amiro-lld / drivers / DW1000 / v1 / deca_instance_common.c @ 1304b12b
History | View | Annotate | Download (71.11 KB)
| 1 |
/*! ----------------------------------------------------------------------------
|
|---|---|
| 2 |
* @file instance_common.c
|
| 3 |
* @brief DecaWave application level common instance functions
|
| 4 |
*
|
| 5 |
* @attention
|
| 6 |
*
|
| 7 |
* Copyright 2015 (c) DecaWave Ltd, Dublin, Ireland.
|
| 8 |
*
|
| 9 |
* All rights reserved.
|
| 10 |
*
|
| 11 |
* @author DecaWave
|
| 12 |
*/
|
| 13 |
|
| 14 |
#include <alld_DW1000.h> |
| 15 |
#include <module.h> |
| 16 |
#include <string.h> |
| 17 |
#include <math.h> |
| 18 |
#include <deca_instance.h> |
| 19 |
|
| 20 |
|
| 21 |
/*! @brief Software defined configuration settings for RTLS applications */
|
| 22 |
/*! Configuration for DecaRangeRTLS TREK Modes (4 default use cases selected by the switch S1 [2,3] on EVB1000, indexed 0 to 3 )*/
|
| 23 |
instanceConfig_t chConfig[4] ={
|
| 24 |
//mode 1 - S1: 2 off, 3 off
|
| 25 |
{
|
| 26 |
.channelNumber = 2, // channel |
| 27 |
.preambleCode = 4, // preambleCode |
| 28 |
.pulseRepFreq = DWT_PRF_16M, // prf
|
| 29 |
.dataRate = DWT_BR_110K, // datarate
|
| 30 |
.preambleLen = DWT_PLEN_1024, // preambleLength
|
| 31 |
.pacSize = DWT_PAC32, // pacSize
|
| 32 |
.nsSFD = 1, // non-standard SFD |
| 33 |
.sfdTO = (1025 + 64 - 32) // SFD timeout |
| 34 |
}, |
| 35 |
//mode 2 - S1: 2 on, 3 off
|
| 36 |
{
|
| 37 |
.channelNumber = 2, // channel |
| 38 |
.preambleCode = 4, // preambleCode |
| 39 |
.pulseRepFreq = DWT_PRF_16M, // prf
|
| 40 |
.dataRate = DWT_BR_6M8, // datarate
|
| 41 |
.preambleLen = DWT_PLEN_128, // preambleLength
|
| 42 |
.pacSize = DWT_PAC8, // pacSize
|
| 43 |
.nsSFD = 0, // non-standard SFD |
| 44 |
.sfdTO = (129 + 8 - 8) // SFD timeout |
| 45 |
}, |
| 46 |
//mode 3 - S1: 2 off, 3 on
|
| 47 |
{
|
| 48 |
.channelNumber = 5, // channel |
| 49 |
.preambleCode = 3, // preambleCode |
| 50 |
.pulseRepFreq = DWT_PRF_16M, // prf
|
| 51 |
.dataRate = DWT_BR_110K, // datarate
|
| 52 |
.preambleLen = DWT_PLEN_1024, // preambleLength
|
| 53 |
.pacSize = DWT_PAC32, // pacSize
|
| 54 |
.nsSFD = 1, // non-standard SFD |
| 55 |
.sfdTO = (1025 + 64 - 32) // SFD timeout |
| 56 |
}, |
| 57 |
//mode 4 - S1: 2 on, 3 on
|
| 58 |
{
|
| 59 |
.channelNumber = 5, // channel |
| 60 |
.preambleCode = 3, // preambleCode |
| 61 |
.pulseRepFreq = DWT_PRF_16M, // prf
|
| 62 |
.dataRate = DWT_BR_6M8, // datarate
|
| 63 |
.preambleLen = DWT_PLEN_128, // preambleLength
|
| 64 |
.pacSize = DWT_PAC8, // pacSize
|
| 65 |
.nsSFD = 0, // non-standard SFD |
| 66 |
.sfdTO = (129 + 8 - 8) // SFD timeout |
| 67 |
} |
| 68 |
}; |
| 69 |
|
| 70 |
|
| 71 |
/*! Slot and Superframe Configuration for DecaRangeRTLS TREK Modes (4 default use cases selected by the switch S1 [2,3] on EVB1000, indexed 0 to 3 )*/
|
| 72 |
sfConfig_t sfConfig[4] ={
|
| 73 |
//mode 1 - S1: 2 off, 3 off
|
| 74 |
{
|
| 75 |
.slotPeriod = (28), //slot duration in milliseconds (NOTE: the ranging exchange must be able to complete in this time |
| 76 |
//e.g. tag sends a poll, 4 anchors send responses and tag sends the final + processing time
|
| 77 |
.numSlots = (10), //number of slots in the superframe (8 tag slots and 2 used for anchor to anchor ranging), |
| 78 |
.sfPeriod = (10*28), //in ms => 280ms frame means 3.57 Hz location rate |
| 79 |
.pollSleepDly = (10*28), //tag period in ms (sleep time + ranging time) |
| 80 |
.replyDly = (25000) //poll to final delay in microseconds (needs to be adjusted according to lengths of ranging frames) |
| 81 |
}, |
| 82 |
#if (DISCOVERY == 1) |
| 83 |
//mode 2 - S1: 2 on, 3 off
|
| 84 |
{
|
| 85 |
.slotPeriod = (10), //slot duration in milliseconds (NOTE: the ranging exchange must be able to complete in this time |
| 86 |
//e.g. tag sends a poll, 4 anchors send responses and tag sends the final + processing time
|
| 87 |
.numSlots = (100), //number of slots in the superframe (98 tag slots and 2 used for anchor to anchor ranging), |
| 88 |
.sfPeriod = (10*100), //in ms => 1000 ms frame means 1 Hz location rate |
| 89 |
.pollSleepDly = (10*100), //tag period in ms (sleep time + ranging time) |
| 90 |
.replyDly = (2500) //poll to final delay in microseconds (needs to be adjusted according to lengths of ranging frames) |
| 91 |
|
| 92 |
}, |
| 93 |
#else
|
| 94 |
//mode 2 - S1: 2 on, 3 off
|
| 95 |
{
|
| 96 |
.slotPeriod = (10), //slot duration in milliseconds (NOTE: the ranging exchange must be able to complete in this time |
| 97 |
//e.g. tag sends a poll, 4 anchors send responses and tag sends the final + processing time
|
| 98 |
.numSlots = (10), //number of slots in the superframe (8 tag slots and 2 used for anchor to anchor ranging), |
| 99 |
.sfPeriod = (10*10), //in ms => 100 ms frame means 10 Hz location rate |
| 100 |
.pollSleepDly = (10*10), //tag period in ms (sleep time + ranging time) |
| 101 |
.replyDly = (2500) //poll to final delay in microseconds (needs to be adjusted according to lengths of ranging frames) |
| 102 |
}, |
| 103 |
#endif
|
| 104 |
//mode 3 - S1: 2 off, 3 on
|
| 105 |
{
|
| 106 |
.slotPeriod = (28), //slot duration in milliseconds (NOTE: the ranging exchange must be able to complete in this time |
| 107 |
//e.g. tag sends a poll, 4 anchors send responses and tag sends the final + processing time
|
| 108 |
.numSlots = (10), //number of slots in the superframe (8 tag slots and 2 used for anchor to anchor ranging), |
| 109 |
.sfPeriod = (10*28), //in ms => 280ms frame means 3.57 Hz location rate |
| 110 |
.pollSleepDly = (10*28), //tag period in ms (sleep time + ranging time) |
| 111 |
.replyDly = (20000) //poll to final delay in microseconds (needs to be adjusted according to lengths of ranging frames) |
| 112 |
|
| 113 |
}, |
| 114 |
//mode 4 - S1: 2 on, 3 on
|
| 115 |
{
|
| 116 |
.slotPeriod = (10), //slot duration in milliseconds (NOTE: the ranging exchange must be able to complete in this time |
| 117 |
//e.g. tag sends a poll, 4 anchors send responses and tag sends the final + processing time
|
| 118 |
.numSlots = (10), //number of slots in the superframe (8 tag slots and 2 used for anchor to anchor ranging), |
| 119 |
.sfPeriod = (10*10), //in ms => 100 ms frame means 10 Hz location rate |
| 120 |
.pollSleepDly = (10*10), //tag period in ms (sleep time + ranging time) |
| 121 |
.replyDly = (2500) //poll to final delay in microseconds (needs to be adjusted according to lengths of ranging frames) |
| 122 |
} |
| 123 |
}; |
| 124 |
|
| 125 |
|
| 126 |
// -------------------------------------------------------------------------------------------------------------------
|
| 127 |
|
| 128 |
//The table below specifies the default TX spectrum configuration parameters... this has been tuned for DW EVK hardware units
|
| 129 |
//the table is set for smart power - see below in the instance_config function how this is used when not using smart power
|
| 130 |
const tx_struct txSpectrumConfig[8] = |
| 131 |
{
|
| 132 |
//Channel 0 ----- this is just a place holder so the next array element is channel 1
|
| 133 |
{
|
| 134 |
0x0, //0 |
| 135 |
{
|
| 136 |
0x0, //0 |
| 137 |
0x0 //0 |
| 138 |
} |
| 139 |
}, |
| 140 |
//Channel 1
|
| 141 |
{
|
| 142 |
0xc9, //PG_DELAY |
| 143 |
{
|
| 144 |
0x15355575, //16M prf power |
| 145 |
0x07274767 //64M prf power |
| 146 |
} |
| 147 |
|
| 148 |
}, |
| 149 |
//Channel 2
|
| 150 |
{
|
| 151 |
0xc2, //PG_DELAY |
| 152 |
{
|
| 153 |
0x15355575, //16M prf power |
| 154 |
0x07274767 //64M prf power |
| 155 |
} |
| 156 |
}, |
| 157 |
//Channel 3
|
| 158 |
{
|
| 159 |
0xc5, //PG_DELAY |
| 160 |
{
|
| 161 |
0x0f2f4f6f, //16M prf power |
| 162 |
0x2b4b6b8b //64M prf power |
| 163 |
} |
| 164 |
}, |
| 165 |
//Channel 4
|
| 166 |
{
|
| 167 |
0x95, //PG_DELAY |
| 168 |
{
|
| 169 |
0x1f1f3f5f, //16M prf power |
| 170 |
0x3a5a7a9a //64M prf power |
| 171 |
} |
| 172 |
}, |
| 173 |
//Channel 5
|
| 174 |
{
|
| 175 |
0xc0, //PG_DELAY |
| 176 |
{
|
| 177 |
0x0E082848, //16M prf power |
| 178 |
0x25456585 //64M prf power |
| 179 |
} |
| 180 |
}, |
| 181 |
//Channel 6 ----- this is just a place holder so the next array element is channel 7
|
| 182 |
{
|
| 183 |
0x0, //0 |
| 184 |
{
|
| 185 |
0x0, //0 |
| 186 |
0x0 //0 |
| 187 |
} |
| 188 |
}, |
| 189 |
//Channel 7
|
| 190 |
{
|
| 191 |
0x93, //PG_DELAY |
| 192 |
{
|
| 193 |
0x32527292, //16M prf power |
| 194 |
0x5171B1d1 //64M prf power |
| 195 |
} |
| 196 |
} |
| 197 |
}; |
| 198 |
|
| 199 |
//these are default antenna delays for EVB1000, these can be used if there is no calibration data in the DW1000,
|
| 200 |
//or instead of the calibration data
|
| 201 |
const uint16_t rfDelays[2] = { |
| 202 |
(uint16_t) (((double)DWT_PRF_16M_RFDLY/ 2.0) * 1e-9 / DWT_TIME_UNITS),//PRF 16 |
| 203 |
(uint16_t) (((double)DWT_PRF_64M_RFDLY/ 2.0) * 1e-9 / DWT_TIME_UNITS) |
| 204 |
}; |
| 205 |
|
| 206 |
//these are default TREK Tag/Anchor antenna delays
|
| 207 |
const uint16_t rfDelaysTREK[2] = { |
| 208 |
(uint16_t) (((double)514.83f/ 2.0) * 1e-9 / DWT_TIME_UNITS),//channel 2 |
| 209 |
(uint16_t) (((double)514.65f/ 2.0) * 1e-9 / DWT_TIME_UNITS) //channel 5 |
| 210 |
}; |
| 211 |
|
| 212 |
|
| 213 |
// -------------------------------------------------------------------------------------------------------------------
|
| 214 |
// Data Definitions
|
| 215 |
// -------------------------------------------------------------------------------------------------------------------
|
| 216 |
|
| 217 |
instance_data_t instance_data[NUM_INST] ; |
| 218 |
|
| 219 |
static double inst_tdist[MAX_TAG_LIST_SIZE] ; |
| 220 |
static double inst_idist[MAX_ANCHOR_LIST_SIZE] ; |
| 221 |
static double inst_idistraw[MAX_ANCHOR_LIST_SIZE] ; |
| 222 |
|
| 223 |
instance_data_t instance_data[NUM_INST] ; |
| 224 |
|
| 225 |
typedef struct __attribute__((packed)) |
| 226 |
{
|
| 227 |
uint32_t deviceID ; |
| 228 |
uint8_t chan; // added chan here - used in the reading of acc
|
| 229 |
uint16_t rfrxDly; // rf delay (delay though the RF blocks before the signal comes out of the antenna i.e. "antenna delay")
|
| 230 |
uint16_t rftxDly; // rf delay (delay though the RF blocks before the signal comes out of the antenna i.e. "antenna delay")
|
| 231 |
uint32_t antennaDly; // antenna delay read from OTP 64 PRF value is in high 16 bits and 16M PRF in low 16 bits
|
| 232 |
uint32_t antennaCals[4]; // antenna delays for the TREKs (Anchor high 16-bits, Tag low 16-bits) |
| 233 |
uint32_t txPowCfg[12]; // stores the Tx power configuration read from OTP (6 channels consecutively with PRF16 then 64, e.g. Ch 1 PRF16 is index 0 and 64 index 1) |
| 234 |
uint32_t states[3] ; //MP workaround debug states register |
| 235 |
uint8_t statescount ; |
