amiro-lld / drivers / DW1000 / v2 / decadriver / deca_device.c @ 1304b12b
History | View | Annotate | Download (142.18 KB)
1 |
/*! ------------------------------------------------------------------------------------------------------------------
|
---|---|
2 |
* @file deca_device.c
|
3 |
* @brief Decawave device configuration and control functions
|
4 |
*
|
5 |
* @attention
|
6 |
*
|
7 |
* Copyright 2013 (c) Decawave Ltd, Dublin, Ireland.
|
8 |
*
|
9 |
* All rights reserved.
|
10 |
*
|
11 |
*/
|
12 |
|
13 |
#include <assert.h> |
14 |
#include <stdlib.h> |
15 |
|
16 |
#include "deca_types.h" |
17 |
#include "deca_param_types.h" |
18 |
#include "deca_regs.h" |
19 |
#include "deca_device_api.h" |
20 |
|
21 |
// Defines for enable_clocks function
|
22 |
#define FORCE_SYS_XTI 0 |
23 |
#define ENABLE_ALL_SEQ 1 |
24 |
#define FORCE_SYS_PLL 2 |
25 |
#define READ_ACC_ON 7 |
26 |
#define READ_ACC_OFF 8 |
27 |
#define FORCE_OTP_ON 11 |
28 |
#define FORCE_OTP_OFF 12 |
29 |
#define FORCE_TX_PLL 13 |
30 |
#define FORCE_LDE 14 |
31 |
|
32 |
// Defines for ACK request bitmask in DATA and MAC COMMAND frame control (first byte) - Used to detect AAT bit wrongly set.
|
33 |
#define FCTRL_ACK_REQ_MASK 0x20 |
34 |
// Frame control maximum length in bytes.
|
35 |
#define FCTRL_LEN_MAX 2 |
36 |
|
37 |
// #define DWT_API_ERROR_CHECK // define so API checks config input parameters
|
38 |
|
39 |
// -------------------------------------------------------------------------------------------------------------------
|
40 |
//
|
41 |
// Internal functions for controlling and configuring the device
|
42 |
//
|
43 |
// -------------------------------------------------------------------------------------------------------------------
|
44 |
|
45 |
// Enable and Configure specified clocks
|
46 |
void _dwt_enableclocks(int clocks) ; |
47 |
// Configure the ucode (FP algorithm) parameters
|
48 |
void _dwt_configlde(int prf); |
49 |
// Load ucode from OTP/ROM
|
50 |
void _dwt_loaducodefromrom(void); |
51 |
// Read non-volatile memory
|
52 |
uint32 _dwt_otpread(uint16 address); |
53 |
// Program the non-volatile memory
|
54 |
uint32 _dwt_otpprogword32(uint32 data, uint16 address); |
55 |
// Upload the device configuration into always on memory
|
56 |
void _dwt_aonarrayupload(void); |
57 |
// -------------------------------------------------------------------------------------------------------------------
|
58 |
|
59 |
/*!
|
60 |
* Static data for DW1000 DecaWave Transceiver control
|
61 |
*/
|
62 |
|
63 |
// -------------------------------------------------------------------------------------------------------------------
|
64 |
// Structure to hold device data
|
65 |
typedef struct |
66 |
{ |
67 |
uint32 partID ; // IC Part ID - read during initialisation
|
68 |
uint32 lotID ; // IC Lot ID - read during initialisation
|
69 |
uint8 vBatP ; // IC V bat read during production and stored in OTP (Vmeas @ 3V3)
|
70 |
uint8 tempP ; // IC V temp read during production and stored in OTP (Tmeas @ 23C)
|
71 |
uint8 longFrames ; // Flag in non-standard long frame mode
|
72 |
uint8 otprev ; // OTP revision number (read during initialisation)
|
73 |
uint32 txFCTRL ; // Keep TX_FCTRL register config
|
74 |
uint32 sysCFGreg ; // Local copy of system config register
|
75 |
uint8 dblbuffon; // Double RX buffer mode flag
|
76 |
uint8 wait4resp ; // wait4response was set with last TX start command
|
77 |
uint16 sleep_mode; // Used for automatic reloading of LDO tune and microcode at wake-up
|
78 |
uint16 otp_mask ; // Local copy of the OTP mask used in dwt_initialise call
|
79 |
dwt_cb_data_t cbData; // Callback data structure
|
80 |
dwt_cb_t cbTxDone; // Callback for TX confirmation event
|
81 |
dwt_cb_t cbRxOk; // Callback for RX good frame event
|
82 |
dwt_cb_t cbRxTo; // Callback for RX timeout events
|
83 |
dwt_cb_t cbRxErr; // Callback for RX error events
|
84 |
} dwt_local_data_t ; |
85 |
|
86 |
static dwt_local_data_t dw1000local[DWT_NUM_DW_DEV] ; // Static local device data, can be an array to support multiple DW1000 testing applications/platforms |
87 |
static dwt_local_data_t *pdw1000local = dw1000local ; // Static local data structure pointer |
88 |
|
89 |
|
90 |
/*! ------------------------------------------------------------------------------------------------------------------
|
91 |
* @fn dwt_apiversion()
|
92 |
*
|
93 |
* @brief This function returns the version of the API as defined by DW1000_DRIVER_VERSION
|
94 |
*
|
95 |
* input parameters
|
96 |
*
|
97 |
* output parameters
|
98 |
*
|
99 |
* returns version (DW1000_DRIVER_VERSION)
|
100 |
*/
|
101 |
int32 dwt_apiversion(void)
|
102 |
{ |
103 |
return DW1000_DRIVER_VERSION ;
|
104 |
} |
105 |
|
106 |
/*! ------------------------------------------------------------------------------------------------------------------
|
107 |
* @fn dwt_setlocaldataptr()
|
108 |
*
|
109 |
* @brief This function sets the local data structure pointer to point to the element in the local array as given by the index.
|
110 |
*
|
111 |
* input parameters
|
112 |
* @param index - selects the array element to point to. Must be within the array bounds, i.e. < DWT_NUM_DW_DEV
|
113 |
*
|
114 |
* output parameters
|
115 |
*
|
116 |
* returns DWT_SUCCESS for success, or DWT_ERROR for error
|
117 |
*/
|
118 |
int dwt_setlocaldataptr(unsigned int index) |
119 |
{ |
120 |
// Check the index is within the array bounds
|
121 |
if (DWT_NUM_DW_DEV <= index) // return error if index outside the array bounds |
122 |
{ |
123 |
return DWT_ERROR ;
|
124 |
} |
125 |
|
126 |
pdw1000local = &dw1000local[index]; |
127 |
|
128 |
return DWT_SUCCESS ;
|
129 |
} |
130 |
|
131 |
/*! ------------------------------------------------------------------------------------------------------------------
|
132 |
* @fn dwt_initialise()
|
133 |
*
|
134 |
* @brief This function initiates communications with the DW1000 transceiver
|
135 |
* and reads its DEV_ID register (address 0x00) to verify the IC is one supported
|
136 |
* by this software (e.g. DW1000 32-bit device ID value is 0xDECA0130). Then it
|
137 |
* does any initial once only device configurations needed for its use and initialises
|
138 |
* as necessary any static data items belonging to this low-level driver.
|
139 |
*
|
140 |
* This function does not need to be called after DW1000 device is woken up from DEEPSLEEP,
|
141 |
* the device will preserve register values e.g. LDO, UCODE, XTAL. However if needed this
|
142 |
* function can be called to initialise internal structure dw1000local[] if it has not been preserved
|
143 |
* (e.g. if micro was in sleep and its RAM data (containing dw1000local structure was not preserved during sleep)
|
144 |
*
|
145 |
* NOTES:
|
146 |
* 1. When DW1000 is powered on this function needs to be run before dwt_configuresleep,
|
147 |
* also the SPI frequency has to be < 3MHz
|
148 |
* 2. It reads and applies LDO tune and crystal trim values from OTP memory
|
149 |
* 3. If accurate RX timestamping is needed microcode/LDE must be loaded
|
150 |
*
|
151 |
* input parameters
|
152 |
* @param config - specifies what configuration to load
|
153 |
* DWT_LOADNONE 0x00 - do not load any values from OTP memory
|
154 |
* DWT_LOADUCODE 0x01 - load the LDE microcode from ROM - enable accurate RX timestamp
|
155 |
* DWT_DW_WAKE_UP 0x02 - just initialise dw1000local[] values (e.g. DW1000 has woken up)
|
156 |
* DWT_DW_WUP_NO_UCODE 0x04 - if microcode/LDE algorithm has not already been loaded (on power up) e.g. when LDE is not used
|
157 |
* DWT_READ_OTP_PID 0x10 - read part ID from OTP
|
158 |
* DWT_READ_OTP_LID 0x20 - read lot ID from OTP
|
159 |
* DWT_READ_OTP_BAT 0x40 - read ref voltage from OTP
|
160 |
* DWT_READ_OTP_TMP 0x80 - read ref temperature from OTP
|
161 |
* output parameters
|
162 |
*
|
163 |
* returns DWT_SUCCESS for success, or DWT_ERROR for error
|
164 |
*/
|
165 |
// OTP addresses definitions
|
166 |
#define LDOTUNE_ADDRESS (0x04) |
167 |
#define PARTID_ADDRESS (0x06) |
168 |
#define LOTID_ADDRESS (0x07) |
169 |
#define VBAT_ADDRESS (0x08) |
170 |
#define VTEMP_ADDRESS (0x09) |
171 |
#define XTRIM_ADDRESS (0x1E) |
172 |
|
173 |
int dwt_initialise(int config) |
174 |
{ |
175 |
uint16 otp_xtaltrim_and_rev = 0;
|
176 |
uint32 ldo_tune = 0;
|
177 |
|
178 |
pdw1000local->dblbuffon = 0; // - set to 0 - meaning double buffer mode is off by default |
179 |
pdw1000local->wait4resp = 0; // - set to 0 - meaning wait for response not active |
180 |
pdw1000local->sleep_mode = 0; // - set to 0 - meaning sleep mode has not been configured |
181 |
|
182 |
pdw1000local->cbTxDone = NULL;
|
183 |
pdw1000local->cbRxOk = NULL;
|
184 |
pdw1000local->cbRxTo = NULL;
|
185 |
pdw1000local->cbRxErr = NULL;
|
186 |
|
187 |
#if DWT_API_ERROR_CHECK
|
188 |
pdw1000local->otp_mask = config ; // Save the READ_OTP config mask
|
189 |
#endif
|
190 |
|
191 |
// Read and validate device ID, return -1 if not recognised
|
192 |
if (DWT_DEVICE_ID != dwt_readdevid()) // MP IC ONLY (i.e. DW1000) FOR THIS CODE |
193 |
{ |
194 |
return DWT_ERROR ;
|
195 |
} |
196 |
|
197 |
if(!(DWT_DW_WAKE_UP & config)) // Don't reset the device if DWT_DW_WAKE_UP bit is set, e.g. when calling this API after wake up |
198 |
{ |
199 |
dwt_softreset(); // Make sure the device is completely reset before starting initialisation
|
200 |
} |
201 |
|
202 |
if(!((DWT_DW_WAKE_UP & config) && ((DWT_READ_OTP_TMP | DWT_READ_OTP_BAT | DWT_READ_OTP_LID | DWT_READ_OTP_PID | DWT_DW_WUP_RD_OTPREV)& config)))
|
203 |
{ |
204 |
_dwt_enableclocks(FORCE_SYS_XTI); // NOTE: set system clock to XTI - this is necessary to make sure the values read by _dwt_otpread are reliable
|
205 |
} // when not reading from OTP, clocks don't need to change.
|
206 |
|
207 |
// Configure the CPLL lock detect
|
208 |
dwt_write8bitoffsetreg(EXT_SYNC_ID, EC_CTRL_OFFSET, EC_CTRL_PLLLCK); |
209 |
|
210 |
// When DW1000 IC is initialised from power up, then the LDO value should be kicked from OTP, otherwise if this API is called after
|
211 |
// DW1000 IC has been woken up (DWT_DW_WAKE_UP bit is set) this can be skipped as LDO would have already been automatically
|
212 |
// kicked/loaded on wake up
|
213 |
if(!(DWT_DW_WAKE_UP & config))
|
214 |
{ |
215 |
// Load LDO tune from OTP and kick it if there is a value actually programmed.
|
216 |
ldo_tune = _dwt_otpread(LDOTUNE_ADDRESS); |
217 |
if((ldo_tune & 0xFF) != 0) |
218 |
{ |
219 |
// Kick LDO tune
|
220 |
dwt_write8bitoffsetreg(OTP_IF_ID, OTP_SF, OTP_SF_LDO_KICK); // Set load LDO kick bit
|
221 |
pdw1000local->sleep_mode |= AON_WCFG_ONW_LLDO; // LDO tune must be kicked at wake-up
|
222 |
} |
223 |
} |
224 |
else
|
225 |
{ //if LDOTUNE reg contains value different from default it means it was kicked from OTP and thus set AON_WCFG_ONW_LLDO.
|
226 |
if(dwt_read32bitoffsetreg(RF_CONF_ID, LDOTUNE) != LDOTUNE_DEFAULT)
|
227 |
pdw1000local->sleep_mode |= AON_WCFG_ONW_LLDO; |
228 |
} |
229 |
|
230 |
if((!(DWT_DW_WAKE_UP & config)) || ((DWT_DW_WAKE_UP & config) && (DWT_DW_WUP_RD_OTPREV & config)))
|
231 |
{ |
232 |
// Read OTP revision number
|
233 |
otp_xtaltrim_and_rev = _dwt_otpread(XTRIM_ADDRESS) & 0xffff; // Read 32 bit value, XTAL trim val is in low octet-0 (5 bits) |
234 |
pdw1000local->otprev = (otp_xtaltrim_and_rev >> 8) & 0xff; // OTP revision is the next byte |
235 |
} |
236 |
else
|
237 |
pdw1000local->otprev = 0; // If OTP valuse are not used, if this API is called after DW1000 IC has been woken up |
238 |
// (DWT_DW_WAKE_UP bit is set), set otprev to 0
|
239 |
|
240 |
if(!(DWT_DW_WAKE_UP & config))
|
241 |
{ |
242 |
// XTAL trim value is set in OTP for DW1000 module and EVK/TREK boards but that might not be the case in a custom design
|
243 |
if ((otp_xtaltrim_and_rev & 0x1F) == 0) // A value of 0 means that the crystal has not been trimmed |
244 |
{ |
245 |
otp_xtaltrim_and_rev = FS_XTALT_MIDRANGE ; // Set to mid-range if no calibration value inside
|
246 |
} |
247 |
// Configure XTAL trim
|
248 |
dwt_setxtaltrim((uint8)otp_xtaltrim_and_rev); |
249 |
} |
250 |
|
251 |
if(DWT_READ_OTP_PID & config)
|
252 |
{ |
253 |
// Load Part from OTP
|
254 |
pdw1000local->partID = _dwt_otpread(PARTID_ADDRESS); |
255 |
} |
256 |
else
|
257 |
{ |
258 |
pdw1000local->partID = 0;
|
259 |
} |
260 |
|
261 |
if(DWT_READ_OTP_LID & config)
|
262 |
{ |
263 |
// Load Lot ID from OTP
|
264 |
pdw1000local->lotID = _dwt_otpread(LOTID_ADDRESS); |
265 |
} |
266 |
else
|
267 |
{ |
268 |
pdw1000local->lotID = 0;
|
269 |
} |
270 |
|
271 |
if(DWT_READ_OTP_BAT & config)
|
272 |
{ |
273 |
// Load VBAT from OTP
|
274 |
pdw1000local->vBatP = _dwt_otpread(VBAT_ADDRESS) & 0xff;
|
275 |
} |
276 |
else
|
277 |
{ |
278 |
pdw1000local->vBatP = 0;
|
279 |
} |
280 |
|
281 |
if(DWT_READ_OTP_TMP & config)
|
282 |
{ |
283 |
// Load TEMP from OTP
|
284 |
pdw1000local->tempP = _dwt_otpread(VTEMP_ADDRESS) & 0xff;
|
285 |
} |
286 |
else
|
287 |
{ |
288 |
pdw1000local->tempP = 0;
|
289 |
} |
290 |
|
291 |
// Load leading edge detect code (LDE/microcode)
|
292 |
if(!(DWT_DW_WAKE_UP & config))
|
293 |
{ |
294 |
if(DWT_LOADUCODE & config)
|
295 |
{ |
296 |
_dwt_loaducodefromrom(); |
297 |
pdw1000local->sleep_mode |= AON_WCFG_ONW_LLDE; // microcode must be loaded at wake-up if loaded on initialisation
|
298 |
} |
299 |
else // Should disable the LDERUN bit enable if LDE has not been loaded |
300 |
{ |
301 |
uint16 rega = dwt_read16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET+1) ;
|
302 |
rega &= 0xFDFF ; // Clear LDERUN bit |
303 |
dwt_write16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET+1, rega) ;
|
304 |
} |
305 |
} |
306 |
else //if DWT_DW_WUP_NO_UCODE is set then assume that the UCODE was loaded from ROM (i.e. DWT_LOADUCODE was set on power up), |
307 |
{ //thus set AON_WCFG_ONW_LLDE, otherwise don't set the AON_WCFG_ONW_LLDE bit in the sleep_mode configuration
|
308 |
if((DWT_DW_WUP_NO_UCODE & config) == 0) |
309 |
{ |
310 |
pdw1000local->sleep_mode |= AON_WCFG_ONW_LLDE; |
311 |
} |
312 |
} |
313 |
|
314 |
_dwt_enableclocks(ENABLE_ALL_SEQ); // Enable clocks for sequencing
|
315 |
|
316 |
// The 3 bits in AON CFG1 register must be cleared to ensure proper operation of the DW1000 in DEEPSLEEP mode.
|
317 |
dwt_write8bitoffsetreg(AON_ID, AON_CFG1_OFFSET, 0x00);
|
318 |
|
319 |
// Read system register / store local copy
|
320 |
pdw1000local->sysCFGreg = dwt_read32bitreg(SYS_CFG_ID) ; // Read sysconfig register
|
321 |
pdw1000local->longFrames = (pdw1000local->sysCFGreg & SYS_CFG_PHR_MODE_11) >> SYS_CFG_PHR_MODE_SHFT ; //configure longFrames
|
322 |
|
323 |
pdw1000local->txFCTRL = dwt_read32bitreg(TX_FCTRL_ID) ; |
324 |
|
325 |
return DWT_SUCCESS ;
|
326 |
|
327 |
} // end dwt_initialise()
|
328 |
|
329 |
/*! ------------------------------------------------------------------------------------------------------------------
|
330 |
* @fn dwt_otprevision()
|
331 |
*
|
332 |
* @brief This is used to return the read OTP revision
|
333 |
*
|
334 |
* NOTE: dwt_initialise() must be called prior to this function so that it can return a relevant value.
|
335 |
*
|
336 |
* input parameters
|
337 |
*
|
338 |
* output parameters
|
339 |
*
|
340 |
* returns the read OTP revision value
|
341 |
*/
|
342 |
uint8 dwt_otprevision(void)
|
343 |
{ |
344 |
return pdw1000local->otprev ;
|
345 |
} |
346 |
|
347 |
/*! ------------------------------------------------------------------------------------------------------------------
|
348 |
* @fn dwt_setfinegraintxseq()
|
349 |
*
|
350 |
* @brief This function enables/disables the fine grain TX sequencing (enabled by default).
|
351 |
*
|
352 |
* input parameters
|
353 |
* @param enable - 1 to enable fine grain TX sequencing, 0 to disable it.
