* Furthermore, the system can not be charged when in transportation mode.
|
1266 |
*/
|
1267 |
void blCallbackShutdownTransportation(void) { |
1268 |
/* make sure that the required clocks are activated */
|
1269 |
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA | RCC_AHB1Periph_GPIOB | RCC_AHB1Periph_GPIOC | RCC_AHB1Periph_GPIOD, ENABLE); |
1270 |
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE); |
1271 |
|
1272 |
/* set/keep the SYS_SYNC and SYS_PD signals active */
|
1273 |
GPIO_ResetBits(SYS_SYNC_N_GPIO, SYS_SYNC_N_PIN); |
1274 |
GPIO_ResetBits(SYS_PD_N_GPIO, SYS_PD_N_PIN); |
1275 |
|
1276 |
/* initialized the standalone timer */
|
1277 |
saTimerInit(); |
1278 |
|
1279 |
setLed(BLT_TRUE); |
1280 |
|
1281 |
/* wait for all boards to be ready for shutdown */
|
1282 |
GPIO_SetBits(SYS_SYNC_N_GPIO, SYS_SYNC_N_PIN); |
1283 |
if (GPIO_ReadOutputDataBit(SYS_REG_EN_GPIO, SYS_REG_EN_PIN) == Bit_SET) {
|
1284 |
// this must skipped if the pullup voltage (VIO3.3) is not active
|
1285 |
setLed(BLT_TRUE); |
1286 |
waitForSignal(SYS_SYNC_N_GPIO, SYS_SYNC_N_PIN, Bit_SET); |
1287 |
setLed(BLT_FALSE); |
1288 |
} |
1289 |
|
1290 |
/* execute disambiguation procedure and signal all modules to enter transportation mode */
|
1291 |
if (shutdownDisambiguationProcedure(BL_SHUTDOWN_PRI_RSN_TRANSPORT) != SUCCESS) {
|
1292 |
blinkSOS(1);
|
1293 |
msleep(10);
|
1294 |
} |
1295 |
|
1296 |
shutdownToTransportation(); |
1297 |
|
1298 |
return;
|
1299 |
} /*** end of blCallbackTransportation ***/
|
1300 |
|
1301 |
/*
|
1302 |
* Callback function that handles the system shutdown and enters deepsleep mode.
|
1303 |
* When called from a multithreaded environment, it must be ensured that no other thread will preempt this function.
|
1304 |
* In deepsleep low-power mode the system can only be woken up via the NRST or the WKUP signal, or the RTC or IWDG, if configured.
|
1305 |
* When a power plug is detected, the system will switch to hibernate mode, to provide charging capabilities (cf. handlePathDcWakeup()).
|
1306 |
* As soon as the plug is removed again, however, the system will return to deppsleep mode (cf. handleIwdgWakeup()).