| 236 |
int prfIndex ;
|
| 237 |
uint32_t ldoTune ; //low 32 bits of LDO tune value
|
| 238 |
} platform_local_data_t ; |
| 239 |
|
| 240 |
static platform_local_data_t platformLocalData ; // Static local device data |
| 241 |
|
| 242 |
// -------------------------------------------------------------------------------------------------------------------
|
| 243 |
// Functions
|
| 244 |
// -------------------------------------------------------------------------------------------------------------------
|
| 245 |
|
| 246 |
// -------------------------------------------------------------------------------------------------------------------
|
| 247 |
// convert microseconds to device time
|
| 248 |
uint64_t convertmicrosectodevicetimeu (double microsecu){
|
| 249 |
uint64_t dt; |
| 250 |
long double dtime; |
| 251 |
|
| 252 |
dtime = (long double)((microsecu / (double) DWT_TIME_UNITS) / 1e6); |
| 253 |
|
| 254 |
dt = (uint64_t) (dtime) ; |
| 255 |
|
| 256 |
return dt;
|
| 257 |
} |
| 258 |
|
| 259 |
double convertdevicetimetosec(int32_t dt){
|
| 260 |
double f = 0; |
| 261 |
|
| 262 |
f = dt * DWT_TIME_UNITS ; // seconds #define TIME_UNITS (1.0/499.2e6/128.0) = 15.65e-12
|
| 263 |
|
| 264 |
return f ;
|
| 265 |
} |
| 266 |
|
| 267 |
#pragma GCC optimize ("O3") |
| 268 |
int reportTOF(int idx, uint32_t tofx){ |
| 269 |
double distance ;
|
| 270 |
double distance_to_correct;
|
| 271 |
double tof ;
|
| 272 |
int64_t tofi ; |
| 273 |
|
| 274 |
// check for negative results and accept them making them proper negative integers
|
| 275 |
tofi = (int32_t) tofx ; // make it signed
|
| 276 |
if (tofi > 0x7FFFFFFF){ // close up TOF may be negative |
| 277 |
tofi -= 0x80000000 ; // |
| 278 |
} |
| 279 |
|
| 280 |
// convert to seconds (as floating point)
|
| 281 |
tof = convertdevicetimetosec((int32_t)tofi) ; //this is divided by 4 to get single time of flight
|
| 282 |
inst_idistraw[idx] = distance = tof * SPEED_OF_LIGHT; |
| 283 |
|
| 284 |
#if (CORRECT_RANGE_BIAS == 1) |
| 285 |
//for the 6.81Mb data rate we assume gating gain of 6dB is used,
|
| 286 |
//thus a different range bias needs to be applied
|
| 287 |
//if(inst->configData.dataRate == DWT_BR_6M8)
|
| 288 |
if(instance_data[0].configData.smartPowerEn){ |
| 289 |
//1.31 for channel 2 and 1.51 for channel 5
|
| 290 |
if(instance_data[0].configData.chan == 5){ |
| 291 |
distance_to_correct = distance/1.51; |
| 292 |
} |
| 293 |
else{ //channel 2 |
| 294 |
distance_to_correct = distance/1.31; |
| 295 |
} |
| 296 |
} |
| 297 |
else{
|
| 298 |
distance_to_correct = distance; |
| 299 |
} |
| 300 |
|
| 301 |
distance = distance - dwt_getrangebias(instance_data[0].configData.chan, (float) distance_to_correct, instance_data[0].configData.prf); |
| 302 |
#endif
|
| 303 |
|
| 304 |
if ((distance < 0) || (distance > 20000.000)) // discard any results less than <0 cm or >20 km |
| 305 |
return 0; |
| 306 |
|
| 307 |
inst_idist[idx] = distance; |
| 308 |
|
| 309 |
instance_data[0].longTermRangeCount++ ; // for computing a long term average |
| 310 |
|
| 311 |
return 1; |
| 312 |
}// end of reportTOF
|
| 313 |
|
| 314 |
void setTagDist(int tidx, int aidx){ |
| 315 |
inst_tdist[tidx] = inst_idist[aidx]; |
| 316 |
} |
| 317 |
|
| 318 |
double getTagDist(int idx){ |
| 319 |
return inst_tdist[idx];
|
| 320 |
} |
| 321 |
|
| 322 |
void clearDistTable(int idx){ |
| 323 |
inst_idistraw[idx] = 0;
|
| 324 |
inst_idist[idx] = 0;
|
| 325 |
} |
| 326 |
|
| 327 |
void instancecleardisttableall(void){ |
| 328 |
int i;
|
| 329 |
|
| 330 |
for(i=0; i<MAX_ANCHOR_LIST_SIZE; i++) { |
| 331 |
inst_idistraw[i] = 0xffff;
|
| 332 |
inst_idist[i] = 0xffff;
|
| 333 |
} |
| 334 |
} |
| 335 |
|
| 336 |
// -------------------------------------------------------------------------------------------------------------------
|
| 337 |
#if NUM_INST != 1 |
| 338 |
#error These functions assume one instance only
|
| 339 |
#else
|
| 340 |
|
| 341 |
|
| 342 |
// -------------------------------------------------------------------------------------------------------------------
|
| 343 |
// Set this instance role as the Tag, Anchor or Listener
|
| 344 |
void instancesetrole(int inst_mode){ |
| 345 |
// assume instance 0, for this
|
| 346 |
instance_data[0].mode = (INST_MODE)inst_mode; // set the role |
| 347 |
} |
| 348 |
|
| 349 |
int instancegetrole(void){ |
| 350 |
return (int)instance_data[0].mode; |
| 351 |
} |
| 352 |
|
| 353 |
int instancenewrange(void){ |
| 354 |
int x = instance_data[0].newRange; |
| 355 |
instance_data[0].newRange = TOF_REPORT_NUL;
|
| 356 |
return x;
|
| 357 |
} |
| 358 |
|
| 359 |
int instancenewrangeancadd(void){ |
| 360 |
return instance_data[0].newRangeAncAddress; |
| 361 |
} |
| 362 |
|
| 363 |
int instancenewrangetagadd(void){ |
| 364 |
return instance_data[0].newRangeTagAddress; |
| 365 |
} |
| 366 |
|
| 367 |
uint32_t instancenewrangetim(void){
|
| 368 |
return instance_data[0].newRangeTime; |
| 369 |
} |
| 370 |
|
| 371 |
// -------------------------------------------------------------------------------------------------------------------
|
| 372 |
// function to clear counts/averages/range values
|
| 373 |
//
|
| 374 |
void instanceclearcounts(void){ |
| 375 |
int instance = 0 ; |
| 376 |
int i= 0 ; |
| 377 |
|
| 378 |
instance_data[instance].rxTimeouts = 0 ;
|
| 379 |
|
| 380 |
dwt_configeventcounters(1); //enable and clear - NOTE: the counters are not preserved when in DEEP SLEEP |
| 381 |
|
| 382 |
instance_data[instance].frameSN = 0;
|
| 383 |
|
| 384 |
instance_data[instance].longTermRangeCount = 0;
|
| 385 |
|
| 386 |
|
| 387 |
for(i=0; i<MAX_ANCHOR_LIST_SIZE; i++){ |
| 388 |
instance_data[instance].tofArray[i] = INVALID_TOF; |
| 389 |
} |
| 390 |
|
| 391 |
for(i=0; i<MAX_TAG_LIST_SIZE; i++){ |
| 392 |
instance_data[instance].tof[i] = INVALID_TOF; |
| 393 |
} |
| 394 |
|
| 395 |
} // end instanceclearcounts()
|
| 396 |
|
| 397 |
|
| 398 |
// -------------------------------------------------------------------------------------------------------------------
|
| 399 |
// function to initialise instance structures
|
| 400 |
//
|
| 401 |
// Returns 0 on success and -1 on error
|
| 402 |
int instance_init(DW1000Driver* drv){
|
| 403 |
int instance = 0 ; |
| 404 |
int i;
|
| 405 |
int result;
|
| 406 |
|
| 407 |
instance_data[instance].mode = ANCHOR; // assume listener,
|
| 408 |
instance_data[instance].testAppState = TA_INIT ; |
| 409 |
instance_data[instance].instToSleep = FALSE; |
| 410 |
|
| 411 |
|
| 412 |
// Reset the IC (might be needed if not getting here from POWER ON)
|
| 413 |
// ARM code: Remove soft reset here as using hard reset in the inittestapplication() in the main.c file
|
| 414 |
//dwt_softreset();
|
| 415 |
|
| 416 |
//this initialises DW1000 and uses specified configurations from OTP/ROM
|
| 417 |
result = dwt_initialise(DWT_LOADUCODE, drv); |
| 418 |
|
| 419 |
//this is platform dependent - only program if DW EVK/EVB
|
| 420 |
dwt_setleds(3) ; //configure the GPIOs which control the leds on EVBs |
| 421 |
|
| 422 |
if (DWT_SUCCESS != result){
|
| 423 |
return (-1) ; // device initialise has failed |
| 424 |
} |
| 425 |
|
| 426 |
|
| 427 |
instanceclearcounts() ; |
| 428 |
|
| 429 |
instance_data[instance].panID = 0xdeca ;
|
| 430 |
|
| 431 |
instance_data[instance].wait4ack = 0;
|
| 432 |
instance_data[instance].stopTimer = 0;
|
| 433 |
instance_data[instance].instanceTimerEn = 0;
|
| 434 |
|
| 435 |
instance_clearevents(); |
| 436 |
|
| 437 |
//dwt_geteui(instance_data[instance].eui64);
|
| 438 |
memset(instance_data[instance].eui64, 0, ADDR_BYTE_SIZE_L);
|
| 439 |
|
| 440 |
instance_data[instance].tagSleepCorrection = 0;
|
| 441 |
|
| 442 |
// dwt_setautorxreenable(0); //disable auto RX re-enable
|
| 443 |
dwt_setdblrxbuffmode(0); //disable double RX buffer |
| 444 |
|
| 445 |
// if using auto CRC check (DWT_INT_RFCG and DWT_INT_RFCE) are used instead of DWT_INT_RDFR flag
|
| 446 |
// other errors which need to be checked (as they disable receiver) are
|
| 447 |
//dwt_setinterrupt(DWT_INT_TFRS | DWT_INT_RFCG | (DWT_INT_SFDT | DWT_INT_RFTO /*| DWT_INT_RXPTO*/), 1);
|
| 448 |
dwt_setinterrupt(DWT_INT_TFRS | DWT_INT_RFCG | (DWT_INT_ARFE | DWT_INT_RFSL | DWT_INT_SFDT | DWT_INT_RPHE | DWT_INT_RFCE | DWT_INT_RFTO | DWT_INT_RXPTO), 1);
|
| 449 |
|
| 450 |
dwt_setcallbacks(instance_txcallback, instance_rxcallback, instance_rxtimeoutcallback,instance_rxerrorcallback ); |
| 451 |
|
| 452 |
instance_data[instance].monitor = 0;
|
| 453 |
|
| 454 |
instance_data[instance].lateTX = 0;
|
| 455 |
instance_data[instance].lateRX = 0;
|
| 456 |
|
| 457 |
instance_data[instance].responseTO = -1; //initialise |
| 458 |
for(i=0; i<256; i++) { |
| 459 |
instance_data[instance].rxResps[i] = -10;
|
| 460 |
} |
| 461 |
|
| 462 |
instance_data[instance].delayedReplyTime = 0;
|
| 463 |
|
| 464 |
return 0 ; |
| 465 |
} |
| 466 |
|
| 467 |
// -------------------------------------------------------------------------------------------------------------------
|
| 468 |
//
|
| 469 |
// Return the Device ID register value, enables higher level validation of physical device presence
|
| 470 |
//
|
| 471 |
|
| 472 |
uint32_t instancereaddeviceid(void){
|
| 473 |
return dwt_readdevid() ;
|
| 474 |
} |
| 475 |
|
| 476 |
|
| 477 |
// -------------------------------------------------------------------------------------------------------------------
|
| 478 |
//
|
| 479 |
// function to allow application configuration be passed into instance and affect underlying device operation
|
| 480 |
//
|
| 481 |
void instance_config(instanceConfig_t *config, sfConfig_t *sfConfig, DW1000Driver* drv){
|
| 482 |
int instance = 0 ; |
| 483 |
uint32_t power = 0;
|
| 484 |
uint8_t otprev ; |
| 485 |
|
| 486 |
instance_data[instance].configData.chan = config->channelNumber ; |
| 487 |
instance_data[instance].configData.rxCode = config->preambleCode ; |
| 488 |
instance_data[instance].configData.txCode = config->preambleCode ; |
| 489 |
instance_data[instance].configData.prf = config->pulseRepFreq ; |
| 490 |
instance_data[instance].configData.dataRate = config->dataRate ; |
| 491 |
instance_data[instance].configData.txPreambLength = config->preambleLen ; |
| 492 |
instance_data[instance].configData.rxPAC = config->pacSize ; |
| 493 |
instance_data[instance].configData.nsSFD = config->nsSFD ; |
| 494 |
instance_data[instance].configData.phrMode = DWT_PHRMODE_STD ; |
| 495 |
instance_data[instance].configData.sfdTO = config->sfdTO; |
| 496 |
|
| 497 |
//the DW1000 will automatically use gating gain for frames < 1ms duration (i.e. 6.81Mbps data rate)
|
| 498 |
//smartPowerEn should be set based on the frame length, but we can also use dtaa rate.