|
354 |
*
|
355 |
* output parameters none
|
356 |
*
|
357 |
* no return value
|
358 |
*/
|
359 |
void dwt_setfinegraintxseq(int enable) |
360 |
{ |
361 |
if (enable)
|
362 |
{ |
363 |
dwt_write16bitoffsetreg(PMSC_ID, PMSC_TXFINESEQ_OFFSET, PMSC_TXFINESEQ_ENABLE); |
364 |
} |
365 |
else
|
366 |
{ |
367 |
dwt_write16bitoffsetreg(PMSC_ID, PMSC_TXFINESEQ_OFFSET, PMSC_TXFINESEQ_DISABLE); |
368 |
} |
369 |
} |
370 |
|
371 |
/*! ------------------------------------------------------------------------------------------------------------------
|
372 |
* @fn dwt_setlnapamode()
|
373 |
*
|
374 |
* @brief This is used to enable GPIO for external LNA or PA functionality - HW dependent, consult the DW1000 User Manual.
|
375 |
* This can also be used for debug as enabling TX and RX GPIOs is quite handy to monitor DW1000's activity.
|
376 |
*
|
377 |
* NOTE: Enabling PA functionality requires that fine grain TX sequencing is deactivated. This can be done using
|
378 |
* dwt_setfinegraintxseq().
|
379 |
*
|
380 |
* input parameters
|
381 |
* @param lna_pa - bit field: bit 0 if set will enable LNA functionality,
|
382 |
* : bit 1 if set will enable PA functionality,
|
383 |
* : to disable LNA/PA set the bits to 0
|
384 |
*
|
385 |
* no return value
|
386 |
*/
|
387 |
void dwt_setlnapamode(int lna_pa) |
388 |
{ |
389 |
uint32 gpio_mode = dwt_read32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET); |
390 |
gpio_mode &= ~(GPIO_MSGP4_MASK | GPIO_MSGP5_MASK | GPIO_MSGP6_MASK); |
391 |
if (lna_pa & DWT_LNA_ENABLE)
|
392 |
{ |
393 |
gpio_mode |= GPIO_PIN6_EXTRXE; |
394 |
} |
395 |
if (lna_pa & DWT_PA_ENABLE)
|
396 |
{ |
397 |
gpio_mode |= (GPIO_PIN5_EXTTXE | GPIO_PIN4_EXTPA); |
398 |
} |
399 |
dwt_write32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET, gpio_mode); |
400 |
} |
401 |
|
402 |
/*! ------------------------------------------------------------------------------------------------------------------
|
403 |
* @fn dwt_enablegpioclocks()
|
404 |
*
|
405 |
* @brief This is used to enable GPIO clocks. The clocks are needed to ensure correct GPIO operation
|
406 |
*
|
407 |
* input parameters
|
408 |
*
|
409 |
* output parameters
|
410 |
*
|
411 |
* no return value
|
412 |
*/
|
413 |
void dwt_enablegpioclocks(void) |
414 |
{ |
415 |
uint32 pmsc_clock_ctrl = dwt_read32bitreg(PMSC_ID); |
416 |
dwt_write32bitreg(PMSC_ID, pmsc_clock_ctrl | PMSC_CTRL0_GPCE | PMSC_CTRL0_GPRN) ; |
417 |
} |
418 |
|
419 |
/*! ------------------------------------------------------------------------------------------------------------------
|
420 |
* @fn dwt_setgpiodirection()
|
421 |
*
|
422 |
* @brief This is used to set GPIO direction as an input (1) or output (0)
|
423 |
*
|
424 |
* input parameters
|
425 |
* @param gpioNum - this is the GPIO to configure - see GxM0... GxM8 in the deca_regs.h file
|
426 |
* @param direction - this sets the GPIO direction - see GxP0... GxP8 in the deca_regs.h file
|
427 |
*
|
428 |
* output parameters
|
429 |
*
|
430 |
* no return value
|
431 |
*/
|
432 |
void dwt_setgpiodirection(uint32 gpioNum, uint32 direction)
|
433 |
{ |
434 |
uint8 buf[GPIO_DIR_LEN]; |
435 |
uint32 command = direction | gpioNum; |
436 |
|
437 |
buf[0] = command & 0xff; |
438 |
buf[1] = (command >> 8) & 0xff; |
439 |
buf[2] = (command >> 16) & 0xff; |
440 |
|
441 |
dwt_writetodevice(GPIO_CTRL_ID, GPIO_DIR_OFFSET, GPIO_DIR_LEN, buf); |
442 |
} |
443 |
|
444 |
/*! ------------------------------------------------------------------------------------------------------------------
|
445 |
* @fn dwt_setgpiovalue()
|
446 |
*
|
447 |
* @brief This is used to set GPIO value as (1) or (0) only applies if the GPIO is configured as output
|
448 |
*
|
449 |
* input parameters
|
450 |
* @param gpioNum - this is the GPIO to configure - see DWT_GxP0... DWT_GxP8
|
451 |
* @param value - this sets the GPIO value - see DWT_GxP0... DWT_GxP8
|
452 |
*
|
453 |
* output parameters
|
454 |
*
|
455 |
* no return value
|
456 |
*/
|
457 |
void dwt_setgpiovalue(uint32 gpioNum, uint32 value)
|
458 |
{ |
459 |
uint8 buf[GPIO_DOUT_LEN]; |
460 |
uint32 command = value | gpioNum; |
461 |
|
462 |
buf[0] = command & 0xff; |
463 |
buf[1] = (command >> 8) & 0xff; |
464 |
buf[2] = (command >> 16) & 0xff; |
465 |
|
466 |
dwt_writetodevice(GPIO_CTRL_ID, GPIO_DOUT_OFFSET, GPIO_DOUT_LEN, buf); |
467 |
} |
468 |
|
469 |
/*! ------------------------------------------------------------------------------------------------------------------
|
470 |
* @fn dwt_getgpiovalue()
|
471 |
*
|
472 |
* @brief This is used to return 1 or 0 depending if the depending if the GPIO is high or low, only one GPIO should
|
473 |
* be tested at a time
|
474 |
*
|
475 |
* input parameters
|
476 |
* @param gpioNum - this is the GPIO to configure - see DWT_GxP0... DWT_GxP8
|
477 |
*
|
478 |
* output parameters
|
479 |
*
|
480 |
* return int (1 or 0)
|
481 |
*/
|
482 |
int dwt_getgpiovalue(uint32 gpioNum)
|
483 |
{ |
484 |
return ((dwt_read32bitoffsetreg(GPIO_CTRL_ID, GPIO_RAW_OFFSET) & gpioNum)? 1 : 0); |
485 |
} |
486 |
|
487 |
|
488 |
/*! ------------------------------------------------------------------------------------------------------------------
|
489 |
* @fn dwt_geticrefvolt()
|
490 |
*
|
491 |
* @brief This is used to return the read V measured @ 3.3 V value recorded in OTP address 0x8 (VBAT_ADDRESS)
|
492 |
*
|
493 |
* NOTE: dwt_initialise() must be called prior to this function so that it can return a relevant value.
|
494 |
*
|
495 |
* input parameters
|
496 |
*
|
497 |
* output parameters
|
498 |
*
|
499 |
* returns the 8 bit V bat value as programmed in the factory
|
500 |
*/
|
501 |
uint8 dwt_geticrefvolt(void)
|
502 |
{ |
503 |
#ifdef DWT_API_ERROR_CHECK
|
504 |
assert(pdw1000local->otp_mask & DWT_READ_OTP_BAT); |
505 |
#endif
|
506 |
return pdw1000local->vBatP;
|
507 |
} |
508 |
|
509 |
/*! ------------------------------------------------------------------------------------------------------------------
|
510 |
* @fn dwt_geticreftemp()
|
511 |
*
|
512 |
* @brief This is used to return the read T measured @ 23 C value recorded in OTP address 0x9 (VTEMP_ADDRESS)
|
513 |
*
|
514 |
* NOTE: dwt_initialise() must be called prior to this function so that it can return a relevant value.
|
515 |
*
|
516 |
* input parameters
|
517 |
*
|
518 |
* output parameters
|
519 |
*
|
520 |
* returns the 8 bit V temp value as programmed in the factory
|
521 |
*/
|
522 |
uint8 dwt_geticreftemp(void)
|
523 |
{ |
524 |
#ifdef DWT_API_ERROR_CHECK
|
525 |
assert(pdw1000local->otp_mask & DWT_READ_OTP_TMP); |
526 |
#endif
|
527 |
return pdw1000local->tempP;
|
528 |
} |
529 |
|
530 |
/*! ------------------------------------------------------------------------------------------------------------------
|
531 |
* @fn dwt_getpartid()
|
532 |
*
|
533 |
* @brief This is used to return the read part ID (or chip ID) of the device
|
534 |
*
|
535 |
* NOTE: dwt_initialise() must be called prior to this function so that it can return a relevant value (stored in OTP).
|
536 |
*
|
537 |
* input parameters
|
538 |
*
|
539 |
* output parameters
|
540 |
*
|
541 |
* returns the 32 bit part ID (or chip ID) value as programmed in the factory
|
542 |
*/
|
543 |
uint32 dwt_getpartid(void)
|
544 |
{ |
545 |
#ifdef DWT_API_ERROR_CHECK
|
546 |
assert(pdw1000local->otp_mask & DWT_READ_OTP_PID); |
547 |
#endif
|
548 |
|
549 |
return pdw1000local->partID;
|
550 |
} |
551 |
|
552 |
/*! ------------------------------------------------------------------------------------------------------------------
|
553 |
* @fn dwt_getlotid()
|
554 |
*
|
555 |
* @brief This is used to return the read lot ID of the device
|
556 |
*
|
557 |
* NOTE: dwt_initialise() must be called prior to this function so that it can return a relevant value.
|
558 |
*
|
559 |
* input parameters
|
560 |
*
|
561 |
* output parameters
|
562 |
*
|
563 |
* returns the 32 bit lot ID value as programmed in the factory
|
564 |
*/
|
565 |
uint32 dwt_getlotid(void)
|
566 |
{ |
567 |
#ifdef DWT_API_ERROR_CHECK
|
568 |
assert(pdw1000local->otp_mask & DWT_READ_OTP_LID); |
569 |
#endif
|
570 |
|
571 |
return pdw1000local->lotID;
|
572 |
} |
573 |
|
574 |
/*! ------------------------------------------------------------------------------------------------------------------
|
575 |
* @fn dwt_readdevid()
|
576 |
*
|
577 |
* @brief This is used to return the read device type and revision information of the DW1000 device (MP part is 0xDECA0130)
|
578 |
*
|
579 |
* input parameters
|
580 |
*
|
581 |
* output parameters
|
582 |
*
|
583 |
* returns the read value which for DW1000 is 0xDECA0130
|
584 |
*/
|
585 |
uint32 dwt_readdevid(void)
|
586 |
{ |
587 |
return dwt_read32bitoffsetreg(DEV_ID_ID,0); |
588 |
} |
589 |
|
590 |
/*! ------------------------------------------------------------------------------------------------------------------
|
591 |
* @fn dwt_configuretxrf()
|
592 |
*
|
593 |
* @brief This function provides the API for the configuration of the TX spectrum
|
594 |
* including the power and pulse generator delay. The input is a pointer to the data structure
|
595 |
* of type dwt_txconfig_t that holds all the configurable items.
|
596 |
*
|
597 |
* input parameters
|
598 |
* @param config - pointer to the txrf configuration structure, which contains the tx rf config data
|
599 |
*
|
600 |
* output parameters
|
601 |
*
|
602 |
* no return value
|
603 |
*/
|
604 |
void dwt_configuretxrf(dwt_txconfig_t *config)
|
605 |
{ |
606 |
|
607 |
// Configure RF TX PG_DELAY
|
608 |
dwt_write8bitoffsetreg(TX_CAL_ID, TC_PGDELAY_OFFSET, config->PGdly); |
609 |
|
610 |
// Configure TX power
|
611 |
dwt_write32bitreg(TX_POWER_ID, config->power); |
612 |
|
613 |
} |
614 |
|
615 |
|
616 |
/*! ------------------------------------------------------------------------------------------------------------------
|
617 |
* @fn dwt_configurefor64plen()
|
618 |
* - Use default OPS table should be used with following register modifications:
|
619 |
* These modifications optimise the default OPS configuration further for 64 length preamble use case
|
620 |
*
|
621 |
* NOTE: These register settings are not preserved during SLEEP/DEEPSLEEP, thus they should be programmed again after wake up
|
622 |
*
|
623 |
* input parameters
|
624 |
* @param prf
|
625 |
*
|
626 |
* output parameters
|
627 |
*
|
628 |
* no return value
|
629 |
*/
|
630 |
void dwt_configurefor64plen(int prf) |
631 |
{ |
632 |
dwt_write8bitoffsetreg(CRTR_ID, CRTR_GEAR_OFFSET, DEMOD_GEAR_64L); |
633 |
|
634 |
if(prf == DWT_PRF_16M)
|
635 |
{ |
636 |
dwt_write8bitoffsetreg(DRX_CONF_ID, DRX_TUNE2_OFFSET+2, DRX_TUNE2_UNCONF_SFD_TH_PRF16);
|
637 |
} |
638 |
else
|
639 |
{ |
640 |
dwt_write8bitoffsetreg(DRX_CONF_ID, DRX_TUNE2_OFFSET+2, DRX_TUNE2_UNCONF_SFD_TH_PRF64);
|
641 |
} |
642 |
} |
643 |
|
644 |
|
645 |
/*! ------------------------------------------------------------------------------------------------------------------
|
646 |
* @fn dwt_configure()
|
647 |
*
|
648 |
* @brief This function provides the main API for the configuration of the
|
649 |
* DW1000 and this low-level driver. The input is a pointer to the data structure
|
650 |
* of type dwt_config_t that holds all the configurable items.
|
651 |
* The dwt_config_t structure shows which ones are supported
|
652 |
*
|
653 |
* input parameters
|
654 |
* @param config - pointer to the configuration structure, which contains the device configuration data.
|
655 |
*
|
656 |
* output parameters
|
657 |
*
|
658 |
* no return value
|
659 |
*/
|
660 |
void dwt_configure(dwt_config_t *config)
|
661 |
{ |
662 |
uint8 nsSfd_result = 0;
|
663 |
uint8 useDWnsSFD = 0;
|
664 |
uint8 chan = config->chan ; |
665 |
uint32 regval ; |
666 |
uint16 reg16 = lde_replicaCoeff[config->rxCode]; |
667 |
uint8 prfIndex = config->prf - DWT_PRF_16M; |
668 |
uint8 bw = ((chan == 4) || (chan == 7)) ? 1 : 0 ; // Select wide or narrow band |
669 |
|
670 |
#ifdef DWT_API_ERROR_CHECK
|
671 |
assert(config->dataRate <= DWT_BR_6M8); |
672 |
assert(config->rxPAC <= DWT_PAC64); |
673 |
assert((chan >= 1) && (chan <= 7) && (chan != 6)); |
674 |
assert(((config->prf == DWT_PRF_64M) && (config->txCode >= 9) && (config->txCode <= 24)) |
675 |
|| ((config->prf == DWT_PRF_16M) && (config->txCode >= 1) && (config->txCode <= 8))); |
676 |
assert(((config->prf == DWT_PRF_64M) && (config->rxCode >= 9) && (config->rxCode <= 24)) |
677 |
|| ((config->prf == DWT_PRF_16M) && (config->rxCode >= 1) && (config->rxCode <= 8))); |
678 |
assert((config->txPreambLength == DWT_PLEN_64) || (config->txPreambLength == DWT_PLEN_128) || (config->txPreambLength == DWT_PLEN_256) |
679 |
|| (config->txPreambLength == DWT_PLEN_512) || (config->txPreambLength == DWT_PLEN_1024) || (config->txPreambLength == DWT_PLEN_1536) |
680 |
|| (config->txPreambLength == DWT_PLEN_2048) || (config->txPreambLength == DWT_PLEN_4096)); |
681 |
assert((config->phrMode == DWT_PHRMODE_STD) || (config->phrMode == DWT_PHRMODE_EXT)); |
682 |
#endif
|
683 |
|
684 |
// For 110 kbps we need a special setup
|
685 |
if(DWT_BR_110K == config->dataRate)
|
686 |
{ |
687 |
pdw1000local->sysCFGreg |= SYS_CFG_RXM110K ; |
688 |
reg16 >>= 3; // lde_replicaCoeff must be divided by 8 |
689 |
} |
690 |
else
|
691 |
{ |
692 |
pdw1000local->sysCFGreg &= (~SYS_CFG_RXM110K) ; |
693 |
} |
694 |
|
695 |
pdw1000local->longFrames = config->phrMode ; |
696 |
|
697 |
pdw1000local->sysCFGreg &= ~SYS_CFG_PHR_MODE_11; |
698 |
pdw1000local->sysCFGreg |= (SYS_CFG_PHR_MODE_11 & ((uint32)config->phrMode << SYS_CFG_PHR_MODE_SHFT)); |
699 |
|
700 |
dwt_write32bitreg(SYS_CFG_ID,pdw1000local->sysCFGreg) ; |
701 |
// Set the lde_replicaCoeff
|
702 |
dwt_write16bitoffsetreg(LDE_IF_ID, LDE_REPC_OFFSET, reg16) ; |
703 |
|
704 |
_dwt_configlde(prfIndex); |
705 |
|
706 |
// Configure PLL2/RF PLL block CFG/TUNE (for a given channel)
|
707 |
dwt_write32bitoffsetreg(FS_CTRL_ID, FS_PLLCFG_OFFSET, fs_pll_cfg[chan_idx[chan]]); |
708 |
dwt_write8bitoffsetreg(FS_CTRL_ID, FS_PLLTUNE_OFFSET, fs_pll_tune[chan_idx[chan]]); |
709 |
|
710 |
// Configure RF RX blocks (for specified channel/bandwidth)
|
711 |
dwt_write8bitoffsetreg(RF_CONF_ID, RF_RXCTRLH_OFFSET, rx_config[bw]); |
712 |
|
713 |
// Configure RF TX blocks (for specified channel and PRF)
|
714 |
// Configure RF TX control
|
715 |
dwt_write32bitoffsetreg(RF_CONF_ID, RF_TXCTRL_OFFSET, tx_config[chan_idx[chan]]); |
716 |
|
717 |
// Configure the baseband parameters (for specified PRF, bit rate, PAC, and SFD settings)
|
718 |
// DTUNE0
|
719 |
dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_TUNE0b_OFFSET, sftsh[config->dataRate][config->nsSFD]); |
720 |
|
721 |
// DTUNE1
|
722 |
dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_TUNE1a_OFFSET, dtune1[prfIndex]); |
723 |
|
724 |
if(config->dataRate == DWT_BR_110K)
|
725 |
{ |
726 |
dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_TUNE1b_OFFSET, DRX_TUNE1b_110K); |
727 |
} |
728 |
else
|
729 |
{ |
730 |
if(config->txPreambLength == DWT_PLEN_64)
|
731 |
{ |
732 |
dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_TUNE1b_OFFSET, DRX_TUNE1b_6M8_PRE64); |
733 |
dwt_write8bitoffsetreg(DRX_CONF_ID, DRX_TUNE4H_OFFSET, DRX_TUNE4H_PRE64); |
734 |
} |
735 |
else
|
736 |
{ |
737 |
dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_TUNE1b_OFFSET, DRX_TUNE1b_850K_6M8); |
738 |
dwt_write8bitoffsetreg(DRX_CONF_ID, DRX_TUNE4H_OFFSET, DRX_TUNE4H_PRE128PLUS); |
739 |
} |
740 |
} |
741 |
|
742 |
// DTUNE2
|
743 |
dwt_write32bitoffsetreg(DRX_CONF_ID, DRX_TUNE2_OFFSET, digital_bb_config[prfIndex][config->rxPAC]); |
744 |
|
745 |
// DTUNE3 (SFD timeout)
|
746 |
// Don't allow 0 - SFD timeout will always be enabled
|
747 |
if(config->sfdTO == 0) |
748 |
{ |
749 |
config->sfdTO = DWT_SFDTOC_DEF; |
750 |
} |
751 |
dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_SFDTOC_OFFSET, config->sfdTO); |
752 |
|
753 |
// Configure AGC parameters
|
754 |
dwt_write32bitoffsetreg( AGC_CFG_STS_ID, 0xC, agc_config.lo32);
|
755 |
dwt_write16bitoffsetreg( AGC_CFG_STS_ID, 0x4, agc_config.target[prfIndex]);
|
756 |
|
757 |
// Set (non-standard) user SFD for improved performance,
|
758 |
if(config->nsSFD)
|
759 |
{ |
760 |
// Write non standard (DW) SFD length
|
761 |
dwt_write8bitoffsetreg(USR_SFD_ID, 0x00, dwnsSFDlen[config->dataRate]);
|
762 |
nsSfd_result = 3 ;
|
763 |
useDWnsSFD = 1 ;
|
764 |
} |
765 |
regval = (CHAN_CTRL_TX_CHAN_MASK & (chan << CHAN_CTRL_TX_CHAN_SHIFT)) | // Transmit Channel
|
766 |
(CHAN_CTRL_RX_CHAN_MASK & (chan << CHAN_CTRL_RX_CHAN_SHIFT)) | // Receive Channel
|
767 |
(CHAN_CTRL_RXFPRF_MASK & ((uint32)config->prf << CHAN_CTRL_RXFPRF_SHIFT)) | // RX PRF
|
768 |
((CHAN_CTRL_TNSSFD|CHAN_CTRL_RNSSFD) & ((uint32)nsSfd_result << CHAN_CTRL_TNSSFD_SHIFT)) | // nsSFD enable RX&TX
|
769 |
(CHAN_CTRL_DWSFD & ((uint32)useDWnsSFD << CHAN_CTRL_DWSFD_SHIFT)) | // Use DW nsSFD
|
770 |
(CHAN_CTRL_TX_PCOD_MASK & ((uint32)config->txCode << CHAN_CTRL_TX_PCOD_SHIFT)) | // TX Preamble Code
|
771 |
(CHAN_CTRL_RX_PCOD_MASK & ((uint32)config->rxCode << CHAN_CTRL_RX_PCOD_SHIFT)) ; // RX Preamble Code
|
772 |
|
773 |
dwt_write32bitreg(CHAN_CTRL_ID,regval) ; |
774 |
|
775 |
// Set up TX Preamble Size, PRF and Data Rate
|
776 |
pdw1000local->txFCTRL = ((uint32)(config->txPreambLength | config->prf) << TX_FCTRL_TXPRF_SHFT) | ((uint32)config->dataRate << TX_FCTRL_TXBR_SHFT); |
777 |
dwt_write32bitreg(TX_FCTRL_ID, pdw1000local->txFCTRL); |
778 |
|
779 |
// The SFD transmit pattern is initialised by the DW1000 upon a user TX request, but (due to an IC issue) it is not done for an auto-ACK TX. The
|
780 |
// SYS_CTRL write below works around this issue, by simultaneously initiating and aborting a transmission, which correctly initialises the SFD
|
781 |
// after its configuration or reconfiguration.