|
1307 |
*/
|
1308 |
void blCallbackShutdownDeepsleep(void) { |
1309 |
/* make sure that the required clocks are activated */
|
1310 |
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA | RCC_AHB1Periph_GPIOB | RCC_AHB1Periph_GPIOC | RCC_AHB1Periph_GPIOD, ENABLE); |
1311 |
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE); |
1312 |
|
1313 |
/* set/keep the SYS_SYNC and SYS_PD signals active */
|
1314 |
GPIO_ResetBits(SYS_SYNC_N_GPIO, SYS_SYNC_N_PIN); |
1315 |
GPIO_ResetBits(SYS_PD_N_GPIO, SYS_PD_N_PIN); |
1316 |
|
1317 |
/* initialized the standalone timer */
|
1318 |
saTimerInit(); |
1319 |
|
1320 |
setLed(BLT_TRUE); |
1321 |
|
1322 |
/* wait for all boards to be ready for shutdown */
|
1323 |
GPIO_SetBits(SYS_SYNC_N_GPIO, SYS_SYNC_N_PIN); |
1324 |
if (GPIO_ReadOutputDataBit(SYS_REG_EN_GPIO, SYS_REG_EN_PIN) == Bit_SET) {
|
1325 |
// this must skipped if the pullup voltage (VIO3.3) is not active
|
1326 |
setLed(BLT_TRUE); |
1327 |
waitForSignal(SYS_SYNC_N_GPIO, SYS_SYNC_N_PIN, Bit_SET); |
1328 |
setLed(BLT_FALSE); |
1329 |
} |
1330 |
|
1331 |
/* execute disambiguation procedure and signal all modules to enter deepsleep mode */
|
1332 |
if (shutdownDisambiguationProcedure(BL_SHUTDOWN_PRI_RSN_DEEPSLEEP) != SUCCESS) {
|
1333 |
blinkSOS(1);
|
1334 |
msleep(10);
|
1335 |
} |
1336 |
|
1337 |
shutdownToDeepsleep(); |
1338 |
|
1339 |
return;
|
1340 |
} /*** end of blCallbackDeepsleep ***/
|
1341 |
|
1342 |
/*
|
1343 |
* Callback function that handles the system shutdown and enters hibernate mode.
|
1344 |
* When called from a multithreaded environment, it must be ensured that no other thread will preempt this function.
|
1345 |
* Since this function actually just configures the system in a way, that it will enter hibernate mode after the next reset and rests it,
|
1346 |
* see the handleSoftwareReset() function for more details about the hibernate low-power mode.
|
1347 |
*/
|
1348 |
void blCallbackShutdownHibernate(void) { |
1349 |
/* make sure that the required clocks are activated */
|
1350 |
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA | RCC_AHB1Periph_GPIOB | RCC_AHB1Periph_GPIOC | RCC_AHB1Periph_GPIOD, ENABLE); |
1351 |
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE); |
1352 |
|
1353 |
/* set/keep the SYS_SYNC and SYS_PD signals active */
|
1354 |
GPIO_ResetBits(SYS_SYNC_N_GPIO, SYS_SYNC_N_PIN); |
1355 |
GPIO_ResetBits(SYS_PD_N_GPIO, SYS_PD_N_PIN); |
1356 |
|
1357 |
/* initialized the standalone timer */
|
1358 |
saTimerInit(); |
1359 |
|
1360 |
setLed(BLT_TRUE); |
1361 |
|
1362 |
/* wait for all boards to be ready for shutdown */
|
1363 |
GPIO_SetBits(SYS_SYNC_N_GPIO, SYS_SYNC_N_PIN); |
1364 |
if (GPIO_ReadOutputDataBit(SYS_REG_EN_GPIO, SYS_REG_EN_PIN) == Bit_SET) {
|
1365 |
// this must skipped if the pullup voltage (VIO3.3) is not active
|
1366 |
setLed(BLT_TRUE); |
1367 |
waitForSignal(SYS_SYNC_N_GPIO, SYS_SYNC_N_PIN, Bit_SET); |
1368 |
setLed(BLT_FALSE); |
1369 |
} |
1370 |
|
1371 |
/* execute disambiguation procedure and signal all modules to enter hibernate mode */
|
1372 |
if (shutdownDisambiguationProcedure(BL_SHUTDOWN_PRI_RSN_DEEPSLEEP) != SUCCESS) {
|
1373 |
blinkSOS(1);
|
1374 |
msleep(10);
|
1375 |
} |
1376 |
|
1377 |
shutdownToHibernate(); |
1378 |
|
1379 |
return;
|
1380 |
} /*** end of blCallbackShutdownHibernate ***/
|
1381 |
|
1382 |
/*
|
1383 |
* Callback function that handles the system shutdown and initializes a restart.
|
1384 |
* When called from a multithreaded environment, it must be ensured that no other thread will preempt this function.
|
1385 |
* By configuration it is ensured, that the system will end up executing the handleSoftwareReset() function after reset.