|
| 499 |
if(instance_data[instance].configData.dataRate == DWT_BR_6M8) {
|
| 500 |
instance_data[instance].configData.smartPowerEn = 1;
|
| 501 |
} |
| 502 |
else{
|
| 503 |
instance_data[instance].configData.smartPowerEn = 0;
|
| 504 |
} |
| 505 |
|
| 506 |
//configure the channel parameters
|
| 507 |
dwt_configure(&instance_data[instance].configData) ; |
| 508 |
|
| 509 |
instance_data[instance].configTX.PGdly = txSpectrumConfig[config->channelNumber].PGdelay ; //Default
|
| 510 |
|
| 511 |
//firstly check if there are calibrated TX power value in the DW1000 OTP
|
| 512 |
power = dwt_getotptxpower(config->pulseRepFreq, instance_data[instance].configData.chan); |
| 513 |
|
| 514 |
if((power == 0x0) || (power == 0xFFFFFFFF)) { //if there are no calibrated values... need to use defaults |
| 515 |
power = txSpectrumConfig[config->channelNumber].txPwr[config->pulseRepFreq- DWT_PRF_16M]; |
| 516 |
} |
| 517 |
|
| 518 |
//Configure TX power
|
| 519 |
instance_data[instance].configTX.power = power; |
| 520 |
|
| 521 |
//configure the tx spectrum parameters (power and PG delay)
|
| 522 |
dwt_configuretxrf(&instance_data[instance].configTX); |
| 523 |
|
| 524 |
otprev = dwt_otprevision() ; // this revision tells us how OTP is programmed.
|
| 525 |
|
| 526 |
if ((2 == otprev) || (3 == otprev)) { // board is calibrated with TREK1000 with antenna delays set for each use case) |
| 527 |
uint8_t mode = (instance_data[instance].mode == ANCHOR ? 1 : 0); |
| 528 |
uint8_t chanindex = 0;
|
| 529 |
|
| 530 |
instance_data[instance].txAntennaDelay |
| 531 |
= dwt_getTREKOTPantennadelay(mode, |
| 532 |
instance_data[instance].configData.chan, |
| 533 |
instance_data[instance].configData.dataRate) ; |
| 534 |
|
| 535 |
// if nothing was actually programmed then set a reasonable value anyway
|
| 536 |
if ((instance_data[instance].txAntennaDelay == 0) |
| 537 |
|| (instance_data[instance].txAntennaDelay == 0xffff)){
|
| 538 |
if(instance_data[instance].configData.chan == 5){ |
| 539 |
chanindex = 1;
|
| 540 |
} |
| 541 |
|
| 542 |
instance_data[instance].txAntennaDelay = rfDelaysTREK[chanindex]; |
| 543 |
} |
| 544 |
|
| 545 |
} |
| 546 |
else { // assume it is older EVK1000 programming. |
| 547 |
//get the antenna delay that was read from the OTP calibration area
|
| 548 |
instance_data[instance].txAntennaDelay = dwt_readantennadelay(config->pulseRepFreq) >> 1;
|
| 549 |
|
| 550 |
// if nothing was actually programmed then set a reasonable value anyway
|
| 551 |
if ((instance_data[instance].txAntennaDelay == 0) |
| 552 |
|| (instance_data[instance].txAntennaDelay == 0xffff)){
|
| 553 |
instance_data[instance].txAntennaDelay = rfDelays[config->pulseRepFreq - DWT_PRF_16M]; |
| 554 |
} |
| 555 |
} |
| 556 |
|
| 557 |
// -------------------------------------------------------------------------------------------------------------------
|
| 558 |
// set the antenna delay, we assume that the RX is the same as TX.
|
| 559 |
dwt_setrxantennadelay(instance_data[instance].txAntennaDelay); |
| 560 |
dwt_settxantennadelay(instance_data[instance].txAntennaDelay); |
| 561 |
|
| 562 |
instance_data[instance].rxAntennaDelay = instance_data[instance].txAntennaDelay; |
| 563 |
|
| 564 |
if(config->preambleLen == DWT_PLEN_64) { //if preamble length is 64 |
| 565 |
//reduce SPI to < 3MHz
|
| 566 |
setHighSpeed_SPI(FALSE, drv); |
| 567 |
dwt_loadopsettabfromotp(0);
|
| 568 |
//increase SPI to max
|
| 569 |
setHighSpeed_SPI(TRUE, drv); |
| 570 |
} |
| 571 |
|
| 572 |
instancesettagsleepdelay(sfConfig->pollSleepDly); //set the Tag sleep time
|
| 573 |
instance_data[instance].sframePeriod = sfConfig->sfPeriod; |
| 574 |
instance_data[instance].slotPeriod = sfConfig->slotPeriod; |
| 575 |
instance_data[instance].tagSleepRnd = sfConfig->slotPeriod; |
| 576 |
instance_data[instance].numSlots = sfConfig->numSlots; |
| 577 |
|
| 578 |
//last two slots are used for anchor to anchor ranging
|
| 579 |
instance_data[instance].a0SlotTime = (instance_data[instance].numSlots-2) * instance_data[instance].slotPeriod;
|
| 580 |
|
| 581 |
//set the default response delays
|
| 582 |
instancesetreplydelay(sfConfig->replyDly); |
| 583 |
|
| 584 |
} |
| 585 |
|
| 586 |
// -------------------------------------------------------------------------------------------------------------------
|
| 587 |
// function to set the tag sleep time (in ms)
|
| 588 |
//
|
| 589 |
void instancesettagsleepdelay(int sleepdelay) { //sleep in ms |
| 590 |
int instance = 0 ; |
| 591 |
instance_data[instance].tagSleepTime_ms = sleepdelay; //subtract the micro system delays (time it takes to switch states etc.)
|
| 592 |
} |
| 593 |
|
| 594 |
|
| 595 |
int instancegetrnum(void) { //get ranging number |
| 596 |
return instance_data[0].rangeNum; |
| 597 |
} |
| 598 |
|
| 599 |
int instancegetrnuma(int idx){ //get ranging number |
| 600 |
return instance_data[0].rangeNumA[idx]; |
| 601 |
} |
| 602 |
|
| 603 |
int instancegetrnumanc(int idx){ //get ranging number |
| 604 |
return instance_data[0].rangeNumAAnc[idx]; |
| 605 |
} |
| 606 |
|
| 607 |
int instancegetlcount(void) { //get count of ranges used for calculation of lt avg |
| 608 |
int x = instance_data[0].longTermRangeCount; |
| 609 |
|
| 610 |
return (x);
|
| 611 |
} |
| 612 |
|
| 613 |
double instancegetidist(int idx) { //get instantaneous range |
| 614 |
double x ;
|
| 615 |
|
| 616 |
idx &= (MAX_ANCHOR_LIST_SIZE - 1);
|
| 617 |
|
| 618 |
x = inst_idist[idx]; |
| 619 |
|
| 620 |
return (x);
|
| 621 |
} |
| 622 |
|
| 623 |
double instancegetidistraw(int idx) { //get instantaneous range (uncorrected) |
| 624 |
double x ;
|
| 625 |
|
| 626 |
idx &= (MAX_ANCHOR_LIST_SIZE - 1);
|
| 627 |
|
| 628 |
x = inst_idistraw[idx]; |
| 629 |
|
| 630 |
return (x);
|
| 631 |
} |
| 632 |
|
| 633 |
int instancegetidist_mm(int idx) { //get instantaneous range |
| 634 |
int x ;
|
| 635 |
|
| 636 |
idx &= (MAX_ANCHOR_LIST_SIZE - 1);
|
| 637 |
|
| 638 |
x = (int)(inst_idist[idx]*1000); |
| 639 |
|
| 640 |
return (x);
|
| 641 |
} |
| 642 |
|
| 643 |
int instancegetidistraw_mm(int idx) { //get instantaneous range (uncorrected) |
| 644 |
int x ;
|
| 645 |
|
| 646 |
idx &= (MAX_ANCHOR_LIST_SIZE - 1);
|
| 647 |
|
| 648 |
x = (int)(inst_idistraw[idx]*1000); |
| 649 |
|
| 650 |
return (x);
|
| 651 |
} |
| 652 |
|
| 653 |
void instance_backtoanchor(instance_data_t *inst){
|
| 654 |
//stay in RX and behave as anchor
|
| 655 |
inst->testAppState = TA_RXE_WAIT ; |
| 656 |
inst->mode = ANCHOR ; |
| 657 |
dwt_setrxtimeout(0);
|
| 658 |
dwt_setpreambledetecttimeout(0);
|
| 659 |
dwt_setrxaftertxdelay(0);
|
| 660 |
} |
| 661 |
|
| 662 |
|
| 663 |
#pragma GCC optimize ("O3") |
| 664 |
void inst_processrxtimeout(instance_data_t *inst){
|
| 665 |
|
| 666 |
//inst->responseTimeouts ++ ;
|
| 667 |
inst->rxTimeouts ++ ; |
| 668 |
inst->done = INST_NOT_DONE_YET; |
| 669 |
|
| 670 |
if(inst->mode == ANCHOR) { //we did not receive the final - wait for next poll |
| 671 |
//only enable receiver when not using double buffering
|
| 672 |
inst->testAppState = TA_RXE_WAIT ; // wait for next frame
|
| 673 |
dwt_setrxtimeout(0);
|
| 674 |
} |
| 675 |
|
| 676 |
else if(inst->mode == TAG) { |
| 677 |
//if tag times out - no response (check if we are to send a final)
|
| 678 |
//send the final only if it has received response from anchor 0
|
| 679 |
if((inst->previousState == TA_TXPOLL_WAIT_SEND) && ((inst->rxResponseMask & 0x1) == 0)) { |
| 680 |
inst->instToSleep = TRUE ; //set sleep to TRUE so that tag will go to DEEP SLEEP before next ranging attempt
|
| 681 |
inst->testAppState = TA_TXE_WAIT ; |
| 682 |
inst->nextState = TA_TXPOLL_WAIT_SEND ; |
| 683 |
} |
| 684 |
else if (inst->previousState == TA_TXFINAL_WAIT_SEND) { //got here from main (error sending final - handle as timeout) |
| 685 |
dwt_forcetrxoff(); //this will clear all events
|
| 686 |
inst->instToSleep = TRUE ; |
| 687 |
// initiate the re-transmission of the poll that was not responded to
|
| 688 |
inst->testAppState = TA_TXE_WAIT ; |
| 689 |
inst->nextState = TA_TXPOLL_WAIT_SEND ; |
| 690 |
} |
| 691 |
else { //send the final |
| 692 |
// initiate the re-transmission of the poll that was not responded to
|
| 693 |
inst->testAppState = TA_TXE_WAIT ; |
| 694 |
inst->nextState = TA_TXFINAL_WAIT_SEND ; |
| 695 |
} |
| 696 |
|
| 697 |
} |
| 698 |
else { //ANCHOR_RNG |
| 699 |
//no Response form the other anchor
|
| 700 |
if(
|
| 701 |
((inst->previousState == TA_TXPOLL_WAIT_SEND) |
| 702 |
&& ((A1_ANCHOR_ADDR == inst->instanceAddress16) && ((inst->rxResponseMaskAnc & 0x4) == 0))) |
| 703 |
|| |
| 704 |
((inst->previousState == TA_TXPOLL_WAIT_SEND) |
| 705 |
&& ((GATEWAY_ANCHOR_ADDR == inst->instanceAddress16) && ((inst->rxResponseMaskAnc & 0x2) == 0))) |
| 706 |
) {
|
| 707 |
instance_backtoanchor(inst); |
| 708 |
} |
| 709 |
else if (inst->previousState == TA_TXFINAL_WAIT_SEND) { //got here from main (error ending final - handle as timeout) |
| 710 |
instance_backtoanchor(inst); |
| 711 |
} |
| 712 |
else { //send the final |
| 713 |
// initiate the re-transmission of the poll that was not responded to