|
782 |
// This issue is not documented at the time of writing this code. It should be in next release of DW1000 User Manual (v2.09, from July 2016).
|
783 |
dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, SYS_CTRL_TXSTRT | SYS_CTRL_TRXOFF); // Request TX start and TRX off at the same time
|
784 |
} // end dwt_configure()
|
785 |
|
786 |
/*! ------------------------------------------------------------------------------------------------------------------
|
787 |
* @fn dwt_setrxantennadelay()
|
788 |
*
|
789 |
* @brief This API function writes the antenna delay (in time units) to RX registers
|
790 |
*
|
791 |
* input parameters:
|
792 |
* @param rxDelay - this is the total (RX) antenna delay value, which
|
793 |
* will be programmed into the RX register
|
794 |
*
|
795 |
* output parameters
|
796 |
*
|
797 |
* no return value
|
798 |
*/
|
799 |
void dwt_setrxantennadelay(uint16 rxDelay)
|
800 |
{ |
801 |
// Set the RX antenna delay for auto TX timestamp adjustment
|
802 |
dwt_write16bitoffsetreg(LDE_IF_ID, LDE_RXANTD_OFFSET, rxDelay); |
803 |
} |
804 |
|
805 |
/*! ------------------------------------------------------------------------------------------------------------------
|
806 |
* @fn dwt_settxantennadelay()
|
807 |
*
|
808 |
* @brief This API function writes the antenna delay (in time units) to TX registers
|
809 |
*
|
810 |
* input parameters:
|
811 |
* @param txDelay - this is the total (TX) antenna delay value, which
|
812 |
* will be programmed into the TX delay register
|
813 |
*
|
814 |
* output parameters
|
815 |
*
|
816 |
* no return value
|
817 |
*/
|
818 |
void dwt_settxantennadelay(uint16 txDelay)
|
819 |
{ |
820 |
// Set the TX antenna delay for auto TX timestamp adjustment
|
821 |
dwt_write16bitoffsetreg(TX_ANTD_ID, TX_ANTD_OFFSET, txDelay); |
822 |
} |
823 |
|
824 |
/*! ------------------------------------------------------------------------------------------------------------------
|
825 |
* @fn dwt_writetxdata()
|
826 |
*
|
827 |
* @brief This API function writes the supplied TX data into the DW1000's
|
828 |
* TX buffer. The input parameters are the data length in bytes and a pointer
|
829 |
* to those data bytes.
|
830 |
*
|
831 |
* input parameters
|
832 |
* @param txFrameLength - This is the total frame length, including the two byte CRC.
|
833 |
* Note: this is the length of TX message (including the 2 byte CRC) - max is 1023
|
834 |
* standard PHR mode allows up to 127 bytes
|
835 |
* if > 127 is programmed, DWT_PHRMODE_EXT needs to be set in the phrMode configuration
|
836 |
* see dwt_configure function
|
837 |
* @param txFrameBytes - Pointer to the user?s buffer containing the data to send.
|
838 |
* @param txBufferOffset - This specifies an offset in the DW1000?s TX Buffer at which to start writing data.
|
839 |
*
|
840 |
* output parameters
|
841 |
*
|
842 |
* returns DWT_SUCCESS for success, or DWT_ERROR for error
|
843 |
*/
|
844 |
int dwt_writetxdata(uint16 txFrameLength, uint8 *txFrameBytes, uint16 txBufferOffset)
|
845 |
{ |
846 |
#ifdef DWT_API_ERROR_CHECK
|
847 |
assert(txFrameLength >= 2);
|
848 |
assert((pdw1000local->longFrames && (txFrameLength <= 1023)) || (txFrameLength <= 127)); |
849 |
assert((txBufferOffset + txFrameLength) <= 1024);
|
850 |
#endif
|
851 |
|
852 |
if ((txBufferOffset + txFrameLength) <= 1024) |
853 |
{ |
854 |
// Write the data to the IC TX buffer, (-2 bytes for auto generated CRC)
|
855 |
dwt_writetodevice( TX_BUFFER_ID, txBufferOffset, txFrameLength-2, txFrameBytes);
|
856 |
return DWT_SUCCESS;
|
857 |
} |
858 |
else
|
859 |
{ |
860 |
return DWT_ERROR;
|
861 |
} |
862 |
} // end dwt_writetxdata()
|
863 |
|
864 |
/*! ------------------------------------------------------------------------------------------------------------------
|
865 |
* @fn dwt_writetxfctrl()
|
866 |
*
|
867 |
* @brief This API function configures the TX frame control register before the transmission of a frame
|
868 |
*
|
869 |
* input parameters:
|
870 |
* @param txFrameLength - this is the length of TX message (including the 2 byte CRC) - max is 1023
|
871 |
* NOTE: standard PHR mode allows up to 127 bytes
|
872 |
* if > 127 is programmed, DWT_PHRMODE_EXT needs to be set in the phrMode configuration
|
873 |
* see dwt_configure function
|
874 |
* @param txBufferOffset - the offset in the tx buffer to start writing the data
|
875 |
* @param ranging - 1 if this is a ranging frame, else 0
|
876 |
*
|
877 |
* output parameters
|
878 |
*
|
879 |
* no return value
|
880 |
*/
|
881 |
void dwt_writetxfctrl(uint16 txFrameLength, uint16 txBufferOffset, int ranging) |
882 |
{ |
883 |
|
884 |
#ifdef DWT_API_ERROR_CHECK
|
885 |
assert((pdw1000local->longFrames && (txFrameLength <= 1023)) || (txFrameLength <= 127)); |
886 |
assert((txBufferOffset + txFrameLength) <= 1024);
|
887 |
assert((ranging == 0) || (ranging == 1)) |
888 |
#endif
|
889 |
|
890 |
// Write the frame length to the TX frame control register
|
891 |
// pdw1000local->txFCTRL has kept configured bit rate information
|
892 |
uint32 reg32 = pdw1000local->txFCTRL | txFrameLength | ((uint32)txBufferOffset << TX_FCTRL_TXBOFFS_SHFT) | ((uint32)ranging << TX_FCTRL_TR_SHFT); |
893 |
dwt_write32bitreg(TX_FCTRL_ID, reg32); |
894 |
} // end dwt_writetxfctrl()
|
895 |
|
896 |
|
897 |
/*! ------------------------------------------------------------------------------------------------------------------
|
898 |
* @fn dwt_readrxdata()
|
899 |
*
|
900 |
* @brief This is used to read the data from the RX buffer, from an offset location give by offset parameter
|
901 |
*
|
902 |
* input parameters
|
903 |
* @param buffer - the buffer into which the data will be read
|
904 |
* @param length - the length of data to read (in bytes)
|
905 |
* @param rxBufferOffset - the offset in the rx buffer from which to read the data
|
906 |
*
|
907 |
* output parameters
|
908 |
*
|
909 |
* no return value
|
910 |
*/
|
911 |
void dwt_readrxdata(uint8 *buffer, uint16 length, uint16 rxBufferOffset)
|
912 |
{ |
913 |
dwt_readfromdevice(RX_BUFFER_ID,rxBufferOffset,length,buffer) ; |
914 |
} |
915 |
|
916 |
/*! ------------------------------------------------------------------------------------------------------------------
|
917 |
* @fn dwt_readaccdata()
|
918 |
*
|
919 |
* @brief This is used to read the data from the Accumulator buffer, from an offset location give by offset parameter
|
920 |
*
|
921 |
* NOTE: Because of an internal memory access delay when reading the accumulator the first octet output is a dummy octet
|
922 |
* that should be discarded. This is true no matter what sub-index the read begins at.
|
923 |
*
|
924 |
* input parameters
|
925 |
* @param buffer - the buffer into which the data will be read
|
926 |
* @param length - the length of data to read (in bytes)
|
927 |
* @param accOffset - the offset in the acc buffer from which to read the data
|
928 |
*
|
929 |
* output parameters
|
930 |
*
|
931 |
* no return value
|
932 |
*/
|
933 |
void dwt_readaccdata(uint8 *buffer, uint16 len, uint16 accOffset)
|
934 |
{ |
935 |
// Force on the ACC clocks if we are sequenced
|
936 |
_dwt_enableclocks(READ_ACC_ON); |
937 |
|
938 |
dwt_readfromdevice(ACC_MEM_ID,accOffset,len,buffer) ; |
939 |
|
940 |
_dwt_enableclocks(READ_ACC_OFF); // Revert clocks back
|
941 |
} |
942 |
|
943 |
/*! ------------------------------------------------------------------------------------------------------------------
|
944 |
* @fn dwt_readcarrierintegrator()
|
945 |
*
|
946 |
* @brief This is used to read the RX carrier integrator value (relating to the frequency offset of the TX node)
|
947 |
*
|
948 |
* NOTE: This is a 21-bit signed quantity, the function sign extends the most significant bit, which is bit #20
|
949 |
* (numbering from bit zero) to return a 32-bit signed integer value.
|
950 |
*
|
951 |
* input parameters - NONE
|
952 |
*
|
953 |
* return value - the (int32) signed carrier integrator value.
|
954 |
* A positive value means the local RX clock is running faster than the remote TX device.
|
955 |
*/
|
956 |
|
957 |
#define B20_SIGN_EXTEND_TEST (0x00100000UL) |
958 |
#define B20_SIGN_EXTEND_MASK (0xFFF00000UL) |
959 |
|
960 |
int32 dwt_readcarrierintegrator(void)
|
961 |
{ |
962 |
uint32 regval = 0 ;
|
963 |
int j ;
|
964 |
uint8 buffer[DRX_CARRIER_INT_LEN] ; |
965 |
|
966 |
/* Read 3 bytes into buffer (21-bit quantity) */
|
967 |
|
968 |
dwt_readfromdevice(DRX_CONF_ID,DRX_CARRIER_INT_OFFSET,DRX_CARRIER_INT_LEN, buffer) ; |
969 |
|
970 |
for (j = 2 ; j >= 0 ; j --) // arrange the three bytes into an unsigned integer value |
971 |
{ |
972 |
regval = (regval << 8) + buffer[j] ;
|
973 |
} |
974 |
|
975 |
if (regval & B20_SIGN_EXTEND_TEST) regval |= B20_SIGN_EXTEND_MASK ; // sign extend bit #20 to whole word |
976 |
else regval &= DRX_CARRIER_INT_MASK ; // make sure upper bits are clear if not sign extending |
977 |
|
978 |
return (int32) regval ; // cast unsigned value to signed quantity. |
979 |
} |
980 |
|
981 |
/*! ------------------------------------------------------------------------------------------------------------------
|
982 |
* @fn dwt_readdiagnostics()
|
983 |
*
|
984 |
* @brief this function reads the RX signal quality diagnostic data
|
985 |
*
|
986 |
* input parameters
|
987 |
* @param diagnostics - diagnostic structure pointer, this will contain the diagnostic data read from the DW1000
|
988 |
*
|
989 |
* output parameters
|
990 |
*
|
991 |
* no return value
|
992 |
*/
|
993 |
void dwt_readdiagnostics(dwt_rxdiag_t *diagnostics)
|
994 |
{ |
995 |
// Read the HW FP index
|
996 |
diagnostics->firstPath = dwt_read16bitoffsetreg(RX_TIME_ID, RX_TIME_FP_INDEX_OFFSET); |
997 |
|
998 |
// LDE diagnostic data
|
999 |
diagnostics->maxNoise = dwt_read16bitoffsetreg(LDE_IF_ID, LDE_THRESH_OFFSET); |
1000 |
|
1001 |
// Read all 8 bytes in one SPI transaction
|
1002 |
dwt_readfromdevice(RX_FQUAL_ID, 0x0, 8, (uint8*)&diagnostics->stdNoise); |
1003 |
|
1004 |
diagnostics->firstPathAmp1 = dwt_read16bitoffsetreg(RX_TIME_ID, RX_TIME_FP_AMPL1_OFFSET); |
1005 |
|
1006 |
diagnostics->rxPreamCount = (dwt_read32bitreg(RX_FINFO_ID) & RX_FINFO_RXPACC_MASK) >> RX_FINFO_RXPACC_SHIFT ; |
1007 |
} |
1008 |
|
1009 |
/*! ------------------------------------------------------------------------------------------------------------------
|
1010 |
* @fn dwt_readtxtimestamp()
|
1011 |
*
|
1012 |
* @brief This is used to read the TX timestamp (adjusted with the programmed antenna delay)
|
1013 |
*
|
1014 |
* input parameters
|
1015 |
* @param timestamp - a pointer to a 5-byte buffer which will store the read TX timestamp time
|
1016 |
*
|
1017 |
* output parameters - the timestamp buffer will contain the value after the function call
|
1018 |
*
|
1019 |
* no return value
|
1020 |
*/
|
1021 |
void dwt_readtxtimestamp(uint8 * timestamp)
|
1022 |
{ |
1023 |
dwt_readfromdevice(TX_TIME_ID, TX_TIME_TX_STAMP_OFFSET, TX_TIME_TX_STAMP_LEN, timestamp) ; // Read bytes directly into buffer
|
1024 |
} |
1025 |
|
1026 |
/*! ------------------------------------------------------------------------------------------------------------------
|
1027 |
* @fn dwt_readtxtimestamphi32()
|
1028 |
*
|
1029 |
* @brief This is used to read the high 32-bits of the TX timestamp (adjusted with the programmed antenna delay)
|
1030 |
*
|
1031 |
* input parameters
|
1032 |
*
|
1033 |
* output parameters
|
1034 |
*
|
1035 |
* returns high 32-bits of TX timestamp
|
1036 |
*/
|
1037 |
uint32 dwt_readtxtimestamphi32(void)
|
1038 |
{ |
1039 |
return dwt_read32bitoffsetreg(TX_TIME_ID, 1); // Offset is 1 to get the 4 upper bytes out of 5 |
1040 |
} |
1041 |
|
1042 |
/*! ------------------------------------------------------------------------------------------------------------------
|
1043 |
* @fn dwt_readtxtimestamplo32()
|
1044 |
*
|
1045 |
* @brief This is used to read the low 32-bits of the TX timestamp (adjusted with the programmed antenna delay)
|
1046 |
*
|
1047 |
* input parameters
|
1048 |
*
|
1049 |
* output parameters
|
1050 |
*
|
1051 |
* returns low 32-bits of TX timestamp
|
1052 |
*/
|
1053 |
uint32 dwt_readtxtimestamplo32(void)
|
1054 |
{ |
1055 |
return dwt_read32bitreg(TX_TIME_ID); // Read TX TIME as a 32-bit register to get the 4 lower bytes out of 5 |
1056 |
} |
1057 |
|
1058 |
/*! ------------------------------------------------------------------------------------------------------------------
|
1059 |
* @fn dwt_readrxtimestamp()
|
1060 |
*
|
1061 |
* @brief This is used to read the RX timestamp (adjusted time of arrival)
|
1062 |
*
|
1063 |
* input parameters
|
1064 |
* @param timestamp - a pointer to a 5-byte buffer which will store the read RX timestamp time
|
1065 |
*
|
1066 |
* output parameters - the timestamp buffer will contain the value after the function call
|
1067 |
*
|
1068 |
* no return value
|
1069 |
*/
|
1070 |
void dwt_readrxtimestamp(uint8 * timestamp)
|
1071 |
{ |
1072 |
dwt_readfromdevice(RX_TIME_ID, RX_TIME_RX_STAMP_OFFSET, RX_TIME_RX_STAMP_LEN, timestamp) ; // Get the adjusted time of arrival
|
1073 |
} |
1074 |
|
1075 |
/*! ------------------------------------------------------------------------------------------------------------------
|
1076 |
* @fn dwt_readrxtimestamphi32()
|
1077 |
*
|
1078 |
* @brief This is used to read the high 32-bits of the RX timestamp (adjusted with the programmed antenna delay)
|
1079 |
*
|
1080 |
* input parameters
|
1081 |
*
|
1082 |
* output parameters
|
1083 |
*
|
1084 |
* returns high 32-bits of RX timestamp
|
1085 |
*/
|
1086 |
uint32 dwt_readrxtimestamphi32(void)
|
1087 |
{ |
1088 |
return dwt_read32bitoffsetreg(RX_TIME_ID, 1); // Offset is 1 to get the 4 upper bytes out of 5 |
1089 |
} |
1090 |
|
1091 |
/*! ------------------------------------------------------------------------------------------------------------------
|
1092 |
* @fn dwt_readrxtimestamplo32()
|
1093 |
*
|
1094 |
* @brief This is used to read the low 32-bits of the RX timestamp (adjusted with the programmed antenna delay)
|
1095 |
*
|
1096 |
* input parameters
|
1097 |
*
|
1098 |
* output parameters
|
1099 |
*
|
1100 |
* returns low 32-bits of RX timestamp
|
1101 |
*/
|
1102 |
uint32 dwt_readrxtimestamplo32(void)
|
1103 |
{ |
1104 |
return dwt_read32bitreg(RX_TIME_ID); // Read RX TIME as a 32-bit register to get the 4 lower bytes out of 5 |
1105 |
} |
1106 |
|
1107 |
/*! ------------------------------------------------------------------------------------------------------------------
|
1108 |
* @fn dwt_readsystimestamphi32()
|
1109 |
*
|
1110 |
* @brief This is used to read the high 32-bits of the system time
|
1111 |
*
|
1112 |
* input parameters
|
1113 |
*
|
1114 |
* output parameters
|
1115 |
*
|
1116 |
* returns high 32-bits of system time timestamp
|
1117 |
*/
|
1118 |
uint32 dwt_readsystimestamphi32(void)
|
1119 |
{ |
1120 |
return dwt_read32bitoffsetreg(SYS_TIME_ID, 1); // Offset is 1 to get the 4 upper bytes out of 5 |
1121 |
} |
1122 |
|
1123 |
/*! ------------------------------------------------------------------------------------------------------------------
|
1124 |
* @fn dwt_readsystime()
|
1125 |
*
|
1126 |
* @brief This is used to read the system time
|
1127 |
*
|
1128 |
* input parameters
|
1129 |
* @param timestamp - a pointer to a 5-byte buffer which will store the read system time
|
1130 |
*
|
1131 |
* output parameters
|
1132 |
* @param timestamp - the timestamp buffer will contain the value after the function call
|
1133 |
*
|
1134 |
* no return value
|
1135 |
*/
|
1136 |
void dwt_readsystime(uint8 * timestamp)
|
1137 |
{ |
1138 |
dwt_readfromdevice(SYS_TIME_ID, SYS_TIME_OFFSET, SYS_TIME_LEN, timestamp) ; |
1139 |
} |
1140 |
|
1141 |
/*! ------------------------------------------------------------------------------------------------------------------
|
1142 |
* @fn dwt_writetodevice()
|
1143 |
*
|
1144 |
* @brief this function is used to write to the DW1000 device registers
|
1145 |
* Notes:
|
1146 |
* 1. Firstly we create a header (the first byte is a header byte)
|
1147 |
* a. check if sub index is used, if subindexing is used - set bit-6 to 1 to signify that the sub-index address follows the register index byte
|
1148 |
* b. set bit-7 (or with 0x80) for write operation
|
1149 |
* c. if extended sub address index is used (i.e. if index > 127) set bit-7 of the first sub-index byte following the first header byte
|
1150 |
*
|
1151 |
* 2. Write the header followed by the data bytes to the DW1000 device
|
1152 |
*
|
1153 |
*
|
1154 |
* input parameters:
|
1155 |
* @param recordNumber - ID of register file or buffer being accessed
|
1156 |
* @param index - byte index into register file or buffer being accessed
|
1157 |
* @param length - number of bytes being written
|
1158 |
* @param buffer - pointer to buffer containing the 'length' bytes to be written
|
1159 |
*
|
1160 |
* output parameters
|
1161 |
*
|
1162 |
* no return value
|
1163 |
*/
|
1164 |
void dwt_writetodevice
|
1165 |
( |
1166 |
uint16 recordNumber, |
1167 |
uint16 index, |
1168 |
uint32 length, |
1169 |
const uint8 *buffer
|
1170 |
) |
1171 |
{ |
1172 |
uint8 header[3] ; // Buffer to compose header in |
1173 |
int cnt = 0; // Counter for length of header |
1174 |
#ifdef DWT_API_ERROR_CHECK
|
1175 |
assert(recordNumber <= 0x3F); // Record number is limited to 6-bits. |
1176 |
#endif
|
1177 |
|
1178 |
// Write message header selecting WRITE operation and addresses as appropriate (this is one to three bytes long)
|
1179 |
if (index == 0) // For index of 0, no sub-index is required |
1180 |
{ |
1181 |
header[cnt++] = 0x80 | recordNumber ; // Bit-7 is WRITE operation, bit-6 zero=NO sub-addressing, bits 5-0 is reg file id |
1182 |
} |
1183 |
else
|
1184 |
{ |
1185 |
#ifdef DWT_API_ERROR_CHECK
|
1186 |
assert((index <= 0x7FFF) && ((index + length) <= 0x7FFF)); // Index and sub-addressable area are limited to 15-bits. |
1187 |
#endif
|
1188 |
header[cnt++] = 0xC0 | recordNumber ; // Bit-7 is WRITE operation, bit-6 one=sub-address follows, bits 5-0 is reg file id |
1189 |
|
1190 |
if (index <= 127) // For non-zero index < 127, just a single sub-index byte is required |
1191 |
{ |
1192 |
header[cnt++] = (uint8)index ; // Bit-7 zero means no extension, bits 6-0 is index.