|
1386 |
*/
|
1387 |
void blCallbackShutdownRestart(void) { |
1388 |
/* make sure that the required clocks are activated */
|
1389 |
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA | RCC_AHB1Periph_GPIOB | RCC_AHB1Periph_GPIOC | RCC_AHB1Periph_GPIOD, ENABLE); |
1390 |
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE); |
1391 |
|
1392 |
/* set/keep the SYS_SYNC and SYS_PD signals active */
|
1393 |
GPIO_ResetBits(SYS_SYNC_N_GPIO, SYS_SYNC_N_PIN); |
1394 |
GPIO_ResetBits(SYS_PD_N_GPIO, SYS_PD_N_PIN); |
1395 |
|
1396 |
/* initialized the standalone timer */
|
1397 |
saTimerInit(); |
1398 |
|
1399 |
setLed(BLT_TRUE); |
1400 |
|
1401 |
/* deactivate SYS_PD_N and ensure that all modules had a chance to detect the falling edge */
|
1402 |
msleep(1);
|
1403 |
GPIO_SetBits(SYS_PD_N_GPIO, SYS_PD_N_PIN); |
1404 |
msleep(1);
|
1405 |
|
1406 |
/* wait for all boards to be ready for shutdown */
|
1407 |
GPIO_SetBits(SYS_SYNC_N_GPIO, SYS_SYNC_N_PIN); |
1408 |
if (GPIO_ReadOutputDataBit(SYS_REG_EN_GPIO, SYS_REG_EN_PIN) == Bit_SET) {
|
1409 |
// this must skipped if the pullup voltage (VIO3.3) is not active
|
1410 |
setLed(BLT_TRUE); |
1411 |
waitForSignal(SYS_SYNC_N_GPIO, SYS_SYNC_N_PIN, Bit_SET); |
1412 |
setLed(BLT_FALSE); |
1413 |
} |
1414 |
|
1415 |
/* execute disambiguation procedure and signal all modules to restart normally */
|
1416 |
if (shutdownDisambiguationProcedure(BL_SHUTDOWN_PRI_RSN_RESTART) != SUCCESS) {
|
1417 |
blinkSOS(1);
|
1418 |
msleep(10);
|
1419 |
} |
1420 |
|
1421 |
/* restart the system */
|
1422 |
shutdownAndRestart(); |
1423 |
|
1424 |
return;
|
1425 |
} /*** end of blCallbackRestart ***/
|
1426 |
|
1427 |
/*
|
1428 |
* Callback function that handles a system shutdown/restart request from another module.
|
1429 |
* Depending on the result of the disambiguation procedure, the module will enter the according low-power mode or restart.
|
1430 |
* When called from a multithreaded environment, it must be ensured that no other thread will preempt this function.