|
| 714 |
inst->testAppState = TA_TXE_WAIT ; |
| 715 |
inst->nextState = TA_TXFINAL_WAIT_SEND ; |
| 716 |
} |
| 717 |
} |
| 718 |
|
| 719 |
//timeout - disable the radio (if using SW timeout the rx will not be off)
|
| 720 |
//dwt_forcetrxoff() ;
|
| 721 |
} |
| 722 |
|
| 723 |
//
|
| 724 |
// NB: This function is called from the (TX) interrupt handler
|
| 725 |
//
|
| 726 |
#pragma GCC optimize ("O3") |
| 727 |
void instance_txcallback(const dwt_cb_data_t *txd){ |
| 728 |
|
| 729 |
(void) txd;
|
| 730 |
int instance = 0; |
| 731 |
uint8_t txTimeStamp[5] = {0, 0, 0, 0, 0}; |
| 732 |
// uint8 txevent = txd->event;
|
| 733 |
event_data_t dw_event; |
| 734 |
|
| 735 |
dw_event.uTimeStamp = portGetTickCnt(); |
| 736 |
|
| 737 |
dwt_readtxtimestamp(txTimeStamp) ; |
| 738 |
dw_event.timeStamp32l = (uint32_t)txTimeStamp[0] + ((uint32_t)txTimeStamp[1] << 8) + ((uint32_t)txTimeStamp[2] << 16) + ((uint32_t)txTimeStamp[3] << 24); |
| 739 |
dw_event.timeStamp = txTimeStamp[4];
|
| 740 |
dw_event.timeStamp <<= 32;
|
| 741 |
dw_event.timeStamp += dw_event.timeStamp32l; |
| 742 |
dw_event.timeStamp32h = ((uint32_t)txTimeStamp[4] << 24) + (dw_event.timeStamp32l >> 8); |
| 743 |
|
| 744 |
instance_data[instance].stopTimer = 0;
|
| 745 |
|
| 746 |
dw_event.rxLength = instance_data[instance].psduLength; |
| 747 |
dw_event.type = 0;
|
| 748 |
dw_event.type_pend = 0;
|
| 749 |
dw_event.type_save = DWT_SIG_TX_DONE; |
| 750 |
|
| 751 |
memcpy((uint8_t *)&dw_event.msgu.frame[0], (uint8_t *)&instance_data[instance].msg_f, instance_data[instance].psduLength);
|
| 752 |
|
| 753 |
instance_putevent(dw_event, DWT_SIG_TX_DONE); |
| 754 |
|
| 755 |
instance_data[instance].txMsgCount++; |
| 756 |
|
| 757 |
instance_data[instance].monitor = 0;
|
| 758 |
} |
| 759 |
|
| 760 |
/**
|
| 761 |
* @brief function to re-enable the receiver and also adjust the timeout before sending the final message
|
| 762 |
* if it is time so send the final message, the callback will notify the application, else the receiver is
|
| 763 |
* automatically re-enabled
|
| 764 |
*
|
| 765 |
* this function is only used for tag when ranging to other anchors
|
| 766 |
*/
|
| 767 |
uint8_t tagrxreenable(uint16_t sourceAddress){
|
| 768 |
uint8_t type_pend = DWT_SIG_DW_IDLE; |
| 769 |
uint8_t anc = sourceAddress & 0x3;
|
| 770 |
int instance = 0; |
| 771 |
|
| 772 |
switch(anc){
|
| 773 |
//if we got Response from anchor 3 - this is the last expected response - send the final
|
| 774 |
case 3: |
| 775 |
type_pend = DWT_SIG_DW_IDLE; |
| 776 |
break;
|
| 777 |
|
| 778 |
//if we got Response from anchor 0, 1, or 2 - go back to wait for next anchor's response
|
| 779 |
case 0: |
| 780 |
case 1: |
| 781 |
case 2: |
| 782 |
default:
|
| 783 |
if(instance_data[instance].responseTO > 0) { //can get here as result of error frame so need to check |
| 784 |
dwt_setrxtimeout((uint16_t)(instance_data[instance].fwtoTime_sy * instance_data[instance].responseTO)); //reconfigure the timeout
|
| 785 |
dwt_rxenable(DWT_START_RX_IMMEDIATE) ; |
| 786 |
type_pend = DWT_SIG_RX_PENDING ; |
| 787 |
} |
| 788 |
else //last response was not received (got error/frame was corrupt) |
| 789 |
{
|
| 790 |
type_pend = DWT_SIG_DW_IDLE; //report timeout - send the final
|
| 791 |
} |
| 792 |
break;
|
| 793 |
} |
| 794 |
|
| 795 |
return type_pend;
|
| 796 |
} |
| 797 |
|
| 798 |
/**
|
| 799 |
* @brief function to re-enable the receiver and also adjust the timeout before sending the final message
|
| 800 |
* if it is time so send the final message, the callback will notify the application, else the receiver is
|
| 801 |
* automatically re-enabled
|
| 802 |
*
|
| 803 |
* this function is only used for anchors (having a role of ANCHOR_RNG) when ranging to other anchors
|
| 804 |
*/
|
| 805 |
uint8_t ancsendfinalorrxreenable(uint16_t sourceAddress){
|
| 806 |
uint8_t type_pend = DWT_SIG_DW_IDLE; |
| 807 |
uint8_t anc = sourceAddress & 0x3;
|
| 808 |
int instance = 0; |
| 809 |
|
| 810 |
if(instance_data[instance].instanceAddress16 == GATEWAY_ANCHOR_ADDR) {
|
| 811 |
switch(anc) {
|
| 812 |
//if we got Response from anchor 1 - go back to wait for next anchor's response
|
| 813 |
case 1: |
| 814 |
dwt_setrxtimeout((uint16_t)instance_data[instance].fwtoTime_sy); //reconfigure the timeout
|
| 815 |
dwt_rxenable(DWT_START_RX_IMMEDIATE) ; |
| 816 |
type_pend = DWT_SIG_RX_PENDING ; |
| 817 |
break;
|
| 818 |
|
| 819 |
//if we got Response from anchor 2 - this is the last expected response - send the final
|
| 820 |
case 2: |
| 821 |
default:
|
| 822 |
type_pend = DWT_SIG_DW_IDLE; |
| 823 |
break;
|
| 824 |
} |
| 825 |
} |
| 826 |
|
| 827 |
if(instance_data[instance].instanceAddress16 == A1_ANCHOR_ADDR){
|
| 828 |
switch(anc)
|
| 829 |
{
|
| 830 |
//if we got Response from anchor 2 - this is the last expected response - send the final
|
| 831 |
case 2: |
| 832 |
default:
|
| 833 |
type_pend = DWT_SIG_DW_IDLE; |
| 834 |
break;
|
| 835 |
} |
| 836 |
} |
| 837 |
return type_pend;
|
| 838 |
} |
| 839 |
|
| 840 |
/**
|
| 841 |
* @brief this function either enables the receiver (delayed)
|
| 842 |
*
|
| 843 |
**/
|
| 844 |
void ancenablerx(void){ |
| 845 |
int instance = 0; |
| 846 |
//subtract preamble length
|
| 847 |
dwt_setdelayedtrxtime(instance_data[instance].delayedReplyTime - instance_data[instance].fixedReplyDelayAncP) ; |
| 848 |
if(dwt_rxenable(DWT_START_RX_DELAYED)) { //delayed rx |
| 849 |
//if the delayed RX failed - time has passed - do immediate enable
|
| 850 |
//led_on(LED_PC9);
|
| 851 |
dwt_setrxtimeout((uint16_t)instance_data[instance].fwtoTimeAnc_sy*2); //reconfigure the timeout before enable |
| 852 |
//longer timeout as we cannot do delayed receive... so receiver needs to stay on for longer
|
| 853 |
dwt_rxenable(DWT_START_RX_IMMEDIATE); |
| 854 |
dwt_setrxtimeout((uint16_t)instance_data[instance].fwtoTimeAnc_sy); //restore the timeout for next RX enable
|
| 855 |
instance_data[instance].lateRX++; |
| 856 |
//led_off(LED_PC9);
|
| 857 |
} |
| 858 |
|
| 859 |
} |
| 860 |
|
| 861 |
/**
|
| 862 |
* @brief this function either re-enables the receiver (delayed or immediate) or transmits the response frame
|
| 863 |
*
|
| 864 |
* @param the sourceAddress is the address of the sender of the current received frame
|
| 865 |
* @param ancToAncTWR == 1 means that the anchor is ranging to another anchor, if == 0 then ranging to a tag
|
| 866 |
*
|
| 867 |
*/
|
| 868 |
#pragma GCC optimize ("O0") |
| 869 |
uint8_t anctxorrxreenable(uint16_t sourceAddress, int ancToAncTWR){
|
| 870 |
uint8_t type_pend = DWT_SIG_DW_IDLE; |
| 871 |
int sendResp = 0; |
| 872 |
int instance = 0; |
| 873 |
|
| 874 |
if(instance_data[instance].responseTO == 0) { //go back to RX without TO - ranging has finished. (wait for Final but no TO) |
| 875 |
dwt_setrxtimeout(0); //reconfigure the timeout |
| 876 |
dwt_setpreambledetecttimeout(0);
|
| 877 |
} |
| 878 |
|
| 879 |
if((ancToAncTWR & 1) == 1) { |
| 880 |
if(instance_data[instance].responseTO == 1) { //if one response left to receive (send a response now) |
| 881 |
sendResp = 1;
|
| 882 |
} |
| 883 |
//if A0 or A3 go back to RX as they do not send any responses when Anchor to Anchor ranging
|
| 884 |
if((instance_data[instance].gatewayAnchor)
|
| 885 |
|| (instance_data[instance].shortAdd_idx == 3)) { //if this is anchor ID 3 do not reply to anchor poll |
| 886 |
dwt_setrxtimeout(0);
|
| 887 |
dwt_rxenable(DWT_START_RX_IMMEDIATE); |
| 888 |
return DWT_SIG_RX_PENDING ;
|
| 889 |
} |
| 890 |
} |
| 891 |
|
| 892 |
//configure delayed reply time (this is incremented for each received frame) it is timed from Poll rx time
|
| 893 |
instance_data[instance].delayedReplyTime += (instance_data[instance].fixedReplyDelayAnc >> 8);
|
| 894 |
|
| 895 |
//this checks if to send a frame
|
| 896 |
if((((ancToAncTWR & 1) == 0) && ((instance_data[instance].responseTO + instance_data[instance].shortAdd_idx) == NUM_EXPECTED_RESPONSES)) //it's our turn to tx |
| 897 |
|| (sendResp == 1)) {
|
| 898 |
//led_on(LED_PC9);
|
| 899 |
//response is expected
|
| 900 |
instance_data[instance].wait4ack = DWT_RESPONSE_EXPECTED; //re has/will be re-enabled
|
| 901 |
|
| 902 |
dwt_setdelayedtrxtime(instance_data[instance].delayedReplyTime) ; |
| 903 |
if(dwt_starttx(DWT_START_TX_DELAYED | DWT_RESPONSE_EXPECTED)) {
|
| 904 |
//if TX has failed - we need to re-enable RX for the next response or final reception...
|
| 905 |
dwt_setrxaftertxdelay(0);
|
| 906 |
instance_data[instance].wait4ack = 0; //clear the flag as the TX has failed the TRX is off |
| 907 |
instance_data[instance].lateTX++; |
| 908 |
instance_data[instance].delayedReplyTime += 2*(instance_data[instance].fixedReplyDelayAnc >> 8); //to take into account W4R |
| 909 |
ancenablerx(); |
| 910 |
type_pend = DWT_SIG_RX_PENDING ; |
| 911 |
} |
| 912 |
else {
|
| 913 |
instance_data[instance].delayedReplyTime += (instance_data[instance].fixedReplyDelayAnc >> 8); //to take into account W4R |
| 914 |
type_pend = DWT_SIG_TX_PENDING ; // exit this interrupt and notify the application/instance that TX is in progress.