|
1193 |
} |
1194 |
else
|
1195 |
{ |
1196 |
header[cnt++] = 0x80 | (uint8)(index) ; // Bit-7 one means extended index, bits 6-0 is low seven bits of index. |
1197 |
header[cnt++] = (uint8) (index >> 7) ; // 8-bit value = high eight bits of index. |
1198 |
} |
1199 |
} |
1200 |
|
1201 |
// Write it to the SPI
|
1202 |
writetospi(cnt,header,length,buffer); |
1203 |
} // end dwt_writetodevice()
|
1204 |
|
1205 |
/*! ------------------------------------------------------------------------------------------------------------------
|
1206 |
* @fn dwt_readfromdevice()
|
1207 |
*
|
1208 |
* @brief this function is used to read from the DW1000 device registers
|
1209 |
* Notes:
|
1210 |
* 1. Firstly we create a header (the first byte is a header byte)
|
1211 |
* a. check if sub index is used, if subindexing is used - set bit-6 to 1 to signify that the sub-index address follows the register index byte
|
1212 |
* b. set bit-7 (or with 0x80) for write operation
|
1213 |
* c. if extended sub address index is used (i.e. if index > 127) set bit-7 of the first sub-index byte following the first header byte
|
1214 |
*
|
1215 |
* 2. Write the header followed by the data bytes to the DW1000 device
|
1216 |
* 3. Store the read data in the input buffer
|
1217 |
*
|
1218 |
* input parameters:
|
1219 |
* @param recordNumber - ID of register file or buffer being accessed
|
1220 |
* @param index - byte index into register file or buffer being accessed
|
1221 |
* @param length - number of bytes being read
|
1222 |
* @param buffer - pointer to buffer in which to return the read data.
|
1223 |
*
|
1224 |
* output parameters
|
1225 |
*
|
1226 |
* no return value
|
1227 |
*/
|
1228 |
void dwt_readfromdevice
|
1229 |
( |
1230 |
uint16 recordNumber, |
1231 |
uint16 index, |
1232 |
uint32 length, |
1233 |
uint8 *buffer |
1234 |
) |
1235 |
{ |
1236 |
uint8 header[3] ; // Buffer to compose header in |
1237 |
int cnt = 0; // Counter for length of header |
1238 |
#ifdef DWT_API_ERROR_CHECK
|
1239 |
assert(recordNumber <= 0x3F); // Record number is limited to 6-bits. |
1240 |
#endif
|
1241 |
|
1242 |
// Write message header selecting READ operation and addresses as appropriate (this is one to three bytes long)
|
1243 |
if (index == 0) // For index of 0, no sub-index is required |
1244 |
{ |
1245 |
header[cnt++] = (uint8) recordNumber ; // Bit-7 zero is READ operation, bit-6 zero=NO sub-addressing, bits 5-0 is reg file id
|
1246 |
} |
1247 |
else
|
1248 |
{ |
1249 |
#ifdef DWT_API_ERROR_CHECK
|
1250 |
assert((index <= 0x7FFF) && ((index + length) <= 0x7FFF)); // Index and sub-addressable area are limited to 15-bits. |
1251 |
#endif
|
1252 |
header[cnt++] = (uint8)(0x40 | recordNumber) ; // Bit-7 zero is READ operation, bit-6 one=sub-address follows, bits 5-0 is reg file id |
1253 |
|
1254 |
if (index <= 127) // For non-zero index < 127, just a single sub-index byte is required |
1255 |
{ |
1256 |
header[cnt++] = (uint8) index ; // Bit-7 zero means no extension, bits 6-0 is index.
|
1257 |
} |
1258 |
else
|
1259 |
{ |
1260 |
header[cnt++] = 0x80 | (uint8)(index) ; // Bit-7 one means extended index, bits 6-0 is low seven bits of index. |
1261 |
header[cnt++] = (uint8) (index >> 7) ; // 8-bit value = high eight bits of index. |
1262 |
} |
1263 |
} |
1264 |
|
1265 |
// Do the read from the SPI
|
1266 |
readfromspi(cnt, header, length, buffer); // result is stored in the buffer
|
1267 |
} // end dwt_readfromdevice()
|
1268 |
|
1269 |
|
1270 |
|
1271 |
/*! ------------------------------------------------------------------------------------------------------------------
|
1272 |
* @fn dwt_read32bitoffsetreg()
|
1273 |
*
|
1274 |
* @brief this function is used to read 32-bit value from the DW1000 device registers
|
1275 |
*
|
1276 |
* input parameters:
|
1277 |
* @param regFileID - ID of register file or buffer being accessed
|
1278 |
* @param regOffset - the index into register file or buffer being accessed
|
1279 |
*
|
1280 |
* output parameters
|
1281 |
*
|
1282 |
* returns 32 bit register value
|
1283 |
*/
|
1284 |
uint32 dwt_read32bitoffsetreg(int regFileID, int regOffset) |
1285 |
{ |
1286 |
uint32 regval = 0 ;
|
1287 |
int j ;
|
1288 |
uint8 buffer[4] ;
|
1289 |
|
1290 |
dwt_readfromdevice(regFileID,regOffset,4,buffer); // Read 4 bytes (32-bits) register into buffer |
1291 |
|
1292 |
for (j = 3 ; j >= 0 ; j --) |
1293 |
{ |
1294 |
regval = (regval << 8) + buffer[j] ;
|
1295 |
} |
1296 |
return regval ;
|
1297 |
|
1298 |
} // end dwt_read32bitoffsetreg()
|
1299 |
|
1300 |
/*! ------------------------------------------------------------------------------------------------------------------
|
1301 |
* @fn dwt_read16bitoffsetreg()
|
1302 |
*
|
1303 |
* @brief this function is used to read 16-bit value from the DW1000 device registers
|
1304 |
*
|
1305 |
* input parameters:
|
1306 |
* @param regFileID - ID of register file or buffer being accessed
|
1307 |
* @param regOffset - the index into register file or buffer being accessed
|
1308 |
*
|
1309 |
* output parameters
|
1310 |
*
|
1311 |
* returns 16 bit register value
|
1312 |
*/
|
1313 |
uint16 dwt_read16bitoffsetreg(int regFileID, int regOffset) |
1314 |
{ |
1315 |
uint16 regval = 0 ;
|
1316 |
uint8 buffer[2] ;
|
1317 |
|
1318 |
dwt_readfromdevice(regFileID,regOffset,2,buffer); // Read 2 bytes (16-bits) register into buffer |
1319 |
|
1320 |
regval = ((uint16)buffer[1] << 8) + buffer[0] ; |
1321 |
return regval ;
|
1322 |
|
1323 |
} // end dwt_read16bitoffsetreg()
|
1324 |
|
1325 |
/*! ------------------------------------------------------------------------------------------------------------------
|
1326 |
* @fn dwt_read8bitoffsetreg()
|
1327 |
*
|
1328 |
* @brief this function is used to read an 8-bit value from the DW1000 device registers
|
1329 |
*
|
1330 |
* input parameters:
|
1331 |
* @param regFileID - ID of register file or buffer being accessed
|
1332 |
* @param regOffset - the index into register file or buffer being accessed
|
1333 |
*
|
1334 |
* output parameters
|
1335 |
*
|
1336 |
* returns 8-bit register value
|
1337 |
*/
|
1338 |
uint8 dwt_read8bitoffsetreg(int regFileID, int regOffset) |
1339 |
{ |
1340 |
uint8 regval; |
1341 |
|
1342 |
dwt_readfromdevice(regFileID, regOffset, 1, ®val);
|
1343 |
|
1344 |
return regval ;
|
1345 |
} |
1346 |
|
1347 |
/*! ------------------------------------------------------------------------------------------------------------------
|
1348 |
* @fn dwt_write8bitoffsetreg()
|
1349 |
*
|
1350 |
* @brief this function is used to write an 8-bit value to the DW1000 device registers
|
1351 |
*
|
1352 |
* input parameters:
|
1353 |
* @param regFileID - ID of register file or buffer being accessed
|
1354 |
* @param regOffset - the index into register file or buffer being accessed
|
1355 |
* @param regval - the value to write
|
1356 |
*
|
1357 |
* output parameters
|
1358 |
*
|
1359 |
* no return value
|
1360 |
*/
|
1361 |
void dwt_write8bitoffsetreg(int regFileID, int regOffset, uint8 regval) |
1362 |
{ |
1363 |
dwt_writetodevice(regFileID, regOffset, 1, ®val);
|
1364 |
} |
1365 |
|
1366 |
/*! ------------------------------------------------------------------------------------------------------------------
|
1367 |
* @fn dwt_write16bitoffsetreg()
|
1368 |
*
|
1369 |
* @brief this function is used to write 16-bit value to the DW1000 device registers
|
1370 |
*
|
1371 |
* input parameters:
|
1372 |
* @param regFileID - ID of register file or buffer being accessed
|
1373 |
* @param regOffset - the index into register file or buffer being accessed
|
1374 |
* @param regval - the value to write
|
1375 |
*
|
1376 |
* output parameters
|
1377 |
*
|
1378 |
* no return value
|
1379 |
*/
|
1380 |
void dwt_write16bitoffsetreg(int regFileID, int regOffset, uint16 regval) |
1381 |
{ |
1382 |
uint8 buffer[2] ;
|
1383 |
|
1384 |
buffer[0] = regval & 0xFF; |
1385 |
buffer[1] = regval >> 8 ; |
1386 |
|
1387 |
dwt_writetodevice(regFileID,regOffset,2,buffer);
|
1388 |
} // end dwt_write16bitoffsetreg()
|
1389 |
|
1390 |
/*! ------------------------------------------------------------------------------------------------------------------
|
1391 |
* @fn dwt_write32bitoffsetreg()
|
1392 |
*
|
1393 |
* @brief this function is used to write 32-bit value to the DW1000 device registers
|
1394 |
*
|
1395 |
* input parameters:
|
1396 |
* @param regFileID - ID of register file or buffer being accessed
|
1397 |
* @param regOffset - the index into register file or buffer being accessed
|
1398 |
* @param regval - the value to write
|
1399 |
*
|
1400 |
* output parameters
|
1401 |
*
|
1402 |
* no return value
|
1403 |
*/
|
1404 |
void dwt_write32bitoffsetreg(int regFileID, int regOffset, uint32 regval) |
1405 |
{ |
1406 |
int j ;
|
1407 |
uint8 buffer[4] ;
|
1408 |
|
1409 |
for ( j = 0 ; j < 4 ; j++ ) |
1410 |
{ |
1411 |
buffer[j] = regval & 0xff ;
|
1412 |
regval >>= 8 ;
|
1413 |
} |
1414 |
|
1415 |
dwt_writetodevice(regFileID,regOffset,4,buffer);
|
1416 |
} // end dwt_write32bitoffsetreg()
|
1417 |
|
1418 |
/*! ------------------------------------------------------------------------------------------------------------------
|
1419 |
* @fn dwt_enableframefilter()
|
1420 |
*
|
1421 |
* @brief This is used to enable the frame filtering - (the default option is to
|
1422 |
* accept any data and ACK frames with correct destination address
|
1423 |
*
|
1424 |
* input parameters
|
1425 |
* @param - bitmask - enables/disables the frame filtering options according to
|
1426 |
* DWT_FF_NOTYPE_EN 0x000 no frame types allowed
|
1427 |
* DWT_FF_COORD_EN 0x002 behave as coordinator (can receive frames with no destination address (PAN ID has to match))
|
1428 |
* DWT_FF_BEACON_EN 0x004 beacon frames allowed
|
1429 |
* DWT_FF_DATA_EN 0x008 data frames allowed
|
1430 |
* DWT_FF_ACK_EN 0x010 ack frames allowed
|
1431 |
* DWT_FF_MAC_EN 0x020 mac control frames allowed
|
1432 |
* DWT_FF_RSVD_EN 0x040 reserved frame types allowed
|
1433 |
*
|
1434 |
* output parameters
|
1435 |
*
|
1436 |
* no return value
|
1437 |
*/
|
1438 |
void dwt_enableframefilter(uint16 enable)
|
1439 |
{ |
1440 |
uint32 sysconfig = SYS_CFG_MASK & dwt_read32bitreg(SYS_CFG_ID) ; // Read sysconfig register
|
1441 |
|
1442 |
if(enable)
|
1443 |
{ |
1444 |
// Enable frame filtering and configure frame types
|
1445 |
sysconfig &= ~(SYS_CFG_FF_ALL_EN); // Clear all
|
1446 |
sysconfig |= (enable & SYS_CFG_FF_ALL_EN) | SYS_CFG_FFE; |
1447 |
} |
1448 |
else
|
1449 |
{ |
1450 |
sysconfig &= ~(SYS_CFG_FFE); |
1451 |
} |
1452 |
|
1453 |
pdw1000local->sysCFGreg = sysconfig ; |
1454 |
dwt_write32bitreg(SYS_CFG_ID,sysconfig) ; |
1455 |
} |
1456 |
|
1457 |
/*! ------------------------------------------------------------------------------------------------------------------
|
1458 |
* @fn dwt_setpanid()
|
1459 |
*
|
1460 |
* @brief This is used to set the PAN ID
|
1461 |
*
|
1462 |
* input parameters
|
1463 |
* @param panID - this is the PAN ID
|
1464 |
*
|
1465 |
* output parameters
|
1466 |
*
|
1467 |
* no return value
|
1468 |
*/
|
1469 |
void dwt_setpanid(uint16 panID)
|
1470 |
{ |
1471 |
// PAN ID is high 16 bits of register
|
1472 |
dwt_write16bitoffsetreg(PANADR_ID, PANADR_PAN_ID_OFFSET, panID); |
1473 |
} |
1474 |
|
1475 |
/*! ------------------------------------------------------------------------------------------------------------------
|
1476 |
* @fn dwt_setaddress16()
|
1477 |
*
|
1478 |
* @brief This is used to set 16-bit (short) address
|
1479 |
*
|
1480 |
* input parameters
|
1481 |
* @param shortAddress - this sets the 16 bit short address
|
1482 |
*
|
1483 |
* output parameters
|
1484 |
*
|
1485 |
* no return value
|
1486 |
*/
|
1487 |
void dwt_setaddress16(uint16 shortAddress)
|
1488 |
{ |
1489 |
// Short address into low 16 bits
|
1490 |
dwt_write16bitoffsetreg(PANADR_ID, PANADR_SHORT_ADDR_OFFSET, shortAddress); |
1491 |
} |
1492 |
|
1493 |
/*! ------------------------------------------------------------------------------------------------------------------
|
1494 |
* @fn dwt_seteui()
|
1495 |
*
|
1496 |
* @brief This is used to set the EUI 64-bit (long) address
|
1497 |
*
|
1498 |
* input parameters
|
1499 |
* @param eui64 - this is the pointer to a buffer that contains the 64bit address
|
1500 |
*
|
1501 |
* output parameters
|
1502 |
*
|
1503 |
* no return value
|
1504 |
*/
|
1505 |
void dwt_seteui(uint8 *eui64)
|
1506 |
{ |
1507 |
dwt_writetodevice(EUI_64_ID, EUI_64_OFFSET, EUI_64_LEN, eui64); |
1508 |
} |
1509 |
|
1510 |
/*! ------------------------------------------------------------------------------------------------------------------
|
1511 |
* @fn dwt_geteui()
|
1512 |
*
|
1513 |
* @brief This is used to get the EUI 64-bit from the DW1000
|
1514 |
*
|
1515 |
* input parameters
|
1516 |
* @param eui64 - this is the pointer to a buffer that will contain the read 64-bit EUI value
|
1517 |
*
|
1518 |
* output parameters
|
1519 |
*
|
1520 |
* no return value
|
1521 |
*/
|
1522 |
void dwt_geteui(uint8 *eui64)
|
1523 |
{ |
1524 |
dwt_readfromdevice(EUI_64_ID, EUI_64_OFFSET, EUI_64_LEN, eui64); |
1525 |
} |
1526 |
|
1527 |
/*! ------------------------------------------------------------------------------------------------------------------
|
1528 |
* @fn dwt_otpread()
|
1529 |
*
|
1530 |
* @brief This is used to read the OTP data from given address into provided array
|
1531 |
*
|
1532 |
* input parameters
|
1533 |
* @param address - this is the OTP address to read from
|
1534 |
* @param array - this is the pointer to the array into which to read the data
|
1535 |
* @param length - this is the number of 32 bit words to read (array needs to be at least this length)
|
1536 |
*
|
1537 |
* output parameters
|
1538 |
*
|
1539 |
* no return value
|
1540 |
*/
|
1541 |
void dwt_otpread(uint16 address, uint32 *array, uint8 length)
|
1542 |
{ |
1543 |
int i;
|
1544 |
|
1545 |
_dwt_enableclocks(FORCE_SYS_XTI); // NOTE: Set system clock to XTAL - this is necessary to make sure the values read by _dwt_otpread are reliable
|
1546 |
|
1547 |
for(i=0; i<length; i++) |
1548 |
{ |
1549 |
array[i] = _dwt_otpread(address + i) ; |
1550 |
} |
1551 |
|
1552 |
_dwt_enableclocks(ENABLE_ALL_SEQ); // Restore system clock to PLL
|
1553 |
|
1554 |
return ;
|
1555 |
} |
1556 |
|
1557 |
/*! ------------------------------------------------------------------------------------------------------------------
|
1558 |
* @fn _dwt_otpread()
|
1559 |
*
|
1560 |
* @brief function to read the OTP memory. Ensure that MR,MRa,MRb are reset to 0.