|
1431 |
*/
|
1432 |
void blCallbackHandleShutdownRequest(void) { |
1433 |
/* make sure that the required clocks are activated */
|
1434 |
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA | RCC_AHB1Periph_GPIOB | RCC_AHB1Periph_GPIOC | RCC_AHB1Periph_GPIOD, ENABLE); |
1435 |
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE); |
1436 |
|
1437 |
/* set/keep the SYS_SYNC and SYS_PD signals active */
|
1438 |
GPIO_ResetBits(SYS_SYNC_N_GPIO, SYS_SYNC_N_PIN); |
1439 |
GPIO_ResetBits(SYS_PD_N_GPIO, SYS_PD_N_PIN); |
1440 |
|
1441 |
/* initialized the standalone timer */
|
1442 |
saTimerInit(); |
1443 |
|
1444 |
setLed(BLT_TRUE); |
1445 |
|
1446 |
/* deactivate SYS_PD_N and ensure that all modules had a chance to detect the falling edge */
|
1447 |
msleep(1);
|
1448 |
GPIO_SetBits(SYS_PD_N_GPIO, SYS_PD_N_PIN); |
1449 |
msleep(1);
|
1450 |
|
1451 |
/* wait for all boards to be ready for shutdown */
|
1452 |
GPIO_SetBits(SYS_SYNC_N_GPIO, SYS_SYNC_N_PIN); |
1453 |
if (GPIO_ReadOutputDataBit(SYS_REG_EN_GPIO, SYS_REG_EN_PIN) == Bit_SET) {
|
1454 |
// this must be skipped if the pullup voltage (VIO3.3) is not active
|
1455 |
setLed(BLT_TRUE); |
1456 |
waitForSignal(SYS_SYNC_N_GPIO, SYS_SYNC_N_PIN, Bit_SET); |
1457 |
setLed(BLT_FALSE); |
1458 |
} |
1459 |
|
1460 |
/* check ths SYS_PD_N signal, whether the system shall shutdown or restart */
|
1461 |
blt_bool shutdown_nrestart = (GPIO_ReadInputDataBit(SYS_PD_N_GPIO, SYS_PD_N_PIN) == Bit_RESET) ? BLT_TRUE : BLT_FALSE; |
1462 |
|
1463 |
/* disambiguation procedure (passive) */
|
1464 |
uint32_t pulse_counter = 0;
|
1465 |
while (waitForSignalTimeout(SYS_SYNC_N_GPIO, SYS_SYNC_N_PIN, Bit_RESET, 10)) { |
1466 |
waitForSignal(SYS_SYNC_N_GPIO, SYS_SYNC_N_PIN, Bit_SET); |
1467 |
++pulse_counter; |
1468 |
} |
1469 |
|
1470 |
/* evaluate and hanlde disambiguation result */
|
1471 |
if (shutdown_nrestart == BLT_TRUE) {
|
1472 |
/* shutdown request */
|
1473 |
|
1474 |
/* handle special cases */
|
1475 |
if (pulse_counter == BL_SHUTDOWN_PRI_RSN_UNKNOWN) {
|
1476 |
/* no pulse at all was received */
|
1477 |
pulse_counter = BL_SHUTDOWN_PRI_RSN_DEFAULT; |
1478 |
} else if (pulse_counter != BL_SHUTDOWN_PRI_RSN_HIBERNATE && |
1479 |
pulse_counter != BL_SHUTDOWN_PRI_RSN_DEEPSLEEP && |
1480 |
pulse_counter != BL_SHUTDOWN_PRI_RSN_TRANSPORT) { |
1481 |
/* invalid number of pulses received */
|
1482 |
blinkSOS(1);
|
1483 |
pulse_counter = BL_SHUTDOWN_PRI_RSN_DEFAULT; |
1484 |
} |
1485 |
|
1486 |
switch (pulse_counter) {
|
1487 |
case BL_SHUTDOWN_PRI_RSN_HIBERNATE:
|
1488 |
shutdownToHibernate(); |
1489 |
break;
|
1490 |
case BL_SHUTDOWN_PRI_RSN_DEEPSLEEP:
|
1491 |
shutdownToDeepsleep(); |
1492 |
break;
|
1493 |
case BL_SHUTDOWN_PRI_RSN_TRANSPORT:
|
1494 |
shutdownToTransportation(); |
1495 |
break;
|
1496 |
} |
1497 |
} else {
|
1498 |
/* restart request */
|
1499 |
|
1500 |
/* there is no ambiguity for restart, so it is ignored */
|
1501 |
shutdownAndRestart(); |
1502 |
} |
1503 |
|
1504 |
/* if this code is reached, the system did neither shut down, nor restart.
|
1505 |
* This must never be the case!
|
1506 |
*/
|
1507 |
blinkSOSinf(); |
1508 |
return;
|
1509 |
} /*** end of blCallbackHandleShutdownRequest ***/
|
1510 |
|
1511 |
/*********************************** end of main.c *************************************/
|