|
| 915 |
instance_data[instance].timeofTx = portGetTickCnt(); |
| 916 |
instance_data[instance].monitor = 1;
|
| 917 |
} |
| 918 |
//led_off(LED_PC9);
|
| 919 |
} |
| 920 |
else { //stay in receive |
| 921 |
if(sourceAddress == 0) { //we got here after RX error, as we don't need to TX, we just enable RX |
| 922 |
dwt_setrxtimeout(0);
|
| 923 |
dwt_rxenable(DWT_START_RX_IMMEDIATE); |
| 924 |
} |
| 925 |
else{
|
| 926 |
//led_on(LED_PC9);
|
| 927 |
ancenablerx(); |
| 928 |
//led_off(LED_PC9);
|
| 929 |
} |
| 930 |
|
| 931 |
type_pend = DWT_SIG_RX_PENDING ; |
| 932 |
} |
| 933 |
//if time to send a response
|
| 934 |
|
| 935 |
return type_pend;
|
| 936 |
} |
| 937 |
|
| 938 |
/**
|
| 939 |
* @brief this function handles frame error event, it will either signal TO or re-enable the receiver
|
| 940 |
*/
|
| 941 |
void handle_error_unknownframe(event_data_t dw_event){
|
| 942 |
int instance = 0; |
| 943 |
//re-enable the receiver (after error frames as we are not using auto re-enable
|
| 944 |
//for ranging application rx error frame is same as TO - as we are not going to get the expected frame
|
| 945 |
if(instance_data[instance].mode == ANCHOR){
|
| 946 |
//if we are participating in the ranging (i.e. Poll was received)
|
| 947 |
//and we get an rx error (in one of the responses)
|
| 948 |
//need to consider this as a timeout as we could be sending our response next and
|
| 949 |
//the applications needs to know to change the state
|
| 950 |
//
|
| 951 |
if(instance_data[instance].responseTO > 0){ |
| 952 |
instance_data[instance].responseTO--; |
| 953 |
|
| 954 |
//send a response or re-enable rx
|
| 955 |
dw_event.type_pend = anctxorrxreenable(0, 0); |
| 956 |
dw_event.type = 0;
|
| 957 |
dw_event.type_save = 0x40 | DWT_SIG_RX_TIMEOUT;
|
| 958 |
dw_event.rxLength = 0;
|
| 959 |
|
| 960 |
instance_putevent(dw_event, DWT_SIG_RX_TIMEOUT); |
| 961 |
} |
| 962 |
else{
|
| 963 |
dwt_setrxtimeout(0); //reconfigure the timeout |
| 964 |
dwt_rxenable(DWT_START_RX_IMMEDIATE) ; |
| 965 |
} |
| 966 |
} |
| 967 |
else if(instance_data[instance].mode == LISTENER){ |
| 968 |
dwt_rxenable(DWT_START_RX_IMMEDIATE) ; |
| 969 |
} |
| 970 |
else{
|
| 971 |
instance_data[instance].responseTO--; //got something (need to reduce timeout (for remaining responses))
|
| 972 |
|
| 973 |
dw_event.type_pend = tagrxreenable(0); //check if receiver will be re-enabled or it's time to send the final |
| 974 |
dw_event.type = 0;
|
| 975 |
dw_event.type_save = 0x40 | DWT_SIG_RX_TIMEOUT;
|
| 976 |
dw_event.rxLength = 0;
|
| 977 |
|
| 978 |
instance_putevent(dw_event, DWT_SIG_RX_TIMEOUT); |
| 979 |
} |
| 980 |
} |
| 981 |
|
| 982 |
|
| 983 |
/**
|
| 984 |
* @brief this function prepares and writes the anchor to anchor response frame into the TX buffer
|
| 985 |
* it is called after anchor receives a Poll from an anchor
|
| 986 |
*/
|
| 987 |
void ancprepareresponse2(uint16_t sourceAddress, uint8_t srcAddr_index, uint8_t fcode_index, uint8_t *frame){
|
| 988 |
uint16_t frameLength = 0;
|
| 989 |
uint8_t tof_idx = (sourceAddress) & 0x3 ;
|
| 990 |
int instance = 0; |
| 991 |
|
| 992 |
instance_data[instance].psduLength = frameLength = ANCH_RESPONSE_MSG_LEN + FRAME_CRTL_AND_ADDRESS_S + FRAME_CRC; |
| 993 |
//set the destination address (copy source as this is a reply)
|
| 994 |
memcpy(&instance_data[instance].msg_f.destAddr[0], &frame[srcAddr_index], ADDR_BYTE_SIZE_S); //remember who to send the reply to (set destination address) |
| 995 |
instance_data[instance].msg_f.sourceAddr[0] = instance_data[instance].eui64[0]; |
| 996 |
instance_data[instance].msg_f.sourceAddr[1] = instance_data[instance].eui64[1]; |
| 997 |
// Write calculated TOF into response message (get the previous ToF+range number from that anchor)
|
| 998 |
memcpy(&(instance_data[instance].msg_f.messageData[TOFR]), &instance_data[instance].tofAnc[tof_idx], 4);
|
| 999 |
instance_data[instance].msg_f.messageData[TOFRN] = instance_data[instance].rangeNumAAnc[tof_idx]; //get the previous range number
|
| 1000 |
|
| 1001 |
instance_data[instance].rangeNumAAnc[tof_idx] = 0; //clear the entry |
| 1002 |
instance_data[instance].rangeNumAnc = frame[POLL_RNUM + fcode_index] ; |
| 1003 |
instance_data[instance].msg_f.seqNum = instance_data[instance].frameSN++; |
| 1004 |
|
| 1005 |
//set the delayed rx on time (the final message will be sent after this delay)
|
| 1006 |
dwt_setrxaftertxdelay((uint32_t)instance_data[instance].ancRespRxDelay); //units are 1.0256us - wait for wait4respTIM before RX on (delay RX)
|
| 1007 |
|
| 1008 |
instance_data[instance].tagSleepCorrection = 0;
|
| 1009 |
instance_data[instance].msg_f.messageData[RES_TAG_SLP0] = 0 ;
|
| 1010 |
instance_data[instance].msg_f.messageData[RES_TAG_SLP1] = 0 ;
|
| 1011 |
|
| 1012 |
instance_data[instance].msg_f.messageData[FCODE] = RTLS_DEMO_MSG_ANCH_RESP2; //message function code (specifies if message is a poll, response or other...)
|
| 1013 |
|
| 1014 |
//write the TX data
|
| 1015 |
dwt_writetxfctrl(frameLength, 0, 1); |
| 1016 |
dwt_writetxdata(frameLength, (uint8_t *) &instance_data[instance].msg_f, 0) ; // write the frame data |
| 1017 |
|
| 1018 |
} |
| 1019 |
|
| 1020 |
/**
|
| 1021 |
* @brief this function prepares and writes the anchor to tag response frame into the TX buffer
|
| 1022 |
* it is called after anchor receives a Poll from a tag
|
| 1023 |
*/
|
| 1024 |
void ancprepareresponse(uint16_t sourceAddress, uint8_t srcAddr_index, uint8_t fcode_index, uint8_t *frame, uint32_t uTimeStamp){
|
| 1025 |
uint16_t frameLength = 0;
|
| 1026 |
uint8_t tof_idx = (sourceAddress) & 0x7 ;
|
| 1027 |
int instance = 0; |
| 1028 |
|
| 1029 |
instance_data[instance].psduLength = frameLength = ANCH_RESPONSE_MSG_LEN + FRAME_CRTL_AND_ADDRESS_S + FRAME_CRC; |
| 1030 |
memcpy(&instance_data[instance].msg_f.destAddr[0], &frame[srcAddr_index], ADDR_BYTE_SIZE_S); //remember who to send the reply to (set destination address) |
| 1031 |
instance_data[instance].msg_f.sourceAddr[0] = instance_data[instance].eui64[0]; |
| 1032 |
instance_data[instance].msg_f.sourceAddr[1] = instance_data[instance].eui64[1]; |
| 1033 |
// Write calculated TOF into response message (get the previous ToF+range number from that tag)
|
| 1034 |
memcpy(&(instance_data[instance].msg_f.messageData[TOFR]), &instance_data[instance].tof[tof_idx], 4);
|
| 1035 |
instance_data[instance].msg_f.messageData[TOFRN] = instance_data[instance].rangeNumA[tof_idx]; //get the previous range number
|
| 1036 |
|
| 1037 |
instance_data[instance].rangeNumA[tof_idx] = 0; //clear after copy above... |
| 1038 |
instance_data[instance].rangeNum = frame[POLL_RNUM+fcode_index] ; |
| 1039 |
instance_data[instance].msg_f.seqNum = instance_data[instance].frameSN++; |
| 1040 |
|
| 1041 |
//we have our range - update the own mask entry...
|
| 1042 |
if(instance_data[instance].tof[tof_idx] != INVALID_TOF) { //check the last ToF entry is valid and copy into the current array |
| 1043 |
instance_data[instance].rxResponseMask = (uint8_t)(0x1 << instance_data[instance].shortAdd_idx);
|
| 1044 |
instance_data[instance].tofArray[instance_data[instance].shortAdd_idx] = instance_data[instance].tof[tof_idx]; |
| 1045 |
} |
| 1046 |
else { //reset response mask |
| 1047 |
instance_data[instance].tofArray[instance_data[instance].shortAdd_idx] = INVALID_TOF ; |
| 1048 |
instance_data[instance].rxResponseMask = 0; //reset the mask of received responses when rx poll |
| 1049 |
} |
| 1050 |
//set the delayed rx on time (the final message will be sent after this delay)
|
| 1051 |
dwt_setrxaftertxdelay((uint32_t)instance_data[instance].ancRespRxDelay); //units are 1.0256us - wait for wait4respTIM before RX on (delay RX)
|
| 1052 |
|
| 1053 |
//if this is gateway anchor - calculate the slot period correction
|
| 1054 |
if(instance_data[instance].gatewayAnchor) {
|
| 1055 |
int error = 0; |
| 1056 |
int currentSlotTime = 0; |
| 1057 |
int expectedSlotTime = 0; |
| 1058 |
//find the time in the current superframe
|
| 1059 |
currentSlotTime = uTimeStamp % instance_data[instance].sframePeriod; |
| 1060 |
|
| 1061 |
//this is the slot time the poll should be received in (Mask 0x07 for the 8 MAX tags we support in TREK)
|
| 1062 |
expectedSlotTime = (sourceAddress&0xFF) * instance_data[instance].slotPeriod; // |
| 1063 |
|
| 1064 |
//error = expectedSlotTime - currentSlotTime
|
| 1065 |
error = expectedSlotTime - currentSlotTime; |
| 1066 |
|
| 1067 |
if(error < (-(instance_data[instance].sframePeriod>>1))) { //if error is more negative than 0.5 period, add whole period to give up to 1.5 period sleep |
| 1068 |
instance_data[instance].tagSleepCorrection = (instance_data[instance].sframePeriod + error); |
| 1069 |
} |
| 1070 |
else { //the minimum Sleep time will be 0.5 period |
| 1071 |
instance_data[instance].tagSleepCorrection = error; |
| 1072 |
} |
| 1073 |
instance_data[instance].msg_f.messageData[RES_TAG_SLP0] = instance_data[instance].tagSleepCorrection & 0xFF ;
|
| 1074 |
instance_data[instance].msg_f.messageData[RES_TAG_SLP1] = (instance_data[instance].tagSleepCorrection >> 8) & 0xFF; |
| 1075 |
} |
| 1076 |
else {
|
| 1077 |
instance_data[instance].tagSleepCorrection = 0;
|
| 1078 |
instance_data[instance].msg_f.messageData[RES_TAG_SLP0] = 0 ;
|
| 1079 |
instance_data[instance].msg_f.messageData[RES_TAG_SLP1] = 0 ;
|
| 1080 |
} |
| 1081 |
instance_data[instance].msg_f.messageData[FCODE] = RTLS_DEMO_MSG_ANCH_RESP; //message function code (specifies if message is a poll, response or other...)