|
1561 |
*
|
1562 |
* input parameters
|
1563 |
* @param address - address to read at
|
1564 |
*
|
1565 |
* output parameters
|
1566 |
*
|
1567 |
* returns the 32bit of read data
|
1568 |
*/
|
1569 |
uint32 _dwt_otpread(uint16 address) |
1570 |
{ |
1571 |
uint32 ret_data; |
1572 |
|
1573 |
// Write the address
|
1574 |
dwt_write16bitoffsetreg(OTP_IF_ID, OTP_ADDR, address); |
1575 |
|
1576 |
// Perform OTP Read - Manual read mode has to be set
|
1577 |
dwt_write8bitoffsetreg(OTP_IF_ID, OTP_CTRL, OTP_CTRL_OTPREAD | OTP_CTRL_OTPRDEN); |
1578 |
dwt_write8bitoffsetreg(OTP_IF_ID, OTP_CTRL, 0x00); // OTPREAD is self clearing but OTPRDEN is not |
1579 |
|
1580 |
// Read read data, available 40ns after rising edge of OTP_READ
|
1581 |
ret_data = dwt_read32bitoffsetreg(OTP_IF_ID, OTP_RDAT); |
1582 |
|
1583 |
// Return the 32bit of read data
|
1584 |
return ret_data;
|
1585 |
} |
1586 |
|
1587 |
/*! ------------------------------------------------------------------------------------------------------------------
|
1588 |
* @fn _dwt_otpsetmrregs()
|
1589 |
*
|
1590 |
* @brief Configure the MR registers for initial programming (enable charge pump).
|
1591 |
* Read margin is used to stress the read back from the
|
1592 |
* programmed bit. In normal operation this is relaxed.
|
1593 |
*
|
1594 |
* input parameters
|
1595 |
* @param mode - "0" : Reset all to 0x0: MRA=0x0000, MRB=0x0000, MR=0x0000
|
1596 |
* "1" : Set for inital programming: MRA=0x9220, MRB=0x000E, MR=0x1024
|
1597 |
* "2" : Set for soak programming: MRA=0x9220, MRB=0x0003, MR=0x1824
|
1598 |
* "3" : High Vpp: MRA=0x9220, MRB=0x004E, MR=0x1824
|
1599 |
* "4" : Low Read Margin: MRA=0x0000, MRB=0x0003, MR=0x0000
|
1600 |
* "5" : Array Clean: MRA=0x0049, MRB=0x0003, MR=0x0024
|
1601 |
* "4" : Very Low Read Margin: MRA=0x0000, MRB=0x0003, MR=0x0000
|
1602 |
*
|
1603 |
* output parameters
|
1604 |
*
|
1605 |
* returns DWT_SUCCESS for success, or DWT_ERROR for error
|
1606 |
*/
|
1607 |
uint32 _dwt_otpsetmrregs(int mode)
|
1608 |
{ |
1609 |
uint8 wr_buf[4];
|
1610 |
uint32 mra=0,mrb=0,mr=0; |
1611 |
|
1612 |
// PROGRAMME MRA
|
1613 |
// Set MRA, MODE_SEL
|
1614 |
wr_buf[0] = 0x03; |
1615 |
dwt_writetodevice(OTP_IF_ID, OTP_CTRL+1,1,wr_buf); |
1616 |
|
1617 |
// Load data
|
1618 |
switch(mode&0x0f) { |
1619 |
case 0x0 : |
1620 |
mr =0x0000;
|
1621 |
mra=0x0000;
|
1622 |
mrb=0x0000;
|
1623 |
break;
|
1624 |
case 0x1 : |
1625 |
mr =0x1024;
|
1626 |
mra=0x9220; // Enable CPP mon |
1627 |
mrb=0x000e;
|
1628 |
break;
|
1629 |
case 0x2 : |
1630 |
mr =0x1824;
|
1631 |
mra=0x9220;
|
1632 |
mrb=0x0003;
|
1633 |
break;
|
1634 |
case 0x3 : |
1635 |
mr =0x1824;
|
1636 |
mra=0x9220;
|
1637 |
mrb=0x004e;
|
1638 |
break;
|
1639 |
case 0x4 : |
1640 |
mr =0x0000;
|
1641 |
mra=0x0000;
|
1642 |
mrb=0x0003;
|
1643 |
break;
|
1644 |
case 0x5 : |
1645 |
mr =0x0024;
|
1646 |
mra=0x0000;
|
1647 |
mrb=0x0003;
|
1648 |
break;
|
1649 |
default :
|
1650 |
return DWT_ERROR;
|
1651 |
} |
1652 |
|
1653 |
wr_buf[0] = mra & 0x00ff; |
1654 |
wr_buf[1] = (mra & 0xff00)>>8; |
1655 |
dwt_writetodevice(OTP_IF_ID, OTP_WDAT,2,wr_buf);
|
1656 |
|
1657 |
|
1658 |
// Set WRITE_MR
|
1659 |
wr_buf[0] = 0x08; |
1660 |
dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf);
|
1661 |
|
1662 |
// Wait?
|
1663 |
deca_sleep(2);
|
1664 |
|
1665 |
// Set Clear Mode sel
|
1666 |
wr_buf[0] = 0x02; |
1667 |
dwt_writetodevice(OTP_IF_ID,OTP_CTRL+1,1,wr_buf); |
1668 |
|
1669 |
// Set AUX update, write MR
|
1670 |
wr_buf[0] = 0x88; |
1671 |
dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf);
|
1672 |
// Clear write MR
|
1673 |
wr_buf[0] = 0x80; |
1674 |
dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf);
|
1675 |
// Clear AUX update
|
1676 |
wr_buf[0] = 0x00; |
1677 |
dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf);
|
1678 |
|
1679 |
///////////////////////////////////////////
|
1680 |
// PROGRAM MRB
|
1681 |
// Set SLOW, MRB, MODE_SEL
|
1682 |
wr_buf[0] = 0x05; |
1683 |
dwt_writetodevice(OTP_IF_ID,OTP_CTRL+1,1,wr_buf); |
1684 |
|
1685 |
wr_buf[0] = mrb & 0x00ff; |
1686 |
wr_buf[1] = (mrb & 0xff00)>>8; |
1687 |
dwt_writetodevice(OTP_IF_ID, OTP_WDAT,2,wr_buf);
|
1688 |
|
1689 |
// Set WRITE_MR
|
1690 |
wr_buf[0] = 0x08; |
1691 |
dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf);
|
1692 |
|
1693 |
// Wait?
|
1694 |
deca_sleep(2);
|
1695 |
|
1696 |
// Set Clear Mode sel
|
1697 |
wr_buf[0] = 0x04; |
1698 |
dwt_writetodevice(OTP_IF_ID,OTP_CTRL+1,1,wr_buf); |
1699 |
|
1700 |
// Set AUX update, write MR
|
1701 |
wr_buf[0] = 0x88; |
1702 |
dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf);
|
1703 |
// Clear write MR
|
1704 |
wr_buf[0] = 0x80; |
1705 |
dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf);
|
1706 |
// Clear AUX update
|
1707 |
wr_buf[0] = 0x00; |
1708 |
dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf);
|
1709 |
|
1710 |
///////////////////////////////////////////
|
1711 |
// PROGRAM MR
|
1712 |
// Set SLOW, MODE_SEL
|
1713 |
wr_buf[0] = 0x01; |
1714 |
dwt_writetodevice(OTP_IF_ID,OTP_CTRL+1,1,wr_buf); |
1715 |
// Load data
|
1716 |
|
1717 |
wr_buf[0] = mr & 0x00ff; |
1718 |
wr_buf[1] = (mr & 0xff00)>>8; |
1719 |
dwt_writetodevice(OTP_IF_ID, OTP_WDAT,2,wr_buf);
|
1720 |
|
1721 |
// Set WRITE_MR
|
1722 |
wr_buf[0] = 0x08; |
1723 |
dwt_writetodevice(OTP_IF_ID, OTP_CTRL,1,wr_buf);
|
1724 |
|
1725 |
// Wait?
|
1726 |
deca_sleep(2);
|
1727 |
// Set Clear Mode sel
|
1728 |
wr_buf[0] = 0x00; |
1729 |
dwt_writetodevice(OTP_IF_ID,OTP_CTRL+1,1,wr_buf); |
1730 |
|
1731 |
return DWT_SUCCESS;
|
1732 |
} |
1733 |
|
1734 |
/*! ------------------------------------------------------------------------------------------------------------------
|
1735 |
* @fn _dwt_otpprogword32()
|
1736 |
*
|
1737 |
* @brief function to program the OTP memory. Ensure that MR,MRa,MRb are reset to 0.
|
1738 |
* VNM Charge pump needs to be enabled (see _dwt_otpsetmrregs)
|
1739 |
* Note the address is only 11 bits long.
|
1740 |
*
|
1741 |
* input parameters
|
1742 |
* @param address - address to read at
|
1743 |
*
|
1744 |
* output parameters
|
1745 |
*
|
1746 |
* returns DWT_SUCCESS for success, or DWT_ERROR for error
|
1747 |
*/
|
1748 |
uint32 _dwt_otpprogword32(uint32 data, uint16 address) |
1749 |
{ |
1750 |
uint8 rd_buf[1];
|
1751 |
uint8 wr_buf[4];
|
1752 |
uint8 otp_done; |
1753 |
|
1754 |
// Write the data
|
1755 |
wr_buf[3] = (data>>24) & 0xff; |
1756 |
wr_buf[2] = (data>>16) & 0xff; |
1757 |
wr_buf[1] = (data>>8) & 0xff; |
1758 |
wr_buf[0] = data & 0xff; |
1759 |
dwt_writetodevice(OTP_IF_ID, OTP_WDAT, 4, wr_buf);
|
1760 |
|
1761 |
// Write the address [10:0]
|
1762 |
wr_buf[1] = (address>>8) & 0x07; |
1763 |
wr_buf[0] = address & 0xff; |
1764 |
dwt_writetodevice(OTP_IF_ID, OTP_ADDR, 2, wr_buf);
|
1765 |
|
1766 |
// Enable Sequenced programming
|
1767 |
wr_buf[0] = OTP_CTRL_OTPPROG;
|
1768 |
dwt_writetodevice(OTP_IF_ID, OTP_CTRL, 1, wr_buf);
|
1769 |
wr_buf[0] = 0x00; // And clear |
1770 |
dwt_writetodevice(OTP_IF_ID, OTP_CTRL, 1, wr_buf);
|
1771 |
|
1772 |
// WAIT for status to flag PRGM OK..
|
1773 |
otp_done = 0;
|
1774 |
while(otp_done == 0) |
1775 |
{ |
1776 |
deca_sleep(1);
|
1777 |
dwt_readfromdevice(OTP_IF_ID, OTP_STAT, 1, rd_buf);
|
1778 |
|
1779 |
if((rd_buf[0] & 0x01) == 0x01) |
1780 |
{ |
1781 |
otp_done = 1;
|
1782 |
} |
1783 |
} |
1784 |
|
1785 |
return DWT_SUCCESS;
|
1786 |
} |
1787 |
|
1788 |
/*! ------------------------------------------------------------------------------------------------------------------
|
1789 |
* @fn dwt_otpwriteandverify()
|
1790 |
*
|
1791 |
* @brief This is used to program 32-bit value into the DW1000 OTP memory.
|
1792 |
*
|
1793 |
* input parameters
|
1794 |
* @param value - this is the 32-bit value to be programmed into OTP
|
1795 |
* @param address - this is the 16-bit OTP address into which the 32-bit value is programmed
|
1796 |
*
|
1797 |
* output parameters
|
1798 |
*
|
1799 |
* returns DWT_SUCCESS for success, or DWT_ERROR for error
|
1800 |
*/
|
1801 |
int dwt_otpwriteandverify(uint32 value, uint16 address)
|
1802 |
{ |
1803 |
int prog_ok = DWT_SUCCESS;
|
1804 |
int retry = 0; |
1805 |
// Firstly set the system clock to crystal
|
1806 |
_dwt_enableclocks(FORCE_SYS_XTI); //set system clock to XTI
|
1807 |
|
1808 |
//
|
1809 |
//!!!!!!!!!!!!!! NOTE !!!!!!!!!!!!!!!!!!!!!
|
1810 |
//Set the supply to 3.7V
|
1811 |
//
|
1812 |
|
1813 |
_dwt_otpsetmrregs(1); // Set mode for programming |
1814 |
|
1815 |
// For each value to program - the readback/check is done couple of times to verify it has programmed successfully
|
1816 |
while(1) |
1817 |
{ |
1818 |
_dwt_otpprogword32(value, address); |
1819 |
|
1820 |
if(_dwt_otpread(address) == value)
|
1821 |
{ |
1822 |
break;
|
1823 |
} |
1824 |
retry++; |
1825 |
if(retry==10) |
1826 |
{ |
1827 |
break;
|
1828 |
} |
1829 |
} |
1830 |
|
1831 |
// Even if the above does not exit before retry reaches 10, the programming has probably been successful
|
1832 |
|
1833 |
_dwt_otpsetmrregs(4); // Set mode for reading |
1834 |
|
1835 |
if(_dwt_otpread(address) != value) // If this does not pass please check voltage supply on VDDIO |
1836 |
{ |
1837 |
prog_ok = DWT_ERROR; |
1838 |
} |
1839 |
|
1840 |
_dwt_otpsetmrregs(0); // Setting OTP mode register for low RM read - resetting the device would be alternative |
1841 |
|
1842 |
return prog_ok;
|
1843 |
} |
1844 |
|
1845 |
/*! ------------------------------------------------------------------------------------------------------------------
|
1846 |
* @fn _dwt_aonconfigupload()
|
1847 |
*
|
1848 |
* @brief This function uploads always on (AON) configuration, as set in the AON_CFG0_OFFSET register.
|
1849 |
*
|
1850 |
* input parameters
|
1851 |
*
|
1852 |
* output parameters
|
1853 |
*
|
1854 |
* no return value
|
1855 |
*/
|
1856 |
void _dwt_aonconfigupload(void) |
1857 |
{ |
1858 |
dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, AON_CTRL_UPL_CFG); |
1859 |
dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, 0x00); // Clear the register |
1860 |
} |
1861 |
|
1862 |
/*! ------------------------------------------------------------------------------------------------------------------
|
1863 |
* @fn _dwt_aonarrayupload()
|
1864 |
*
|
1865 |
* @brief This function uploads always on (AON) data array and configuration. Thus if this function is used, then _dwt_aonconfigupload
|
1866 |
* is not necessary. The DW1000 will go so SLEEP straight after this if the DWT_SLP_EN has been set.
|
1867 |
*
|
1868 |
* input parameters
|
1869 |
*
|
1870 |
* output parameters
|
1871 |
*
|
1872 |
* no return value
|
1873 |
*/
|
1874 |
void _dwt_aonarrayupload(void) |
1875 |
{ |
1876 |
dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, 0x00); // Clear the register |
1877 |
dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, AON_CTRL_SAVE); |
1878 |
} |
1879 |
|
1880 |
/*! ------------------------------------------------------------------------------------------------------------------
|
1881 |
* @fn dwt_entersleep()
|
1882 |
*
|
1883 |
* @brief This function puts the device into deep sleep or sleep. dwt_configuresleep() should be called first
|
1884 |
* to configure the sleep and on-wake/wake-up parameters
|
1885 |
*
|
1886 |
* input parameters
|
1887 |
*
|
1888 |
* output parameters
|
1889 |
*
|
1890 |
* no return value
|
1891 |
*/
|
1892 |
void dwt_entersleep(void) |
1893 |
{ |
1894 |
// Copy config to AON - upload the new configuration
|
1895 |
_dwt_aonarrayupload(); |
1896 |
} |
1897 |
|
1898 |
/*! ------------------------------------------------------------------------------------------------------------------
|
1899 |
* @fn dwt_configuresleepcnt()
|
1900 |
*
|
1901 |
* @brief sets the sleep counter to new value, this function programs the high 16-bits of the 28-bit counter
|
1902 |
*
|
1903 |
* NOTE: this function needs to be run before dwt_configuresleep, also the SPI frequency has to be < 3MHz
|
1904 |
*
|
1905 |
* input parameters
|
1906 |
* @param sleepcnt - this it value of the sleep counter to program
|
1907 |
*
|
1908 |
* output parameters
|
1909 |
*
|
1910 |
* no return value
|
1911 |
*/
|
1912 |
void dwt_configuresleepcnt(uint16 sleepcnt)
|
1913 |
{ |
1914 |
// Force system clock to crystal
|
1915 |
_dwt_enableclocks(FORCE_SYS_XTI); |
1916 |
|
1917 |
// Reset sleep configuration to make sure we don't accidentally go to sleep
|
1918 |
dwt_write8bitoffsetreg(AON_ID, AON_CFG0_OFFSET, 0x00); // NB: this write change the default LPCLKDIVA value which is not used anyway. |
1919 |
dwt_write8bitoffsetreg(AON_ID, AON_CFG1_OFFSET, 0x00);
|
1920 |
|
1921 |
// Disable the sleep counter
|
1922 |
_dwt_aonconfigupload(); |
1923 |
|
1924 |
// Set new value
|
1925 |
dwt_write16bitoffsetreg(AON_ID, AON_CFG0_OFFSET + AON_CFG0_SLEEP_TIM_OFFSET, sleepcnt); |
1926 |
_dwt_aonconfigupload(); |
1927 |
|
1928 |
// Enable the sleep counter
|
1929 |
dwt_write8bitoffsetreg(AON_ID, AON_CFG1_OFFSET, AON_CFG1_SLEEP_CEN); |
1930 |
_dwt_aonconfigupload(); |
1931 |
|
1932 |
// Put system PLL back on
|
1933 |
_dwt_enableclocks(ENABLE_ALL_SEQ); |
1934 |
} |
1935 |
|
1936 |
|
1937 |
/*! ------------------------------------------------------------------------------------------------------------------
|
1938 |
* @fn dwt_calibratesleepcnt()
|
1939 |
*
|
1940 |
* @brief calibrates the local oscillator as its frequency can vary between 7 and 13kHz depending on temp and voltage
|
1941 |
*
|
1942 |
* NOTE: this function needs to be run before dwt_configuresleepcnt, so that we know what the counter units are
|
1943 |
*
|
1944 |
* input parameters
|
1945 |
*
|
1946 |
* output parameters
|
1947 |
*
|
1948 |
* returns the number of XTAL/2 cycles per low-power oscillator cycle. LP OSC frequency = 19.2 MHz/return value
|
1949 |
*/
|
1950 |
uint16 dwt_calibratesleepcnt(void)
|
1951 |
{ |
1952 |
uint16 result; |
1953 |
|
1954 |
// Enable calibration of the sleep counter
|
1955 |
dwt_write8bitoffsetreg(AON_ID, AON_CFG1_OFFSET, AON_CFG1_LPOSC_CAL); |
1956 |
_dwt_aonconfigupload(); |
1957 |
|
1958 |
// Disable calibration of the sleep counter
|
1959 |
dwt_write8bitoffsetreg(AON_ID, AON_CFG1_OFFSET, 0x00);
|
1960 |
_dwt_aonconfigupload(); |
1961 |
|
1962 |
// Force system clock to crystal
|
1963 |
_dwt_enableclocks(FORCE_SYS_XTI); |
1964 |
|
1965 |
deca_sleep(1);
|
1966 |
|
1967 |
// Read the number of XTAL/2 cycles one LP oscillator cycle took.
|
1968 |
// Set up address - Read upper byte first
|
1969 |
dwt_write8bitoffsetreg(AON_ID, AON_ADDR_OFFSET, AON_ADDR_LPOSC_CAL_1); |
1970 |
|
1971 |
// Enable manual override
|
1972 |
dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, AON_CTRL_DCA_ENAB); |
1973 |
|
1974 |
// Read confirm data that was written
|
1975 |
dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, AON_CTRL_DCA_ENAB | AON_CTRL_DCA_READ); |
1976 |
|
1977 |
// Read back byte from AON
|
1978 |
result = dwt_read8bitoffsetreg(AON_ID, AON_RDAT_OFFSET); |
1979 |
result <<= 8;
|
1980 |
|
1981 |
// Set up address - Read lower byte
|
1982 |
dwt_write8bitoffsetreg(AON_ID, AON_ADDR_OFFSET, AON_ADDR_LPOSC_CAL_0); |
1983 |
|
1984 |
// Enable manual override
|
1985 |
dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, AON_CTRL_DCA_ENAB); |
1986 |
|
1987 |
// Read confirm data that was written
|
1988 |
dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, AON_CTRL_DCA_ENAB | AON_CTRL_DCA_READ); |
1989 |
|
1990 |
// Read back byte from AON
|
1991 |
result |= dwt_read8bitoffsetreg(AON_ID, AON_RDAT_OFFSET); |
1992 |
|
1993 |
// Disable manual override
|
1994 |
dwt_write8bitoffsetreg(AON_ID, AON_CTRL_OFFSET, 0x00);
|
1995 |
|
1996 |
// Put system PLL back on
|
1997 |
_dwt_enableclocks(ENABLE_ALL_SEQ); |
1998 |
|
1999 |
// Returns the number of XTAL/2 cycles per one LP OSC cycle
|
2000 |
// This can be converted into LP OSC frequency by 19.2 MHz/result
|
2001 |
return result;
|
2002 |
} |
2003 |
|
2004 |
/*! ------------------------------------------------------------------------------------------------------------------
|
2005 |
* @fn dwt_configuresleep()
|
2006 |
*
|
2007 |
* @brief configures the device for both DEEP_SLEEP and SLEEP modes, and on-wake mode
|
2008 |
* i.e. before entering the sleep, the device should be programmed for TX or RX, then upon "waking up" the TX/RX settings
|
2009 |
* will be preserved and the device can immediately perform the desired action TX/RX
|
2010 |
*
|
2011 |
* NOTE: e.g. Tag operation - after deep sleep, the device needs to just load the TX buffer and send the frame
|
2012 |
*
|
2013 |
*
|
2014 |
* mode: the array and LDE code (OTP/ROM) and LDO tune, and set sleep persist
|
2015 |
* DWT_PRESRV_SLEEP 0x0100 - preserve sleep
|
2016 |
* DWT_LOADOPSET 0x0080 - load operating parameter set on wakeup
|
2017 |
* DWT_CONFIG 0x0040 - download the AON array into the HIF (configuration download)
|
2018 |
* DWT_LOADEUI 0x0008
|
2019 |
* DWT_GOTORX 0x0002
|
2020 |
* DWT_TANDV 0x0001
|
2021 |
*
|
2022 |
* wake: wake up parameters
|
2023 |
* DWT_XTAL_EN 0x10 - keep XTAL running during sleep
|
2024 |
* DWT_WAKE_SLPCNT 0x8 - wake up after sleep count
|
2025 |
* DWT_WAKE_CS 0x4 - wake up on chip select
|
2026 |
* DWT_WAKE_WK 0x2 - wake up on WAKEUP PIN
|
2027 |
* DWT_SLP_EN 0x1 - enable sleep/deep sleep functionality
|
2028 |
*
|
2029 |
* input parameters
|
2030 |
* @param mode - config on-wake parameters
|
2031 |
* @param wake - config wake up parameters
|
2032 |
*
|
2033 |
* output parameters
|
2034 |
*
|
2035 |
* no return value
|
2036 |
*/
|
2037 |
void dwt_configuresleep(uint16 mode, uint8 wake)
|
2038 |
{ |
2039 |
// Add predefined sleep settings before writing the mode
|
2040 |
mode |= pdw1000local->sleep_mode; |
2041 |
dwt_write16bitoffsetreg(AON_ID, AON_WCFG_OFFSET, mode); |
2042 |
|
2043 |
dwt_write8bitoffsetreg(AON_ID, AON_CFG0_OFFSET, wake); |
2044 |
} |
2045 |
|
2046 |
/*! ------------------------------------------------------------------------------------------------------------------
|
2047 |
* @fn dwt_entersleepaftertx(int enable)
|
2048 |
*
|
2049 |
* @brief sets the auto TX to sleep bit. This means that after a frame
|
2050 |
* transmission the device will enter deep sleep mode. The dwt_configuresleep() function
|
2051 |
* needs to be called before this to configure the on-wake settings
|
2052 |
*
|
2053 |
* NOTE: the IRQ line has to be low/inactive (i.e. no pending events)
|
2054 |
*
|
2055 |
* input parameters
|
2056 |
* @param enable - 1 to configure the device to enter deep sleep after TX, 0 - disables the configuration
|
2057 |
*
|
2058 |
* output parameters
|
2059 |
*
|
2060 |
* no return value
|
2061 |
*/
|
2062 |
void dwt_entersleepaftertx(int enable) |
2063 |
{ |
2064 |
uint32 reg = dwt_read32bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET); |
2065 |
// Set the auto TX -> sleep bit
|
2066 |
if(enable)
|
2067 |
{ |
2068 |
reg |= PMSC_CTRL1_ATXSLP; |
2069 |
} |
2070 |
else
|
2071 |
{ |
2072 |
reg &= ~(PMSC_CTRL1_ATXSLP); |
2073 |
} |
2074 |
dwt_write32bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET, reg); |
2075 |
} |
2076 |
|
2077 |
|
2078 |
/*! ------------------------------------------------------------------------------------------------------------------
|
2079 |
* @fn dwt_spicswakeup()
|
2080 |
*
|
2081 |
* @brief wake up the device from sleep mode using the SPI read,
|
2082 |
* the device will wake up on chip select line going low if the line is held low for at least 500us.
|
2083 |
* To define the length depending on the time one wants to hold
|
2084 |
* the chip select line low, use the following formula:
|
2085 |
*
|
2086 |
* length (bytes) = time (s) * byte_rate (Hz)
|
2087 |
*
|
2088 |
* where fastest byte_rate is spi_rate (Hz) / 8 if the SPI is sending the bytes back-to-back.
|
2089 |
* To save time and power, a system designer could determine byte_rate value more precisely.
|
2090 |
*
|
2091 |
* NOTE: Alternatively the device can be waken up with WAKE_UP pin if configured for that operation
|
2092 |
*
|
2093 |
* input parameters
|
2094 |
* @param buff - this is a pointer to the dummy buffer which will be used in the SPI read transaction used for the WAKE UP of the device
|
2095 |
* @param length - this is the length of the dummy buffer
|
2096 |
*
|
2097 |
* output parameters
|
2098 |
*
|
2099 |
* returns DWT_SUCCESS for success, or DWT_ERROR for error
|
2100 |
*/
|
2101 |
int dwt_spicswakeup(uint8 *buff, uint16 length)
|
2102 |
{ |
2103 |
if(dwt_readdevid() != DWT_DEVICE_ID) // Device was in deep sleep (the first read fails) |
2104 |
{ |
2105 |
// Need to keep chip select line low for at least 500us
|
2106 |
dwt_readfromdevice(0x0, 0x0, length, buff); // Do a long read to wake up the chip (hold the chip select low) |
2107 |
|
2108 |
// Need 5ms for XTAL to start and stabilise (could wait for PLL lock IRQ status bit !!!)
|
2109 |
// NOTE: Polling of the STATUS register is not possible unless frequency is < 3MHz
|
2110 |
deca_sleep(5);
|
2111 |
} |
2112 |
else
|
2113 |
{ |
2114 |
return DWT_SUCCESS;
|
2115 |
} |
2116 |
// DEBUG - check if still in sleep mode
|
2117 |
if(dwt_readdevid() != DWT_DEVICE_ID)
|
2118 |
{ |
2119 |
return DWT_ERROR;
|
2120 |
} |
2121 |
|
2122 |
return DWT_SUCCESS;
|
2123 |
} |
2124 |
|
2125 |
/*! ------------------------------------------------------------------------------------------------------------------
|
2126 |
* @fn _dwt_configlde()
|
2127 |
*
|
2128 |
* @brief configure LDE algorithm parameters
|
2129 |
*
|
2130 |
* input parameters
|
2131 |
* @param prf - this is the PRF index (0 or 1) 0 corresponds to 16 and 1 to 64 PRF
|
2132 |
*
|
2133 |
* output parameters
|
2134 |
*
|
2135 |
* no return value
|
2136 |
*/
|
2137 |
void _dwt_configlde(int prfIndex) |
2138 |
{ |
2139 |
dwt_write8bitoffsetreg(LDE_IF_ID, LDE_CFG1_OFFSET, LDE_PARAM1); // 8-bit configuration register
|
2140 |
|
2141 |
if(prfIndex)
|
2142 |
{ |
2143 |
dwt_write16bitoffsetreg( LDE_IF_ID, LDE_CFG2_OFFSET, (uint16) LDE_PARAM3_64); // 16-bit LDE configuration tuning register
|
2144 |
} |
2145 |
else
|
2146 |
{ |
2147 |
dwt_write16bitoffsetreg( LDE_IF_ID, LDE_CFG2_OFFSET, (uint16) LDE_PARAM3_16); |
2148 |
} |
2149 |
} |
2150 |
|
2151 |
|
2152 |
/*! ------------------------------------------------------------------------------------------------------------------
|
2153 |
* @fn _dwt_loaducodefromrom()
|
2154 |
*
|
2155 |
* @brief load ucode from OTP MEMORY or ROM
|
2156 |
*
|
2157 |
* input parameters
|
2158 |
*
|
2159 |
* output parameters
|
2160 |
*
|
2161 |
* no return value
|
2162 |
*/
|
2163 |
void _dwt_loaducodefromrom(void) |
2164 |
{ |
2165 |
// Set up clocks
|
2166 |
_dwt_enableclocks(FORCE_LDE); |
2167 |
|
2168 |
// Kick off the LDE load
|
2169 |
dwt_write16bitoffsetreg(OTP_IF_ID, OTP_CTRL, OTP_CTRL_LDELOAD); // Set load LDE kick bit
|
2170 |
|
2171 |
deca_sleep(1); // Allow time for code to upload (should take up to 120 us) |
2172 |
|
2173 |
// Default clocks (ENABLE_ALL_SEQ)
|
2174 |
_dwt_enableclocks(ENABLE_ALL_SEQ); // Enable clocks for sequencing
|
2175 |
} |
2176 |
|
2177 |
/*! ------------------------------------------------------------------------------------------------------------------
|
2178 |
* @fn dwt_loadopsettabfromotp()
|
2179 |
*
|
2180 |
* @brief This is used to select which Operational Parameter Set table to load from OTP memory
|
2181 |
*
|
2182 |
* input parameters
|
2183 |
* @param ops_sel - Operational Parameter Set table to load:
|
2184 |
* DWT_OPSET_64LEN = 0x0 - load the operational parameter set table for 64 length preamble configuration
|
2185 |
* DWT_OPSET_TIGHT = 0x1 - load the operational parameter set table for tight xtal offsets (<1ppm)
|
2186 |
* DWT_OPSET_DEFLT = 0x2 - load the default operational parameter set table (this is loaded from reset)
|
2187 |
*
|
2188 |
* output parameters
|
2189 |
*
|
2190 |
* no return value
|
2191 |
*/
|
2192 |
void dwt_loadopsettabfromotp(uint8 ops_sel)
|
2193 |
{ |
2194 |
uint16 reg = ((ops_sel << OTP_SF_OPS_SEL_SHFT) & OTP_SF_OPS_SEL_MASK) | OTP_SF_OPS_KICK; // Select defined OPS table and trigger its loading
|
2195 |
|
2196 |
// Set up clocks
|
2197 |
_dwt_enableclocks(FORCE_LDE); |
2198 |
|
2199 |
dwt_write16bitoffsetreg(OTP_IF_ID, OTP_SF, reg); |
2200 |
|
2201 |
// Default clocks (ENABLE_ALL_SEQ)
|
2202 |
_dwt_enableclocks(ENABLE_ALL_SEQ); // Enable clocks for sequencing
|
2203 |
|
2204 |
} |
2205 |
|
2206 |
/*! ------------------------------------------------------------------------------------------------------------------
|
2207 |
* @fn dwt_setsmarttxpower()
|
2208 |
*
|
2209 |
* @brief This call enables or disables the smart TX power feature.
|
2210 |
*
|
2211 |
* input parameters
|
2212 |
* @param enable - this enables or disables the TX smart power (1 = enable, 0 = disable)
|
2213 |
*
|
2214 |
* output parameters
|
2215 |
*
|
2216 |
* no return value
|
2217 |
*/
|
2218 |
void dwt_setsmarttxpower(int enable) |
2219 |
{ |
2220 |
// Config system register
|
2221 |
pdw1000local->sysCFGreg = dwt_read32bitreg(SYS_CFG_ID) ; // Read sysconfig register
|
2222 |
|
2223 |
// Disable smart power configuration
|
2224 |
if(enable)
|
2225 |
{ |
2226 |
pdw1000local->sysCFGreg &= ~(SYS_CFG_DIS_STXP) ; |
2227 |
} |
2228 |
else
|
2229 |
{ |
2230 |
pdw1000local->sysCFGreg |= SYS_CFG_DIS_STXP ; |
2231 |
} |
2232 |
|
2233 |
dwt_write32bitreg(SYS_CFG_ID,pdw1000local->sysCFGreg) ; |
2234 |
} |
2235 |
|
2236 |
|
2237 |
/*! ------------------------------------------------------------------------------------------------------------------
|
2238 |
* @fn dwt_enableautoack()
|
2239 |
*
|
2240 |
* @brief This call enables the auto-ACK feature. If the responseDelayTime (parameter) is 0, the ACK will be sent a.s.a.p.
|
2241 |
* otherwise it will be sent with a programmed delay (in symbols), max is 255.
|
2242 |
* NOTE: needs to have frame filtering enabled as well
|
2243 |
*
|
2244 |
* input parameters
|
2245 |
* @param responseDelayTime - if non-zero the ACK is sent after this delay, max is 255.
|
2246 |
*
|
2247 |
* output parameters
|
2248 |
*
|
2249 |
* no return value
|
2250 |
*/
|
2251 |
void dwt_enableautoack(uint8 responseDelayTime)
|
2252 |
{ |
2253 |
// Set auto ACK reply delay
|
2254 |
dwt_write8bitoffsetreg(ACK_RESP_T_ID, ACK_RESP_T_ACK_TIM_OFFSET, responseDelayTime); // In symbols
|
2255 |
// Enable auto ACK
|
2256 |
pdw1000local->sysCFGreg |= SYS_CFG_AUTOACK; |
2257 |
dwt_write32bitreg(SYS_CFG_ID,pdw1000local->sysCFGreg) ; |
2258 |
} |
2259 |
|
2260 |
/*! ------------------------------------------------------------------------------------------------------------------
|
2261 |
* @fn dwt_setdblrxbuffmode()
|
2262 |
*
|
2263 |
* @brief This call enables the double receive buffer mode
|
2264 |
*
|
2265 |
* input parameters
|
2266 |
* @param enable - 1 to enable, 0 to disable the double buffer mode
|
2267 |
*
|
2268 |
* output parameters
|
2269 |
*
|
2270 |
* no return value
|
2271 |
*/
|
2272 |
void dwt_setdblrxbuffmode(int enable) |
2273 |
{ |
2274 |
if(enable)
|
2275 |
{ |
2276 |
// Enable double RX buffer mode
|
2277 |
pdw1000local->sysCFGreg &= ~SYS_CFG_DIS_DRXB; |
2278 |
pdw1000local->dblbuffon = 1;
|
2279 |
} |
2280 |
else
|
2281 |
{ |
2282 |
// Disable double RX buffer mode
|
2283 |
pdw1000local->sysCFGreg |= SYS_CFG_DIS_DRXB; |
2284 |
pdw1000local->dblbuffon = 0;
|
2285 |
} |
2286 |
|
2287 |
dwt_write32bitreg(SYS_CFG_ID,pdw1000local->sysCFGreg) ; |
2288 |
} |
2289 |
|
2290 |
/*! ------------------------------------------------------------------------------------------------------------------
|
2291 |
* @fn dwt_setrxaftertxdelay()
|
2292 |
*
|
2293 |
* @brief This sets the receiver turn on delay time after a transmission of a frame
|
2294 |
*
|
2295 |
* input parameters
|
2296 |
* @param rxDelayTime - (20 bits) - the delay is in UWB microseconds
|
2297 |
*
|
2298 |
* output parameters
|
2299 |
*
|
2300 |
* no return value
|
2301 |
*/
|
2302 |
void dwt_setrxaftertxdelay(uint32 rxDelayTime)
|
2303 |
{ |
2304 |
uint32 val = dwt_read32bitreg(ACK_RESP_T_ID) ; // Read ACK_RESP_T_ID register
|
2305 |
|
2306 |
val &= ~(ACK_RESP_T_W4R_TIM_MASK) ; // Clear the timer (19:0)
|
2307 |
|
2308 |
val |= (rxDelayTime & ACK_RESP_T_W4R_TIM_MASK) ; // In UWB microseconds (e.g. turn the receiver on 20uus after TX)
|
2309 |
|
2310 |
dwt_write32bitreg(ACK_RESP_T_ID, val) ; |
2311 |
} |
2312 |
|
2313 |
/*! ------------------------------------------------------------------------------------------------------------------
|
2314 |
* @fn dwt_setcallbacks()
|
2315 |
*
|
2316 |
* @brief This function is used to register the different callbacks called when one of the corresponding event occurs.