|
| 1082 |
|
| 1083 |
//write the TX data
|
| 1084 |
dwt_writetxfctrl(frameLength, 0, 1); |
| 1085 |
dwt_writetxdata(frameLength, (uint8_t *) &instance_data[instance].msg_f, 0) ; // write the frame data |
| 1086 |
} |
| 1087 |
|
| 1088 |
/**
|
| 1089 |
* @brief this is the receive event callback handler, the received event is processed and the instance either
|
| 1090 |
* responds by sending a response frame or re-enables the receiver to await the next frame
|
| 1091 |
* once the immediate action is taken care of the event is queued up for application to process
|
| 1092 |
*/
|
| 1093 |
#pragma GCC optimize ("O3") |
| 1094 |
void instance_rxcallback(const dwt_cb_data_t *rxd){ |
| 1095 |
int instance = 0; |
| 1096 |
uint8_t rxTimeStamp[5] = {0, 0, 0, 0, 0}; |
| 1097 |
|
| 1098 |
uint8_t rxd_event = 0;
|
| 1099 |
uint8_t fcode_index = 0;
|
| 1100 |
uint8_t srcAddr_index = 0;
|
| 1101 |
event_data_t dw_event; |
| 1102 |
|
| 1103 |
//microcontroller time at which we received the frame
|
| 1104 |
dw_event.uTimeStamp = portGetTickCnt(); |
| 1105 |
|
| 1106 |
//if we got a frame with a good CRC - RX OK
|
| 1107 |
// if(rxd->event == DWT_SIG_RX_OKAY) { // Timeout and error are handle separately in the driver itself
|
| 1108 |
dw_event.rxLength = rxd->datalength; |
| 1109 |
|
| 1110 |
//need to process the frame control bytes to figure out what type of frame we have received
|
| 1111 |
if(((rxd->fctrl[0] == 0x41) || (rxd->fctrl[0] == 0x61)) |
| 1112 |
&& |
| 1113 |
((rxd->fctrl[1] & 0xCC) == 0x88)) { //short address |
| 1114 |
fcode_index = FRAME_CRTL_AND_ADDRESS_S; //function code is in first byte after source address
|
| 1115 |
srcAddr_index = FRAME_CTRLP + ADDR_BYTE_SIZE_S; |
| 1116 |
rxd_event = DWT_SIG_RX_OKAY; |
| 1117 |
} |
| 1118 |
else {
|
| 1119 |
rxd_event = SIG_RX_UNKNOWN; //not supported - all TREK1000 frames are short addressed
|
| 1120 |
} |
| 1121 |
|
| 1122 |
//read RX timestamp
|
| 1123 |
dwt_readrxtimestamp(rxTimeStamp) ; |
| 1124 |
dwt_readrxdata((uint8_t *)&dw_event.msgu.frame[0], rxd->datalength, 0); // Read Data Frame |
| 1125 |
dw_event.timeStamp32l = (uint32_t)rxTimeStamp[0] + ((uint32_t)rxTimeStamp[1] << 8) + ((uint32_t)rxTimeStamp[2] << 16) + ((uint32_t)rxTimeStamp[3] << 24); |
| 1126 |
dw_event.timeStamp = rxTimeStamp[4];
|
| 1127 |
dw_event.timeStamp <<= 32;
|
| 1128 |
dw_event.timeStamp += dw_event.timeStamp32l; |
| 1129 |
dw_event.timeStamp32h = ((uint32_t)rxTimeStamp[4] << 24) + (dw_event.timeStamp32l >> 8); |
| 1130 |
|
| 1131 |
dw_event.type = 0; //type will be added as part of adding to event queue |
| 1132 |
dw_event.type_save = rxd_event; |
| 1133 |
dw_event.type_pend = DWT_SIG_DW_IDLE; |
| 1134 |
|
| 1135 |
//if Listener then just report the received frame to the instance (application)
|
| 1136 |
if(rxd_event == DWT_SIG_RX_OKAY) { //Process good/known frame types |
| 1137 |
uint16_t sourceAddress = (uint16_t)(((uint16_t)dw_event.msgu.frame[srcAddr_index+1]) << 8) + (uint16_t)(dw_event.msgu.frame[srcAddr_index]); |
| 1138 |
|
| 1139 |
if(instance_data[instance].mode != LISTENER) {
|
| 1140 |
if(instance_data[instance].mode == TAG) //if tag got a good frame - this is probably a response, but could also be some other non-ranging frame |
| 1141 |
//(although due to frame filtering this is limited as non-addressed frames are filtered out)
|
| 1142 |
{
|
| 1143 |
instance_data[instance].responseTO--; //got 1 more response or other RX frame - need to reduce timeout (for next response)
|
| 1144 |
} |
| 1145 |
|
| 1146 |
//check if this is a TWR message (and also which one)
|
| 1147 |
switch(dw_event.msgu.frame[fcode_index]){
|
| 1148 |
//poll message from an anchor
|
| 1149 |
case RTLS_DEMO_MSG_ANCH_POLL:{
|
| 1150 |
//the anchor to anchor ranging poll frames are ignored by A0 and A3
|
| 1151 |
if(instance_data[instance].gatewayAnchor || (instance_data[instance].instanceAddress16 > A2_ANCHOR_ADDR)){
|
| 1152 |
//ignore poll from anchor 1 if gateway or anchor 3
|
| 1153 |
//anchors 2 and 3 will never send polls
|
| 1154 |
dw_event.type_pend = DWT_SIG_DW_IDLE ; |
| 1155 |
break;
|
| 1156 |
} |
| 1157 |
|
| 1158 |
if(instance_data[instance].mode == TAG) { //tag should ignore any other Polls from anchors |
| 1159 |
instance_data[instance].responseTO++; //as will be decremented in the function and was also decremented above
|
| 1160 |
handle_error_unknownframe(dw_event); |
| 1161 |
instance_data[instance].stopTimer = 1;
|
| 1162 |
instance_data[instance].rxMsgCount++; |
| 1163 |
return;
|
| 1164 |
} |
| 1165 |
|
| 1166 |
//update the response index and number of responses received tables
|
| 1167 |
instance_data[instance].rxRespsIdx = (uint8_t) ((dw_event.msgu.frame[POLL_RNUM+fcode_index] & 0xf)
|
| 1168 |
+ (((sourceAddress&0x3) + 8) << 4)); |
| 1169 |
instance_data[instance].rxResps[instance_data[instance].rxRespsIdx] = 0;
|
| 1170 |
//debug LED on
|
| 1171 |
// led_on(LED_PC9);
|
| 1172 |
|
| 1173 |
//prepare the response and write it to the tx buffer
|
| 1174 |
ancprepareresponse2(sourceAddress, srcAddr_index, fcode_index, &dw_event.msgu.frame[0]);
|
| 1175 |
|
| 1176 |
//A2 does not need timeout if ranging to A1
|
| 1177 |
if(sourceAddress != A1_ANCHOR_ADDR){
|
| 1178 |
dwt_setrxtimeout((uint16_t)instance_data[instance].fwtoTimeAnc_sy); //reconfigure the timeout for response
|
| 1179 |
} |
| 1180 |
|
| 1181 |
//set the bast reply time (the actual will be Poll rx time + instance_data[0].fixedReplyDelayAnc)
|
| 1182 |
instance_data[instance].delayedReplyTime = dw_event.timeStamp32h ; |
| 1183 |
instance_data[instance].responseTO = (instance_data[instance].instanceAddress16 - sourceAddress) & 0x3; //set number of expected responses |
| 1184 |
|
| 1185 |
dw_event.type_pend = anctxorrxreenable(instance_data[instance].instanceAddress16, 2+1); |
| 1186 |
|
| 1187 |
instance_data[instance].tofAnc[sourceAddress & 0x3] = INVALID_TOF; //clear ToF .. |
| 1188 |
//debug LED off
|
| 1189 |
// led_off(LED_PC9);
|
| 1190 |
break;
|
| 1191 |
} |
| 1192 |
|
| 1193 |
case RTLS_DEMO_MSG_TAG_POLL:{
|
| 1194 |
if(instance_data[instance].mode == TAG) { //tag should ignore any other Polls from tags |
| 1195 |
instance_data[instance].responseTO++; //as will be decremented in the function and was also decremented above
|
| 1196 |
handle_error_unknownframe(dw_event); |
| 1197 |
instance_data[instance].stopTimer = 1;
|
| 1198 |
instance_data[instance].rxMsgCount++; |
| 1199 |
return;
|
| 1200 |
} |
| 1201 |
instance_data[instance].rxRespsIdx = (uint8_t) ((dw_event.msgu.frame[POLL_RNUM+fcode_index] & 0xf)
|
| 1202 |
+ ((sourceAddress&0x7) << 4)); |
| 1203 |
instance_data[instance].rxResps[instance_data[instance].rxRespsIdx] = 0;
|
| 1204 |
|
| 1205 |
//prepare the response and write it to the tx buffer
|
| 1206 |
ancprepareresponse(sourceAddress, srcAddr_index, fcode_index, &dw_event.msgu.frame[0], dw_event.uTimeStamp);
|
| 1207 |
|
| 1208 |
dwt_setrxtimeout((uint16_t)instance_data[instance].fwtoTimeAnc_sy); //reconfigure the timeout for response
|
| 1209 |
|
| 1210 |
instance_data[0].delayedReplyTime = dw_event.timeStamp32h /*+ (instance_data[0].fixedReplyDelayAnc >> 8)*/ ; |
| 1211 |
instance_data[instance].responseTO = NUM_EXPECTED_RESPONSES; //set number of expected responses to 3 (from other anchors)
|
| 1212 |
|
| 1213 |
dw_event.type_pend = anctxorrxreenable(instance_data[instance].instanceAddress16, 2+0); |
| 1214 |
|
| 1215 |
instance_data[instance].tof[sourceAddress & 0x7] = INVALID_TOF; //clear ToF .. |
| 1216 |
} |
| 1217 |
break;
|
| 1218 |
|
| 1219 |
//we got a response from a "responder" (anchor)
|
| 1220 |
case RTLS_DEMO_MSG_ANCH_RESP:
|
| 1221 |
case RTLS_DEMO_MSG_ANCH_RESP2:{
|
| 1222 |
|
| 1223 |
//we are a tag
|
| 1224 |
if(instance_data[instance].mode == TAG){
|
| 1225 |
uint8_t index ; |
| 1226 |
instance_data[instance].rxResps[instance_data[instance].rangeNum]++; |
| 1227 |
dw_event.type_pend = tagrxreenable(sourceAddress); //responseTO decremented above...
|
| 1228 |
index = RRXT0 + 5*(sourceAddress & 0x3); |
| 1229 |
|
| 1230 |
instance_data[instance].rxResponseMask |= (0x1 << (sourceAddress & 0x3)); //add anchor ID to the mask |
| 1231 |
// Write Response RX time field of Final message
|
| 1232 |
memcpy(&(instance_data[instance].msg_f.messageData[index]), rxTimeStamp, 5);
|
| 1233 |
|
| 1234 |
} |
| 1235 |
else if (instance_data[instance].mode == ANCHOR_RNG) { //A0 and A1 only when ranging to other anchors |
| 1236 |
uint8_t index ; |
| 1237 |
instance_data[instance].rxResps[instance_data[instance].rangeNumAnc]++; |
| 1238 |
dw_event.type_pend = ancsendfinalorrxreenable(sourceAddress); |
| 1239 |
index = RRXT0 + 5*(sourceAddress & 0x3); |
| 1240 |
|
| 1241 |
instance_data[instance].rxResponseMaskAnc |= (0x1 << (sourceAddress & 0x3)); //add anchor ID to the mask |
| 1242 |
// Write Response RX time field of Final message
|
| 1243 |
memcpy(&(instance_data[instance].msg_f.messageData[index]), rxTimeStamp, 5);
|
| 1244 |
} |
| 1245 |
else { //normal anchor mode |
| 1246 |
//got a response... (check if we got a Poll with the same range number as in this response)
|
| 1247 |
if(RTLS_DEMO_MSG_ANCH_RESP == dw_event.msgu.frame[fcode_index]){
|
| 1248 |
if((instance_data[instance].rxResps[instance_data[instance].rxRespsIdx] >= 0) //we got the poll else ignore this response |
| 1249 |
&& (instance_data[instance].responseTO > 0) ) { //if responseTO == 0 we have already received all of the responses - meaning should not be here => error |
| 1250 |
instance_data[instance].rxResps[instance_data[instance].rxRespsIdx]++; //increment the number of responses received
|
| 1251 |
instance_data[instance].responseTO--; |
| 1252 |
|
| 1253 |
//send a response or re-enable rx
|
| 1254 |
dw_event.type_pend = anctxorrxreenable(sourceAddress, 4+0); |
| 1255 |
} |
| 1256 |
else { //like a timeout (error) ... |
| 1257 |
|
| 1258 |
//send a response or re-enable rx
|
| 1259 |
dwt_setrxtimeout(0); //reconfigure the timeout |
| 1260 |
dwt_rxenable(DWT_START_RX_IMMEDIATE) ; |
| 1261 |
dw_event.type_pend = DWT_SIG_RX_PENDING ; |
| 1262 |
} |
| 1263 |
} |
| 1264 |
else { //in anchor mode and got RTLS_DEMO_MSG_ANCH_RESP2 |
| 1265 |
if((instance_data[instance].gatewayAnchor) &&
|
| 1266 |
(instance_data[instance].rxResps[instance_data[instance].rangeNumAnc]) == 2){ //got two responses A1 and A2 this is third (A2's to A1) |
| 1267 |
instance_data[instance].rxResps[instance_data[instance].rangeNumAnc]++; |
| 1268 |
instance_data[instance].rxResponseMaskAnc |= 0x8 ;
|
| 1269 |
|
| 1270 |
dw_event.type_pend = anctxorrxreenable(sourceAddress, 4+1); //re-enable the RX |
| 1271 |
} |
| 1272 |
//A2 got A1's response to A0 - send A2 response (but only if we got the Poll from A0)