|
2317 |
*
|
2318 |
* NOTE: Callbacks can be undefined (set to NULL). In this case, dwt_isr() will process the event as usual but the 'null'
|
2319 |
* callback will not be called.
|
2320 |
*
|
2321 |
* input parameters
|
2322 |
* @param cbTxDone - the pointer to the TX confirmation event callback function
|
2323 |
* @param cbRxOk - the pointer to the RX good frame event callback function
|
2324 |
* @param cbRxTo - the pointer to the RX timeout events callback function
|
2325 |
* @param cbRxErr - the pointer to the RX error events callback function
|
2326 |
*
|
2327 |
* output parameters
|
2328 |
*
|
2329 |
* no return value
|
2330 |
*/
|
2331 |
void dwt_setcallbacks(dwt_cb_t cbTxDone, dwt_cb_t cbRxOk, dwt_cb_t cbRxTo, dwt_cb_t cbRxErr)
|
2332 |
{ |
2333 |
pdw1000local->cbTxDone = cbTxDone; |
2334 |
pdw1000local->cbRxOk = cbRxOk; |
2335 |
pdw1000local->cbRxTo = cbRxTo; |
2336 |
pdw1000local->cbRxErr = cbRxErr; |
2337 |
} |
2338 |
|
2339 |
/*! ------------------------------------------------------------------------------------------------------------------
|
2340 |
* @fn dwt_checkirq()
|
2341 |
*
|
2342 |
* @brief This function checks if the IRQ line is active - this is used instead of interrupt handler
|
2343 |
*
|
2344 |
* input parameters
|
2345 |
*
|
2346 |
* output parameters
|
2347 |
*
|
2348 |
* return value is 1 if the IRQS bit is set and 0 otherwise
|
2349 |
*/
|
2350 |
uint8 dwt_checkirq(void)
|
2351 |
{ |
2352 |
return (dwt_read8bitoffsetreg(SYS_STATUS_ID, SYS_STATUS_OFFSET) & SYS_STATUS_IRQS); // Reading the lower byte only is enough for this operation |
2353 |
} |
2354 |
|
2355 |
/*! ------------------------------------------------------------------------------------------------------------------
|
2356 |
* @fn dwt_isr()
|
2357 |
*
|
2358 |
* @brief This is the DW1000's general Interrupt Service Routine. It will process/report the following events:
|
2359 |
* - RXFCG (through cbRxOk callback)
|
2360 |
* - TXFRS (through cbTxDone callback)
|
2361 |
* - RXRFTO/RXPTO (through cbRxTo callback)
|
2362 |
* - RXPHE/RXFCE/RXRFSL/RXSFDTO/AFFREJ/LDEERR (through cbRxTo cbRxErr)
|
2363 |
* For all events, corresponding interrupts are cleared and necessary resets are performed. In addition, in the RXFCG case,
|
2364 |
* received frame information and frame control are read before calling the callback. If double buffering is activated, it
|
2365 |
* will also toggle between reception buffers once the reception callback processing has ended.
|
2366 |
*
|
2367 |
* /!\ This version of the ISR supports double buffering but does not support automatic RX re-enabling!
|
2368 |
*
|
2369 |
* NOTE: In PC based system using (Cheetah or ARM) USB to SPI converter there can be no interrupts, however we still need something
|
2370 |
* to take the place of it and operate in a polled way. In an embedded system this function should be configured to be triggered
|
2371 |
* on any of the interrupts described above.
|
2372 |
|
2373 |
* input parameters
|
2374 |
*
|
2375 |
* output parameters
|
2376 |
*
|
2377 |
* no return value
|
2378 |
*/
|
2379 |
void dwt_isr(void) |
2380 |
{ |
2381 |
uint32 status = pdw1000local->cbData.status = dwt_read32bitreg(SYS_STATUS_ID); // Read status register low 32bits
|
2382 |
|
2383 |
// Handle RX good frame event
|
2384 |
if(status & SYS_STATUS_RXFCG)
|
2385 |
{ |
2386 |
uint16 finfo16; |
2387 |
uint16 len; |
2388 |
|
2389 |
dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_GOOD); // Clear all receive status bits
|
2390 |
|
2391 |
pdw1000local->cbData.rx_flags = 0;
|
2392 |
|
2393 |
// Read frame info - Only the first two bytes of the register are used here.
|
2394 |
finfo16 = dwt_read16bitoffsetreg(RX_FINFO_ID, RX_FINFO_OFFSET); |
2395 |
|
2396 |
// Report frame length - Standard frame length up to 127, extended frame length up to 1023 bytes
|
2397 |
len = finfo16 & RX_FINFO_RXFL_MASK_1023; |
2398 |
if(pdw1000local->longFrames == 0) |
2399 |
{ |
2400 |
len &= RX_FINFO_RXFLEN_MASK; |
2401 |
} |
2402 |
pdw1000local->cbData.datalength = len; |
2403 |
|
2404 |
// Report ranging bit
|
2405 |
if(finfo16 & RX_FINFO_RNG)
|
2406 |
{ |
2407 |
pdw1000local->cbData.rx_flags |= DWT_CB_DATA_RX_FLAG_RNG; |
2408 |
} |
2409 |
|
2410 |
// Report frame control - First bytes of the received frame.
|
2411 |
dwt_readfromdevice(RX_BUFFER_ID, 0, FCTRL_LEN_MAX, pdw1000local->cbData.fctrl);
|
2412 |
|
2413 |
// Because of a previous frame not being received properly, AAT bit can be set upon the proper reception of a frame not requesting for
|
2414 |
// acknowledgement (ACK frame is not actually sent though). If the AAT bit is set, check ACK request bit in frame control to confirm (this
|
2415 |
// implementation works only for IEEE802.15.4-2011 compliant frames).
|
2416 |
// This issue is not documented at the time of writing this code. It should be in next release of DW1000 User Manual (v2.09, from July 2016).
|
2417 |
if((status & SYS_STATUS_AAT) && ((pdw1000local->cbData.fctrl[0] & FCTRL_ACK_REQ_MASK) == 0)) |
2418 |
{ |
2419 |
dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_AAT); // Clear AAT status bit in register
|
2420 |
pdw1000local->cbData.status &= ~SYS_STATUS_AAT; // Clear AAT status bit in callback data register copy
|
2421 |
pdw1000local->wait4resp = 0;
|
2422 |
} |
2423 |
|
2424 |
// Call the corresponding callback if present
|
2425 |
if(pdw1000local->cbRxOk != NULL) |
2426 |
{ |
2427 |
pdw1000local->cbRxOk(&pdw1000local->cbData); |
2428 |
} |
2429 |
|
2430 |
if (pdw1000local->dblbuffon)
|
2431 |
{ |
2432 |
// Toggle the Host side Receive Buffer Pointer
|
2433 |
dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_HRBT_OFFSET, 1);
|
2434 |
} |
2435 |
} |
2436 |
|
2437 |
// Handle TX confirmation event
|
2438 |
if(status & SYS_STATUS_TXFRS)
|
2439 |
{ |
2440 |
dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_TX); // Clear TX event bits
|
2441 |
|
2442 |
// In the case where this TXFRS interrupt is due to the automatic transmission of an ACK solicited by a response (with ACK request bit set)
|
2443 |
// that we receive through using wait4resp to a previous TX (and assuming that the IRQ processing of that TX has already been handled), then
|
2444 |
// we need to handle the IC issue which turns on the RX again in this situation (i.e. because it is wrongly applying the wait4resp after the
|
2445 |
// ACK TX).
|
2446 |
// See section "Transmit and automatically wait for response" in DW1000 User Manual
|
2447 |
if((status & SYS_STATUS_AAT) && pdw1000local->wait4resp)
|
2448 |
{ |
2449 |
dwt_forcetrxoff(); // Turn the RX off
|
2450 |
dwt_rxreset(); // Reset in case we were late and a frame was already being received
|
2451 |
} |
2452 |
|
2453 |
// Call the corresponding callback if present
|
2454 |
if(pdw1000local->cbTxDone != NULL) |
2455 |
{ |
2456 |
pdw1000local->cbTxDone(&pdw1000local->cbData); |
2457 |
} |
2458 |
} |
2459 |
|
2460 |
// Handle frame reception/preamble detect timeout events
|
2461 |
if(status & SYS_STATUS_ALL_RX_TO)
|
2462 |
{ |
2463 |
dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_RXRFTO); // Clear RX timeout event bits
|
2464 |
|
2465 |
pdw1000local->wait4resp = 0;
|
2466 |
|
2467 |
// Because of an issue with receiver restart after error conditions, an RX reset must be applied after any error or timeout event to ensure
|
2468 |
// the next good frame's timestamp is computed correctly.
|
2469 |
// See section "RX Message timestamp" in DW1000 User Manual.
|
2470 |
dwt_forcetrxoff(); |
2471 |
dwt_rxreset(); |
2472 |
|
2473 |
// Call the corresponding callback if present
|
2474 |
if(pdw1000local->cbRxTo != NULL) |
2475 |
{ |
2476 |
pdw1000local->cbRxTo(&pdw1000local->cbData); |
2477 |
} |
2478 |
} |
2479 |
|
2480 |
// Handle RX errors events
|
2481 |
if(status & SYS_STATUS_ALL_RX_ERR)
|
2482 |
{ |
2483 |
dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_ERR); // Clear RX error event bits
|
2484 |
|
2485 |
pdw1000local->wait4resp = 0;
|
2486 |
|
2487 |
// Because of an issue with receiver restart after error conditions, an RX reset must be applied after any error or timeout event to ensure
|
2488 |
// the next good frame's timestamp is computed correctly.
|
2489 |
// See section "RX Message timestamp" in DW1000 User Manual.
|
2490 |
dwt_forcetrxoff(); |
2491 |
dwt_rxreset(); |
2492 |
|
2493 |
// Call the corresponding callback if present
|
2494 |
if(pdw1000local->cbRxErr != NULL) |
2495 |
{ |
2496 |
pdw1000local->cbRxErr(&pdw1000local->cbData); |
2497 |
} |
2498 |
} |
2499 |
} |
2500 |
|
2501 |
/*! ------------------------------------------------------------------------------------------------------------------
|
2502 |
* @fn dwt_isr_lplisten()
|
2503 |
*
|
2504 |
* @brief This is the DW1000's Interrupt Service Routine to use when low-power listening scheme is implemented. It will
|
2505 |
* only process/report the RXFCG event (through cbRxOk callback).
|
2506 |
* It clears RXFCG interrupt and reads received frame information and frame control before calling the callback.
|
2507 |
*
|
2508 |
* /!\ This version of the ISR is designed for single buffering case only!
|
2509 |
*
|
2510 |
* input parameters
|
2511 |
*
|
2512 |
* output parameters
|
2513 |
*
|
2514 |
* no return value
|
2515 |
*/
|
2516 |
void dwt_lowpowerlistenisr(void) |
2517 |
{ |
2518 |
uint32 status = pdw1000local->cbData.status = dwt_read32bitreg(SYS_STATUS_ID); // Read status register low 32bits
|
2519 |
uint16 finfo16; |
2520 |
uint16 len; |
2521 |
|
2522 |
// The only interrupt handled when in low-power listening mode is RX good frame so proceed directly to the handling of the received frame.
|
2523 |
|
2524 |
// Deactivate low-power listening before clearing the interrupt. If not, the DW1000 will go back to sleep as soon as the interrupt is cleared.
|
2525 |
dwt_setlowpowerlistening(0);
|
2526 |
|
2527 |
dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_ALL_RX_GOOD); // Clear all receive status bits
|
2528 |
|
2529 |
pdw1000local->cbData.rx_flags = 0;
|
2530 |
|
2531 |
// Read frame info - Only the first two bytes of the register are used here.
|
2532 |
finfo16 = dwt_read16bitoffsetreg(RX_FINFO_ID, 0);
|
2533 |
|
2534 |
// Report frame length - Standard frame length up to 127, extended frame length up to 1023 bytes
|
2535 |
len = finfo16 & RX_FINFO_RXFL_MASK_1023; |
2536 |
if(pdw1000local->longFrames == 0) |
2537 |
{ |
2538 |
len &= RX_FINFO_RXFLEN_MASK; |
2539 |
} |
2540 |
pdw1000local->cbData.datalength = len; |
2541 |
|
2542 |
// Report ranging bit
|
2543 |
if(finfo16 & RX_FINFO_RNG)
|
2544 |
{ |
2545 |
pdw1000local->cbData.rx_flags |= DWT_CB_DATA_RX_FLAG_RNG; |
2546 |
} |
2547 |
|
2548 |
// Report frame control - First bytes of the received frame.
|
2549 |
dwt_readfromdevice(RX_BUFFER_ID, 0, FCTRL_LEN_MAX, pdw1000local->cbData.fctrl);
|
2550 |
|
2551 |
// Because of a previous frame not being received properly, AAT bit can be set upon the proper reception of a frame not requesting for
|
2552 |
// acknowledgement (ACK frame is not actually sent though). If the AAT bit is set, check ACK request bit in frame control to confirm (this
|
2553 |
// implementation works only for IEEE802.15.4-2011 compliant frames).
|
2554 |
// This issue is not documented at the time of writing this code. It should be in next release of DW1000 User Manual (v2.09, from July 2016).
|
2555 |
if((status & SYS_STATUS_AAT) && ((pdw1000local->cbData.fctrl[0] & FCTRL_ACK_REQ_MASK) == 0)) |
2556 |
{ |
2557 |
dwt_write32bitreg(SYS_STATUS_ID, SYS_STATUS_AAT); // Clear AAT status bit in register
|
2558 |
pdw1000local->cbData.status &= ~SYS_STATUS_AAT; // Clear AAT status bit in callback data register copy
|
2559 |
pdw1000local->wait4resp = 0;
|
2560 |
} |
2561 |
|
2562 |
// Call the corresponding callback if present
|
2563 |
if(pdw1000local->cbRxOk != NULL) |
2564 |
{ |
2565 |
pdw1000local->cbRxOk(&pdw1000local->cbData); |
2566 |
} |
2567 |
} |
2568 |
|
2569 |
/*! ------------------------------------------------------------------------------------------------------------------
|
2570 |
* @fn dwt_setleds()
|
2571 |
*
|
2572 |
* @brief This is used to set up Tx/Rx GPIOs which could be used to control LEDs
|
2573 |
* Note: not completely IC dependent, also needs board with LEDS fitted on right I/O lines
|
2574 |
* this function enables GPIOs 2 and 3 which are connected to LED3 and LED4 on EVB1000
|
2575 |
*
|
2576 |
* input parameters
|
2577 |
* @param mode - this is a bit field interpreted as follows:
|
2578 |
* - bit 0: 1 to enable LEDs, 0 to disable them
|
2579 |
* - bit 1: 1 to make LEDs blink once on init. Only valid if bit 0 is set (enable LEDs)
|
2580 |
* - bit 2 to 7: reserved
|
2581 |
*
|
2582 |
* output parameters none
|
2583 |
*
|
2584 |
* no return value
|
2585 |
*/
|
2586 |
void dwt_setleds(uint8 mode)
|
2587 |
{ |
2588 |
uint32 reg; |
2589 |
|
2590 |
if (mode & DWT_LEDS_ENABLE)
|
2591 |
{ |
2592 |
// Set up MFIO for LED output.
|
2593 |
reg = dwt_read32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET); |
2594 |
reg &= ~(GPIO_MSGP2_MASK | GPIO_MSGP3_MASK); |
2595 |
reg |= (GPIO_PIN2_RXLED | GPIO_PIN3_TXLED); |
2596 |
dwt_write32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET, reg); |
2597 |
|
2598 |
// Enable LP Oscillator to run from counter and turn on de-bounce clock.
|
2599 |
reg = dwt_read32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET); |
2600 |
reg |= (PMSC_CTRL0_GPDCE | PMSC_CTRL0_KHZCLEN); |
2601 |
dwt_write32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, reg); |
2602 |
|
2603 |
// Enable LEDs to blink and set default blink time.
|
2604 |
reg = PMSC_LEDC_BLNKEN | PMSC_LEDC_BLINK_TIME_DEF; |
2605 |
// Make LEDs blink once if requested.
|
2606 |
if (mode & DWT_LEDS_INIT_BLINK)
|
2607 |
{ |
2608 |
reg |= PMSC_LEDC_BLINK_NOW_ALL; |
2609 |
} |
2610 |
dwt_write32bitoffsetreg(PMSC_ID, PMSC_LEDC_OFFSET, reg); |
2611 |
// Clear force blink bits if needed.
|
2612 |
if(mode & DWT_LEDS_INIT_BLINK)
|
2613 |
{ |
2614 |
reg &= ~PMSC_LEDC_BLINK_NOW_ALL; |
2615 |
dwt_write32bitoffsetreg(PMSC_ID, PMSC_LEDC_OFFSET, reg); |
2616 |
} |
2617 |
} |
2618 |
else
|
2619 |
{ |
2620 |
// Clear the GPIO bits that are used for LED control.