|
| 1273 |
else if((instance_data[instance].instanceAddress16 == A2_ANCHOR_ADDR) && |
| 1274 |
(instance_data[instance].rxResps[instance_data[instance].rxRespsIdx] >= 0) ){
|
| 1275 |
instance_data[instance].rxResps[instance_data[instance].rxRespsIdx]++; |
| 1276 |
instance_data[instance].responseTO--; |
| 1277 |
|
| 1278 |
dwt_setrxtimeout(0);
|
| 1279 |
dwt_setrxaftertxdelay(0); //clear rx on delay as Final will come sooner than if we were waiting for next Response |
| 1280 |
dw_event.type_pend = anctxorrxreenable(sourceAddress, 1);
|
| 1281 |
} |
| 1282 |
else { // if other anchor A1, A2, A3 .. ignore these responses when in ANCHOR mode |
| 1283 |
dwt_setrxtimeout(0); //reconfigure the timeout |
| 1284 |
dwt_rxenable(DWT_START_RX_IMMEDIATE) ; |
| 1285 |
dw_event.type_pend = DWT_SIG_RX_PENDING ; |
| 1286 |
} |
| 1287 |
} |
| 1288 |
} |
| 1289 |
|
| 1290 |
} |
| 1291 |
break;
|
| 1292 |
|
| 1293 |
case RTLS_DEMO_MSG_TAG_FINAL:
|
| 1294 |
case RTLS_DEMO_MSG_ANCH_FINAL:
|
| 1295 |
if(instance_data[instance].mode == TAG) { //tag should ignore any other Final from anchors |
| 1296 |
instance_data[instance].responseTO++; //as will be decremented in the function and was also decremented above
|
| 1297 |
handle_error_unknownframe(dw_event); |
| 1298 |
instance_data[instance].stopTimer = 1;
|
| 1299 |
instance_data[instance].rxMsgCount++; |
| 1300 |
return;
|
| 1301 |
} |
| 1302 |
break;
|
| 1303 |
// __attribute__ ((fallthrough));
|
| 1304 |
|
| 1305 |
//if anchor fall into case below and process the frame
|
| 1306 |
default: { //process rx frame |
| 1307 |
dw_event.type_pend = DWT_SIG_DW_IDLE; |
| 1308 |
} |
| 1309 |
break;
|
| 1310 |
|
| 1311 |
} |
| 1312 |
}//end of if not Listener mode
|
| 1313 |
instance_data[instance].stopTimer = 1;
|
| 1314 |
|
| 1315 |
instance_putevent(dw_event, rxd_event); |
| 1316 |
|
| 1317 |
instance_data[instance].rxMsgCount++; |
| 1318 |
} |
| 1319 |
else { //if (rxd_event == SIG_RX_UNKNOWN) //need to re-enable the rx (got unknown frame type) |
| 1320 |
handle_error_unknownframe(dw_event); |
| 1321 |
} |
| 1322 |
// }
|
| 1323 |
} |
| 1324 |
|
| 1325 |
|
| 1326 |
/*! Callback funtion for RX timeout (available from newer driver version) */
|
| 1327 |
#pragma GCC optimize ("O3") |
| 1328 |
void instance_rxtimeoutcallback(const dwt_cb_data_t *rxd){ |
| 1329 |
|
| 1330 |
(void) rxd;
|
| 1331 |
event_data_t dw_event; |
| 1332 |
|
| 1333 |
int instance = 0; |
| 1334 |
|
| 1335 |
dw_event.type_pend = DWT_SIG_DW_IDLE; |
| 1336 |
|
| 1337 |
if(instance_data[instance].mode == ANCHOR) {
|
| 1338 |
//check if anchor has received all of the responses from other anchors (it could have received only 1 or 2)
|
| 1339 |
//it's timed out (re-enable rx or tx response)
|
| 1340 |
if(instance_data[instance].responseTO > 0) { |
| 1341 |
instance_data[instance].responseTO--; |
| 1342 |
//send a response or re-enable rx
|
| 1343 |
dw_event.type_pend = anctxorrxreenable(instance_data[instance].instanceAddress16, 6+0); |
| 1344 |
// Print_On_Uart("Re-enable RX in rxtimeout callback\r\n");
|
| 1345 |
} |
| 1346 |
} |
| 1347 |
dw_event.type = 0;
|
| 1348 |
dw_event.type_save = DWT_SIG_RX_TIMEOUT; |
| 1349 |
dw_event.rxLength = 0;
|
| 1350 |
dw_event.timeStamp = 0;
|
| 1351 |
dw_event.timeStamp32l = 0;
|
| 1352 |
dw_event.timeStamp32h = 0;
|
| 1353 |
|
| 1354 |
instance_putevent(dw_event, DWT_SIG_RX_TIMEOUT); |
| 1355 |
// printf("RX timeout while in %d\n", instance_data[instance].testAppState);
|
| 1356 |
|
| 1357 |
} |
| 1358 |
|
| 1359 |
|
| 1360 |
/*! Callback funtion for RX error (available from newer driver version) */
|
| 1361 |
#pragma GCC optimize ("O3") |
| 1362 |
void instance_rxerrorcallback(const dwt_cb_data_t *rxd) { |
| 1363 |
|
| 1364 |
(void) rxd;
|
| 1365 |
event_data_t dw_event; |
| 1366 |
|
| 1367 |
dw_event.uTimeStamp = portGetTickCnt(); |
| 1368 |
|
| 1369 |
handle_error_unknownframe(dw_event); |
| 1370 |
} |
| 1371 |
|
| 1372 |
|
| 1373 |
|
| 1374 |
#pragma GCC optimize ("O3") |
| 1375 |
int instance_peekevent(void){ |
| 1376 |
int instance = 0; |
| 1377 |
return instance_data[instance].dwevent[instance_data[instance].dweventPeek].type; //return the type of event that is in front of the queue |
| 1378 |
} |
| 1379 |
|
| 1380 |
#pragma GCC optimize ("O3") |
| 1381 |
void instance_saveevent(event_data_t newevent, uint8_t etype){
|
| 1382 |
int instance = 0; |
| 1383 |
|
| 1384 |
instance_data[instance].saved_dwevent = newevent; |
| 1385 |
instance_data[instance].saved_dwevent.type = etype; |
| 1386 |
} |
| 1387 |
|
| 1388 |
#pragma GCC optimize ("O3") |
| 1389 |
event_data_t instance_getsavedevent(void){
|
| 1390 |
int instance = 0; |
| 1391 |
|
| 1392 |
return instance_data[instance].saved_dwevent;
|
| 1393 |
} |
| 1394 |
|
| 1395 |
#pragma GCC optimize ("O3") |
| 1396 |
void instance_putevent(event_data_t newevent, uint8_t etype){
|
| 1397 |
int instance = 0; |
| 1398 |
//newevent.eventtime = portGetTickCnt();
|
| 1399 |
newevent.gotit = 0 ; //newevent.eventtimeclr = 0; |
| 1400 |
|
| 1401 |
//copy event
|
| 1402 |
instance_data[instance].dwevent[instance_data[instance].dweventIdxIn] = newevent; |
| 1403 |
|
| 1404 |
//set type - this makes it a new event (making sure the event data is copied before event is set as new)
|
| 1405 |
//to make sure that the get event function does not get an incomplete event
|
| 1406 |
instance_data[instance].dwevent[instance_data[instance].dweventIdxIn].type = etype; |
| 1407 |
|
| 1408 |
instance_data[instance].dweventIdxIn++; |
| 1409 |
|
| 1410 |
if(MAX_EVENT_NUMBER == instance_data[instance].dweventIdxIn)
|
| 1411 |
{
|
| 1412 |
instance_data[instance].dweventIdxIn = 0;
|
| 1413 |
} |
| 1414 |
//eventIncount++;
|
| 1415 |
|
| 1416 |
//printf("put %d - in %d out %d @ %d\n", newevent.type, instance_data[instance].dweventCntIn, instance_data[instance].dweventCntOut, ptime);
|
| 1417 |
} |
| 1418 |
|
| 1419 |
event_data_t dw_event_g; |
| 1420 |
|
| 1421 |
#pragma GCC optimize ("O3") |
| 1422 |
event_data_t* instance_getevent(int x){
|
| 1423 |
int instance = 0; |
| 1424 |
int indexOut = instance_data[instance].dweventIdxOut;
|
| 1425 |
|
| 1426 |
//dw_event_g = instance_data[instance].dwevent[instance_data[instance].dweventCntOut]; //this holds any TX/RX events
|
| 1427 |
|
| 1428 |
//memcpy(&dw_event_g, &instance_data[instance].dwevent[instance_data[instance].dweventCntOut], sizeof(event_data_t));
|
| 1429 |
|
| 1430 |
if(instance_data[instance].dwevent[indexOut].type == 0) { //exit with "no event" |
| 1431 |
dw_event_g.type = 0;
|
| 1432 |
dw_event_g.type_save = 0;
|
| 1433 |
return &dw_event_g;
|
| 1434 |
} |
| 1435 |
|
| 1436 |
//copy the event
|
| 1437 |
dw_event_g.type_save = instance_data[instance].dwevent[indexOut].type_save ; |
| 1438 |
dw_event_g.type_pend = instance_data[instance].dwevent[indexOut].type_pend ; |
| 1439 |
dw_event_g.rxLength = instance_data[instance].dwevent[indexOut].rxLength ; |
| 1440 |
dw_event_g.timeStamp = instance_data[instance].dwevent[indexOut].timeStamp ; |
| 1441 |
dw_event_g.timeStamp32l = instance_data[instance].dwevent[indexOut].timeStamp32l ; |
| 1442 |
dw_event_g.timeStamp32h = instance_data[instance].dwevent[indexOut].timeStamp32h ; |
| 1443 |
dw_event_g.uTimeStamp = instance_data[instance].dwevent[indexOut].uTimeStamp ; |
| 1444 |
//dw_event_g.eventtime = instance_data[instance].dwevent[indexOut].eventtime ;
|
| 1445 |
//dw_event_g.eventtimeclr = instance_data[instance].dwevent[indexOut].eventtimeclr ;
|
| 1446 |
//dw_event_g.gotit = instance_data[instance].dwevent[indexOut].gotit ;
|
| 1447 |
|
| 1448 |
memcpy(&dw_event_g.msgu, &instance_data[instance].dwevent[indexOut].msgu, sizeof(instance_data[instance].dwevent[indexOut].msgu));
|
| 1449 |
|
| 1450 |
dw_event_g.type = instance_data[instance].dwevent[indexOut].type ; |
| 1451 |
|
| 1452 |
|
| 1453 |
instance_data[instance].dwevent[indexOut].gotit = (uint8_t)x; |
| 1454 |
|
| 1455 |
//instance_data[instance].dwevent[indexOut].eventtimeclr = portGetTickCnt();
|
| 1456 |
|
| 1457 |
instance_data[instance].dwevent[indexOut].type = 0; //clear the event |
| 1458 |
|
| 1459 |
instance_data[instance].dweventIdxOut++; |
| 1460 |
if(MAX_EVENT_NUMBER == instance_data[instance].dweventIdxOut){ //wrap the counter |
| 1461 |
instance_data[instance].dweventIdxOut = 0;
|
| 1462 |
} |
| 1463 |
instance_data[instance].dweventPeek = instance_data[instance].dweventIdxOut; //set the new peek value
|
| 1464 |
|
| 1465 |
//if(dw_event.type) printf("get %d - in %d out %d @ %d\n", dw_event.type, instance_data[instance].dweventCntIn, instance_data[instance].dweventCntOut, ptime);
|
| 1466 |
|
| 1467 |
//eventOutcount++;
|
| 1468 |
|
| 1469 |
|
| 1470 |
return &dw_event_g;
|
| 1471 |
} |
| 1472 |
|
| 1473 |
void instance_clearevents(void){ |
| 1474 |
int i = 0; |
| 1475 |
int instance = 0; |
| 1476 |
|
| 1477 |
for(i=0; i<MAX_EVENT_NUMBER; i++) { |
| 1478 |
memset(&instance_data[instance].dwevent[i], 0, sizeof(event_data_t)); |
| 1479 |
} |
| 1480 |
|
| 1481 |
instance_data[instance].dweventIdxIn = 0;
|
| 1482 |
instance_data[instance].dweventIdxOut = 0;
|
| 1483 |
instance_data[instance].dweventPeek = 0;
|
| 1484 |
|
| 1485 |
//eventOutcount = 0;
|
| 1486 |
//eventIncount = 0;
|
| 1487 |
} |
| 1488 |
|
| 1489 |
// -------------------------------------------------------------------------------------------------------------------
|
| 1490 |
#pragma GCC optimize ("O3") |
| 1491 |
int instance_run(void){ |
| 1492 |
int instance = 0 ; |
| 1493 |
int done = INST_NOT_DONE_YET;
|
| 1494 |
int message = instance_peekevent(); //get any of the received events from ISR |
| 1495 |
|
| 1496 |
|
| 1497 |
while(done == INST_NOT_DONE_YET){
|
| 1498 |
//int state = instance_data[instance].testAppState;
|
| 1499 |
done = testapprun(&instance_data[instance], message) ; // run the communications application
|
| 1500 |
|
| 1501 |
//we've processed message
|
| 1502 |
message = 0;
|
| 1503 |
} |
| 1504 |
|
| 1505 |
if(done == INST_DONE_WAIT_FOR_NEXT_EVENT_TO) { //we are in RX and need to timeout (Tag needs to send another poll if no Rx frame) |
| 1506 |
if(instance_data[instance].mode == TAG) { //Tag (is either in RX or sleeping) |
| 1507 |
int32_t nextPeriod ; |
| 1508 |
|
| 1509 |
// next period will be a positive number because correction is -0.5 to +1.5 periods, (and tagSleepTime_ms is the period)
|
| 1510 |
nextPeriod = instance_data[instance].tagSleepRnd + instance_data[instance].tagSleepTime_ms + instance_data[instance].tagSleepCorrection; |
| 1511 |
|
| 1512 |
instance_data[instance].nextSleepPeriod = (uint32_t) nextPeriod ; //set timeout time, CAST the positive period to UINT for correct wrapping.
|
| 1513 |
instance_data[instance].tagSleepCorrection2 = instance_data[instance].tagSleepCorrection; |
| 1514 |
instance_data[instance].tagSleepCorrection = 0; //clear the correction |
| 1515 |
instance_data[instance].instanceTimerEn = 1; //start timer |
| 1516 |
} |
| 1517 |
instance_data[instance].stopTimer = 0 ; //clear the flag - timer can run if instancetimer_en set (set above) |
| 1518 |
instance_data[instance].done = INST_NOT_DONE_YET; |
| 1519 |
} |
| 1520 |
|
| 1521 |
//check if timer has expired
|
| 1522 |
if((instance_data[instance].instanceTimerEn == 1) && (instance_data[instance].stopTimer == 0)) { |
| 1523 |
if(instance_data[instance].mode == TAG) {
|
| 1524 |
if((portGetTickCnt() - instance_data[instance].instanceWakeTime) > instance_data[instance].nextSleepPeriod) {
|
| 1525 |
event_data_t dw_event; |
| 1526 |
instance_data[instance].instanceTimerEn = 0;
|
| 1527 |
dw_event.rxLength = 0;
|
| 1528 |
dw_event.type = 0;
|
| 1529 |
dw_event.type_save = 0x80 | DWT_SIG_RX_TIMEOUT;
|
| 1530 |
//printf("PC timeout DWT_SIG_RX_TIMEOUT\n");
|
| 1531 |
instance_putevent(dw_event, DWT_SIG_RX_TIMEOUT); |
| 1532 |
} |
| 1533 |
} |
| 1534 |
#if (ANCTOANCTWR == 1) //allow anchor to anchor ranging |
| 1535 |
else if(instance_data[instance].mode == ANCHOR) { |
| 1536 |
uint32_t slotTime = portGetTickCnt() % instance_data[instance].sframePeriod; |
| 1537 |
|
| 1538 |
if(instance_data[instance].gatewayAnchor) {
|
| 1539 |
//if we are in the last slot - then A0 ranges to A1 and A2
|
| 1540 |
if( slotTime >= instance_data[instance].a0SlotTime) {
|
| 1541 |
port_DisableEXT_IRQ(); //enable ScenSor IRQ before starting
|
| 1542 |
//anchor0 sends poll to anchor1
|
| 1543 |
instance_data[instance].mode = ANCHOR_RNG; //change to ranging initiator
|
| 1544 |
dwt_forcetrxoff(); //disable DW1000
|
| 1545 |
instance_clearevents(); //clear any events
|
| 1546 |
//change state to send a Poll
|
| 1547 |
instance_data[instance].testAppState = TA_TXPOLL_WAIT_SEND ; |
| 1548 |
instance_data[instance].msg_f.destAddr[0] = 0x1 ; |
| 1549 |
instance_data[instance].msg_f.destAddr[1] = (GATEWAY_ANCHOR_ADDR >> 8); |
| 1550 |
instance_data[instance].instanceTimerEn = 0;
|
| 1551 |
instance_data[instance].rangeNumAnc++; |
| 1552 |
port_EnableEXT_IRQ(); //enable ScenSor IRQ before starting
|
| 1553 |
} |
| 1554 |
} |
| 1555 |
else if (instance_data[instance].instanceAddress16 == A1_ANCHOR_ADDR) { //A1 ranges to A2 in the 2nd half of last slot |
| 1556 |
if(portGetTickCnt() >= instance_data[instance].a1SlotTime) {
|
| 1557 |
port_DisableEXT_IRQ(); //enable ScenSor IRQ before starting
|
| 1558 |
//anchor1 sends poll to anchor2
|
| 1559 |
instance_data[instance].mode = ANCHOR_RNG; //change to ranging initiator
|
| 1560 |
dwt_forcetrxoff(); //disable DW1000
|
| 1561 |
instance_clearevents(); //clear any events
|
| 1562 |
//change state to send a Poll
|
| 1563 |
instance_data[instance].testAppState = TA_TXPOLL_WAIT_SEND ; |
| 1564 |
instance_data[instance].msg_f.destAddr[0] = 0x2 ; |
| 1565 |
instance_data[instance].msg_f.destAddr[1] = (GATEWAY_ANCHOR_ADDR >> 8); |
| 1566 |
|
| 1567 |
instance_data[instance].instanceTimerEn = 0;
|
| 1568 |
//instance_data[instance].a1SlotTime = 0;
|
| 1569 |
port_EnableEXT_IRQ(); //enable ScenSor IRQ before starting
|
| 1570 |
} |
| 1571 |
} |
| 1572 |
} |
| 1573 |
#endif
|
| 1574 |
} |
| 1575 |
|
| 1576 |
#if (ANCTOANCTWR == 1) //allow anchor to anchor ranging |
| 1577 |
else if (instance_data[instance].instanceTimerEn == 0){ |
| 1578 |
if((instance_data[instance].mode == ANCHOR) && (instance_data[instance].gatewayAnchor)){
|
| 1579 |
uint32_t slotTime = portGetTickCnt() % instance_data[instance].sframePeriod; |
| 1580 |
//enable the timer in 1st slot
|
| 1581 |
if(slotTime < instance_data[instance].slotPeriod){
|
| 1582 |
instance_data[instance].instanceTimerEn = 1;
|
| 1583 |
} |
| 1584 |
} |
| 1585 |
} |
| 1586 |
#endif
|
| 1587 |
return 0 ; |
| 1588 |
} |
| 1589 |
|
| 1590 |
|
| 1591 |
void instance_close(void){ |
| 1592 |
//wake up device from low power mode
|
| 1593 |
//NOTE - in the ARM code just drop chip select for 200us
|
| 1594 |
clear_SPI_chip_select(); //CS low
|
| 1595 |
Sleep(1); //200 us to wake up then waits 5ms for DW1000 XTAL to stabilise |
| 1596 |
set_SPI_chip_select(); //CS high
|
| 1597 |
Sleep(5);
|
| 1598 |
dwt_entersleepaftertx(0); // clear the "enter deep sleep after tx" bit |
| 1599 |
dwt_setinterrupt(0xFFFFFFFF, 0); //don't allow any interrupts |
| 1600 |
|
| 1601 |
} |
| 1602 |
|
| 1603 |
|
| 1604 |
void instance_notify_DW1000_inIDLE(int idle){ |
| 1605 |
instance_data[0].dwIDLE = idle;
|
| 1606 |
} |
| 1607 |
|
| 1608 |
void instanceconfigtxpower(uint32_t txpower){
|
| 1609 |
instance_data[0].txPower = txpower ;
|
| 1610 |
|
| 1611 |
instance_data[0].txPowerChanged = 1; |
| 1612 |
} |
| 1613 |
|
| 1614 |
void instancesettxpower(void){ |
| 1615 |
if(instance_data[0].txPowerChanged == 1){ |
| 1616 |
//Configure TX power
|
| 1617 |
dwt_write32bitreg(0x1E, instance_data[0].txPower); |
| 1618 |
|
| 1619 |
instance_data[0].txPowerChanged = 0; |
| 1620 |
} |
| 1621 |
} |
| 1622 |
|
| 1623 |
void instanceconfigantennadelays(uint16_t tx, uint16_t rx){
|
| 1624 |
instance_data[0].txAntennaDelay = tx ;
|
| 1625 |
instance_data[0].rxAntennaDelay = rx ;
|
| 1626 |
|
| 1627 |
instance_data[0].antennaDelayChanged = 1; |
| 1628 |
} |
| 1629 |
|
| 1630 |
void instancesetantennadelays(void){ |
| 1631 |
if(instance_data[0].antennaDelayChanged == 1){ |
| 1632 |
dwt_setrxantennadelay(instance_data[0].rxAntennaDelay);
|
| 1633 |
dwt_settxantennadelay(instance_data[0].txAntennaDelay);
|
| 1634 |
|
| 1635 |
instance_data[0].antennaDelayChanged = 0; |
| 1636 |
} |
| 1637 |
} |
| 1638 |
|
| 1639 |
|
| 1640 |
uint16_t instancetxantdly(void){
|
| 1641 |
return instance_data[0].txAntennaDelay; |
| 1642 |
} |
| 1643 |
|
| 1644 |
uint16_t instancerxantdly(void){
|
| 1645 |
return instance_data[0].rxAntennaDelay; |
| 1646 |
} |
| 1647 |
|
| 1648 |
uint8_t instancevalidranges(void){
|
| 1649 |
uint8_t x = instance_data[0].rxResponseMaskReport;
|
| 1650 |
instance_data[0].rxResponseMaskReport = 0; //reset mask as we have printed out the ToFs |
| 1651 |
return x;
|
| 1652 |
} |
| 1653 |
#endif
|
| 1654 |
|
| 1655 |
|
| 1656 |
/*! The following Functions are added for user application (previously on the API )*/
|
| 1657 |
|
| 1658 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1659 |
* @fn dwt_getotptxpower()
|
| 1660 |
*
|
| 1661 |
* @brief This API function returns the tx power value read from OTP memory as part of initialisation
|
| 1662 |
*
|
| 1663 |
* input parameters
|
| 1664 |
* @param prf - this is the PRF e.g. DWT_PRF_16M or DWT_PRF_64M
|
| 1665 |
* @param chan - this is the channel e.g. 1 to 7
|
| 1666 |
*
|
| 1667 |
* output parameters
|
| 1668 |
*
|
| 1669 |
* returns tx power value for a given PRF and channel
|
| 1670 |
*/
|
| 1671 |
uint32_t dwt_getotptxpower(uint8_t prf, uint8_t chan){
|
| 1672 |
return platformLocalData.txPowCfg[(prf - DWT_PRF_16M) + (chan_idx[chan] * 2)]; |
| 1673 |
} |
| 1674 |
|
| 1675 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1676 |
* @fn dwt_getTREKOTPantennadelay()
|
| 1677 |
*
|
| 1678 |
* @brief This API function returns the antenna delay read from the OTP memory as part of device initialisation
|
| 1679 |
* Note: the antenna delay will only be read if dwt_initialise is called with DWT_LOADANTDLY bit set in the config parameter
|
| 1680 |
* The values of antenna delay are only valid for TREK use case modes.
|
| 1681 |
*
|
| 1682 |
* input parameters:
|
| 1683 |
* @param anchor - this is the mode (Tag or Anchor) if Tag set to 0, if Anchor set to 1
|
| 1684 |
* @param chan - this is the channel (1, 2, 3, 4, 5, 7)
|
| 1685 |
* @param datarate - this is the datarate DWT_BR_6M8, DWT_BR_110K or DWT_BR_850K
|
| 1686 |
*
|
| 1687 |
*/
|
| 1688 |
uint16_t dwt_getTREKOTPantennadelay(uint8_t anchor, uint8_t chan, uint8_t datarate){
|
| 1689 |
uint32_t dly = 0;
|
| 1690 |
|
| 1691 |
// 32-bit antenna delay value previously read from OTP, high 16 bits is value for Anchor mode, low 16-bits for Tag mode
|
| 1692 |
switch(chan){
|
| 1693 |
case 2: |
| 1694 |
if(datarate == DWT_BR_6M8)
|
| 1695 |
dly = platformLocalData.antennaCals[0];
|
| 1696 |
else if(datarate == DWT_BR_110K) |
| 1697 |
dly = platformLocalData.antennaCals[1];
|
| 1698 |
break;
|
| 1699 |
case 5: |
| 1700 |
if(datarate == DWT_BR_6M8)
|
| 1701 |
dly = platformLocalData.antennaCals[2];
|
| 1702 |
else if(datarate == DWT_BR_110K) |
| 1703 |
dly = platformLocalData.antennaCals[3];
|
| 1704 |
break;
|
| 1705 |
default:
|
| 1706 |
dly = 0;
|
| 1707 |
break;
|
| 1708 |
} |
| 1709 |
|
| 1710 |
return (dly >> (16*(anchor & 0x1))) & 0xFFFF; |
| 1711 |
} |
| 1712 |
|
| 1713 |
/*! ------------------------------------------------------------------------------------------------------------------
|
| 1714 |
* @fn dwt_readantennadelay()
|
| 1715 |
*
|
| 1716 |
* @brief This API function returns the antenna delay read from the OTP memory as part of device initialisation
|
| 1717 |
* Note: the antenna delay will only be read if dwt_initialise is called with DWT_LOADANTDLY bit set in the config parameter
|
| 1718 |
*
|
| 1719 |
* input parameters:
|
| 1720 |
* @param prf - this is the PRF e.g. DWT_PRF_16M or DWT_PRF_64M
|
| 1721 |
*
|
| 1722 |
*/
|
| 1723 |
uint16_t dwt_readantennadelay(uint8_t prf){
|
| 1724 |
// 32-bit antenna delay value previously read from OTP, high 16 bits is value for 64 MHz PRF, low 16-bits for 16 MHz PRF
|
| 1725 |
return (platformLocalData.antennaDly >> (16*(prf-DWT_PRF_16M))) & 0xFFFF; |
| 1726 |
} |
| 1727 |
|
| 1728 |
|
| 1729 |
/* ==========================================================
|
| 1730 |
|
| 1731 |
Notes:
|
| 1732 |
|
| 1733 |
Previously code handled multiple instances in a single console application
|
| 1734 |
|
| 1735 |
Now have changed it to do a single instance only. With minimal code changes...(i.e. kept [instance] index but it is always 0.
|
| 1736 |
|
| 1737 |
Windows application should call instance_init() once and then in the "main loop" call instance_run().
|
| 1738 |
|
| 1739 |
*/
|
| 1740 |
|