|
2621 |
reg = dwt_read32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET); |
2622 |
reg &= ~(GPIO_MSGP2_MASK | GPIO_MSGP3_MASK); |
2623 |
dwt_write32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET, reg); |
2624 |
} |
2625 |
} |
2626 |
|
2627 |
/*! ------------------------------------------------------------------------------------------------------------------
|
2628 |
* @fn _dwt_enableclocks()
|
2629 |
*
|
2630 |
* @brief function to enable/disable clocks to particular digital blocks/system
|
2631 |
*
|
2632 |
* input parameters
|
2633 |
* @param clocks - set of clocks to enable/disable
|
2634 |
*
|
2635 |
* output parameters none
|
2636 |
*
|
2637 |
* no return value
|
2638 |
*/
|
2639 |
void _dwt_enableclocks(int clocks) |
2640 |
{ |
2641 |
uint8 reg[2];
|
2642 |
|
2643 |
dwt_readfromdevice(PMSC_ID, PMSC_CTRL0_OFFSET, 2, reg);
|
2644 |
switch(clocks)
|
2645 |
{ |
2646 |
case ENABLE_ALL_SEQ:
|
2647 |
{ |
2648 |
reg[0] = 0x00 ; |
2649 |
reg[1] = reg[1] & 0xfe; |
2650 |
} |
2651 |
break;
|
2652 |
case FORCE_SYS_XTI:
|
2653 |
{ |
2654 |
// System and RX
|
2655 |
reg[0] = 0x01 | (reg[0] & 0xfc); |
2656 |
} |
2657 |
break;
|
2658 |
case FORCE_SYS_PLL:
|
2659 |
{ |
2660 |
// System
|
2661 |
reg[0] = 0x02 | (reg[0] & 0xfc); |
2662 |
} |
2663 |
break;
|
2664 |
case READ_ACC_ON:
|
2665 |
{ |
2666 |
reg[0] = 0x48 | (reg[0] & 0xb3); |
2667 |
reg[1] = 0x80 | reg[1]; |
2668 |
} |
2669 |
break;
|
2670 |
case READ_ACC_OFF:
|
2671 |
{ |
2672 |
reg[0] = reg[0] & 0xb3; |
2673 |
reg[1] = 0x7f & reg[1]; |
2674 |
} |
2675 |
break;
|
2676 |
case FORCE_OTP_ON:
|
2677 |
{ |
2678 |
reg[1] = 0x02 | reg[1]; |
2679 |
} |
2680 |
break;
|
2681 |
case FORCE_OTP_OFF:
|
2682 |
{ |
2683 |
reg[1] = reg[1] & 0xfd; |
2684 |
} |
2685 |
break;
|
2686 |
case FORCE_TX_PLL:
|
2687 |
{ |
2688 |
reg[0] = 0x20 | (reg[0] & 0xcf); |
2689 |
} |
2690 |
break;
|
2691 |
case FORCE_LDE:
|
2692 |
{ |
2693 |
reg[0] = 0x01; |
2694 |
reg[1] = 0x03; |
2695 |
} |
2696 |
break;
|
2697 |
default:
|
2698 |
break;
|
2699 |
} |
2700 |
|
2701 |
|
2702 |
// Need to write lower byte separately before setting the higher byte(s)
|
2703 |
dwt_writetodevice(PMSC_ID, PMSC_CTRL0_OFFSET, 1, ®[0]); |
2704 |
dwt_writetodevice(PMSC_ID, 0x1, 1, ®[1]); |
2705 |
|
2706 |
} // end _dwt_enableclocks()
|
2707 |
|
2708 |
/*! ------------------------------------------------------------------------------------------------------------------
|
2709 |
* @fn _dwt_disablesequencing()
|
2710 |
*
|
2711 |
* @brief This function disables the TX blocks sequencing, it disables PMSC control of RF blocks, system clock is also set to XTAL
|
2712 |
*
|
2713 |
* input parameters none
|
2714 |
*
|
2715 |
* output parameters none
|
2716 |
*
|
2717 |
* no return value
|
2718 |
*/
|
2719 |
void _dwt_disablesequencing(void) // Disable sequencing and go to state "INIT" |
2720 |
{ |
2721 |
_dwt_enableclocks(FORCE_SYS_XTI); // Set system clock to XTI
|
2722 |
|
2723 |
dwt_write16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET, PMSC_CTRL1_PKTSEQ_DISABLE); // Disable PMSC ctrl of RF and RX clk blocks
|
2724 |
} |
2725 |
|
2726 |
/*! ------------------------------------------------------------------------------------------------------------------
|
2727 |
* @fn dwt_setdelayedtrxtime()
|
2728 |
*
|
2729 |
* @brief This API function configures the delayed transmit time or the delayed RX on time
|
2730 |
*
|
2731 |
* input parameters
|
2732 |
* @param starttime - the TX/RX start time (the 32 bits should be the high 32 bits of the system time at which to send the message,
|
2733 |
* or at which to turn on the receiver)
|
2734 |
*
|
2735 |
* output parameters none
|
2736 |
*
|
2737 |
* no return value
|
2738 |
*/
|
2739 |
void dwt_setdelayedtrxtime(uint32 starttime)
|
2740 |
{ |
2741 |
dwt_write32bitoffsetreg(DX_TIME_ID, 1, starttime); // Write at offset 1 as the lower 9 bits of this register are ignored |
2742 |
|
2743 |
} // end dwt_setdelayedtrxtime()
|
2744 |
|
2745 |
/*! ------------------------------------------------------------------------------------------------------------------
|
2746 |
* @fn dwt_starttx()
|
2747 |
*
|
2748 |
* @brief This call initiates the transmission, input parameter indicates which TX mode is used see below
|
2749 |
*
|
2750 |
* input parameters:
|
2751 |
* @param mode - if mode = DWT_START_TX_IMMEDIATE - immediate TX (no response expected)
|
2752 |
* if mode = DWT_START_TX_DELAYED - delayed TX (no response expected)
|
2753 |
* if mode = DWT_START_TX_IMMEDIATE | DWT_RESPONSE_EXPECTED - immediate TX (response expected - so the receiver will be automatically turned on after TX is done)
|
2754 |
* if mode = DWT_START_TX_DELAYED | DWT_RESPONSE_EXPECTED - delayed TX (response expected - so the receiver will be automatically turned on after TX is done)
|
2755 |
*
|
2756 |
* output parameters
|
2757 |
*
|
2758 |
* returns DWT_SUCCESS for success, or DWT_ERROR for error (e.g. a delayed transmission will be cancelled if the delayed time has passed)
|
2759 |
*/
|
2760 |
|
2761 |
int dwt_starttx(uint8 mode)
|
2762 |
{ |
2763 |
int retval = DWT_SUCCESS ;
|
2764 |
uint8 temp = 0x00;
|
2765 |
uint16 checkTxOK = 0 ;
|
2766 |
|
2767 |
if(mode & DWT_RESPONSE_EXPECTED)
|
2768 |
{ |
2769 |
temp = (uint8)SYS_CTRL_WAIT4RESP ; // Set wait4response bit
|
2770 |
pdw1000local->wait4resp = 1;
|
2771 |
} |
2772 |
|
2773 |
if (mode & DWT_START_TX_DELAYED)
|
2774 |
{ |
2775 |
// Both SYS_CTRL_TXSTRT and SYS_CTRL_TXDLYS to correctly enable TX
|
2776 |
temp |= (uint8)(SYS_CTRL_TXDLYS | SYS_CTRL_TXSTRT) ; |
2777 |
dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, temp); |
2778 |
checkTxOK = dwt_read16bitoffsetreg(SYS_STATUS_ID, 3); // Read at offset 3 to get the upper 2 bytes out of 5 |
2779 |
if ((checkTxOK & SYS_STATUS_TXERR) == 0) // Transmit Delayed Send set over Half a Period away or Power Up error (there is enough time to send but not to power up individual blocks). |
2780 |
{ |
2781 |
retval = DWT_SUCCESS ; // All okay
|
2782 |
} |
2783 |
else
|
2784 |
{ |
2785 |
// If HPDWARN or TXPUTE are set this indicates that the TXDLYS was set too late for the specified DX_TIME.
|
2786 |
// remedial action is to cancel delayed send and report error
|
2787 |
dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, (uint8)SYS_CTRL_TRXOFF); |
2788 |
retval = DWT_ERROR ; // Failed !
|
2789 |
} |
2790 |
} |
2791 |
else
|
2792 |
{ |
2793 |
temp |= (uint8)SYS_CTRL_TXSTRT ; |
2794 |
dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, temp); |
2795 |
} |
2796 |
|
2797 |
return retval;
|
2798 |
|
2799 |
} // end dwt_starttx()
|
2800 |
|
2801 |
/*! ------------------------------------------------------------------------------------------------------------------
|
2802 |
* @fn dwt_forcetrxoff()
|
2803 |
*
|
2804 |
* @brief This is used to turn off the transceiver
|
2805 |
*
|
2806 |
* input parameters
|
2807 |
*
|
2808 |
* output parameters
|
2809 |
*
|
2810 |
* no return value
|
2811 |
*/
|
2812 |
void dwt_forcetrxoff(void) |
2813 |
{ |
2814 |
decaIrqStatus_t stat ; |
2815 |
uint32 mask; |
2816 |
|
2817 |
mask = dwt_read32bitreg(SYS_MASK_ID) ; // Read set interrupt mask
|
2818 |
|
2819 |
// Need to beware of interrupts occurring in the middle of following read modify write cycle
|
2820 |
// We can disable the radio, but before the status is cleared an interrupt can be set (e.g. the
|
2821 |
// event has just happened before the radio was disabled)
|
2822 |
// thus we need to disable interrupt during this operation
|
2823 |
stat = decamutexon() ; |
2824 |
|
2825 |
dwt_write32bitreg(SYS_MASK_ID, 0) ; // Clear interrupt mask - so we don't get any unwanted events |
2826 |
|
2827 |
dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, (uint8)SYS_CTRL_TRXOFF) ; // Disable the radio
|
2828 |
|
2829 |
// Forcing Transceiver off - so we do not want to see any new events that may have happened
|
2830 |
dwt_write32bitreg(SYS_STATUS_ID, (SYS_STATUS_ALL_TX | SYS_STATUS_ALL_RX_ERR | SYS_STATUS_ALL_RX_TO | SYS_STATUS_ALL_RX_GOOD)); |
2831 |
|
2832 |
dwt_syncrxbufptrs(); |
2833 |
|
2834 |
dwt_write32bitreg(SYS_MASK_ID, mask) ; // Set interrupt mask to what it was
|
2835 |
|
2836 |
// Enable/restore interrupts again...
|
2837 |
decamutexoff(stat) ; |
2838 |
pdw1000local->wait4resp = 0;
|
2839 |
|
2840 |
} // end deviceforcetrxoff()
|
2841 |
|
2842 |
/*! ------------------------------------------------------------------------------------------------------------------
|
2843 |
* @fn dwt_syncrxbufptrs()
|
2844 |
*
|
2845 |
* @brief this function synchronizes rx buffer pointers
|
2846 |
* need to make sure that the host/IC buffer pointers are aligned before starting RX
|
2847 |
*
|
2848 |
* input parameters:
|
2849 |
*
|
2850 |
* output parameters
|
2851 |
*
|
2852 |
* no return value
|
2853 |
*/
|
2854 |
void dwt_syncrxbufptrs(void) |
2855 |
{ |
2856 |
uint8 buff ; |
2857 |
// Need to make sure that the host/IC buffer pointers are aligned before starting RX
|
2858 |
buff = dwt_read8bitoffsetreg(SYS_STATUS_ID, 3); // Read 1 byte at offset 3 to get the 4th byte out of 5 |
2859 |
|
2860 |
if((buff & (SYS_STATUS_ICRBP >> 24)) != // IC side Receive Buffer Pointer |
2861 |
((buff & (SYS_STATUS_HSRBP>>24)) << 1) ) // Host Side Receive Buffer Pointer |
2862 |
{ |
2863 |
dwt_write8bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_HRBT_OFFSET , 0x01) ; // We need to swap RX buffer status reg (write one to toggle internally) |
2864 |
} |
2865 |
} |
2866 |
|
2867 |
/*! ------------------------------------------------------------------------------------------------------------------
|
2868 |
* @fn dwt_setsniffmode()
|
2869 |
*
|
2870 |
* @brief enable/disable and configure SNIFF mode.
|
2871 |
*
|
2872 |
* SNIFF mode is a low-power reception mode where the receiver is sequenced on and off instead of being on all the time.
|
2873 |
* The time spent in each state (on/off) is specified through the parameters below.
|
2874 |
* See DW1000 User Manual section 4.5 "Low-Power SNIFF mode" for more details.
|
2875 |
*
|
2876 |
* input parameters:
|
2877 |
* @param enable - 1 to enable SNIFF mode, 0 to disable. When 0, all other parameters are not taken into account.
|
2878 |
* @param timeOn - duration of receiver ON phase, expressed in multiples of PAC size. The counter automatically adds 1 PAC
|
2879 |
* size to the value set. Min value that can be set is 1 (i.e. an ON time of 2 PAC size), max value is 15.
|
2880 |
* @param timeOff - duration of receiver OFF phase, expressed in multiples of 128/125 ?s (~1 ?s). Max value is 255.
|
2881 |
*
|
2882 |
* output parameters
|
2883 |
*
|
2884 |
* no return value
|
2885 |
*/
|
2886 |
void dwt_setsniffmode(int enable, uint8 timeOn, uint8 timeOff) |
2887 |
{ |
2888 |
uint32 pmsc_reg; |
2889 |
if (enable)
|
2890 |
{ |
2891 |
/* Configure ON/OFF times and enable PLL2 on/off sequencing by SNIFF mode. */
|
2892 |
uint16 sniff_reg = (((uint16)timeOff << 8) | timeOn) & RX_SNIFF_MASK;
|
2893 |
dwt_write16bitoffsetreg(RX_SNIFF_ID, RX_SNIFF_OFFSET, sniff_reg); |
2894 |
pmsc_reg = dwt_read32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET); |
2895 |
pmsc_reg |= PMSC_CTRL0_PLL2_SEQ_EN; |
2896 |
dwt_write32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, pmsc_reg); |
2897 |
} |
2898 |
else
|
2899 |
{ |
2900 |
/* Clear ON/OFF times and disable PLL2 on/off sequencing by SNIFF mode. */
|
2901 |
dwt_write16bitoffsetreg(RX_SNIFF_ID, RX_SNIFF_OFFSET, 0x0000);
|
2902 |
pmsc_reg = dwt_read32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET); |
2903 |
pmsc_reg &= ~PMSC_CTRL0_PLL2_SEQ_EN; |
2904 |
dwt_write32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, pmsc_reg); |
2905 |
} |
2906 |
} |
2907 |
|
2908 |
/*! ------------------------------------------------------------------------------------------------------------------
|
2909 |
* @fn dwt_setlowpowerlistening()
|
2910 |
*
|
2911 |
* @brief enable/disable low-power listening mode.
|
2912 |
*
|
2913 |
* Low-power listening is a feature whereby the DW1000 is predominantly in the SLEEP state but wakes periodically, (after
|
2914 |
* this "long sleep"), for a very short time to sample the air for a preamble sequence. This preamble sampling "listening"
|
2915 |
* phase is actually two reception phases separated by a "short sleep" time. See DW1000 User Manual section "Low-Power
|
2916 |
* Listening" for more details.
|
2917 |
*
|
2918 |
* NOTE: Before enabling low-power listening, the following functions have to be called to fully configure it:
|
2919 |
* - dwt_configuresleep() to configure long sleep phase. "mode" parameter should at least have DWT_PRESRV_SLEEP,
|
2920 |
* DWT_CONFIG and DWT_RX_EN set and "wake" parameter should at least have both DWT_WAKE_SLPCNT and DWT_SLP_EN set.
|
2921 |
* - dwt_calibratesleepcnt() and dwt_configuresleepcnt() to define the "long sleep" phase duration.
|
2922 |
* - dwt_setsnoozetime() to define the "short sleep" phase duration.
|
2923 |
* - dwt_setpreambledetecttimeout() to define the reception phases duration.
|
2924 |
* - dwt_setinterrupt() to activate RX good frame interrupt (DWT_INT_RFCG) only.
|
2925 |
* When configured, low-power listening mode can be triggered either by putting the DW1000 to sleep (using
|
2926 |
* dwt_entersleep()) or by activating reception (using dwt_rxenable()).
|
2927 |
*
|
2928 |
* Please refer to the low-power listening examples (examples 8a/8b accompanying the API distribution on Decawave's
|
2929 |
* website). They form a working example code that shows how to use low-power listening correctly.
|
2930 |
*
|
2931 |
* input parameters:
|
2932 |
* @param enable - 1 to enable low-power listening, 0 to disable.
|
2933 |
*
|
2934 |
* output parameters
|
2935 |
*
|
2936 |
* no return value
|
2937 |
*/
|
2938 |
void dwt_setlowpowerlistening(int enable) |
2939 |
{ |
2940 |
uint32 pmsc_reg = dwt_read32bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET); |
2941 |
if (enable)
|
2942 |
{ |
2943 |
/* Configure RX to sleep and snooze features. */
|
2944 |
pmsc_reg |= (PMSC_CTRL1_ARXSLP | PMSC_CTRL1_SNOZE); |
2945 |
} |
2946 |
else
|
2947 |
{ |
2948 |
/* Reset RX to sleep and snooze features. */
|
2949 |
pmsc_reg &= ~(PMSC_CTRL1_ARXSLP | PMSC_CTRL1_SNOZE); |
2950 |
} |
2951 |
dwt_write32bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET, pmsc_reg); |
2952 |
} |
2953 |
|
2954 |
/*! ------------------------------------------------------------------------------------------------------------------
|
2955 |
* @fn dwt_setsnoozetime()
|
2956 |
*
|
2957 |
* @brief Set duration of "short sleep" phase when in low-power listening mode.
|
2958 |
*
|
2959 |
* input parameters:
|
2960 |
* @param snooze_time - "short sleep" phase duration, expressed in multiples of 512/19.2 ?s (~26.7 ?s). The counter
|
2961 |
* automatically adds 1 to the value set. The smallest working value that should be set is 1,
|
2962 |
* i.e. giving a snooze time of 2 units (or ~53 ?s).
|
2963 |
*
|
2964 |
* output parameters
|
2965 |
*
|
2966 |
* no return value
|
2967 |
*/
|
2968 |
void dwt_setsnoozetime(uint8 snooze_time)
|
2969 |
{ |
2970 |
dwt_write8bitoffsetreg(PMSC_ID, PMSC_SNOZT_OFFSET, snooze_time); |
2971 |
} |
2972 |
|
2973 |
/*! ------------------------------------------------------------------------------------------------------------------
|
2974 |
* @fn dwt_rxenable()
|
2975 |
*
|
2976 |
* @brief This call turns on the receiver, can be immediate or delayed (depending on the mode parameter). In the case of a
|
2977 |
* "late" error the receiver will only be turned on if the DWT_IDLE_ON_DLY_ERR is not set.
|
2978 |
* The receiver will stay turned on, listening to any messages until
|
2979 |
* it either receives a good frame, an error (CRC, PHY header, Reed Solomon) or it times out (SFD, Preamble or Frame).
|
2980 |
*
|
2981 |
* input parameters
|
2982 |
* @param mode - this can be one of the following allowed values:
|
2983 |
*
|
2984 |
* DWT_START_RX_IMMEDIATE 0 used to enbale receiver immediately
|
2985 |
* DWT_START_RX_DELAYED 1 used to set up delayed RX, if "late" error triggers, then the RX will be enabled immediately
|
2986 |
* (DWT_START_RX_DELAYED | DWT_IDLE_ON_DLY_ERR) 3 used to disable re-enabling of receiver if delayed RX failed due to "late" error
|
2987 |
* (DWT_START_RX_IMMEDIATE | DWT_NO_SYNC_PTRS) 4 used to re-enable RX without trying to sync IC and host side buffer pointers, typically when
|
2988 |
* performing manual RX re-enabling in double buffering mode
|
2989 |
*
|
2990 |
* returns DWT_SUCCESS for success, or DWT_ERROR for error (e.g. a delayed receive enable will be too far in the future if delayed time has passed)
|
2991 |
*/
|
2992 |
int dwt_rxenable(int mode) |
2993 |
{ |
2994 |
uint16 temp ; |
2995 |
uint8 temp1 ; |
2996 |
|
2997 |
if ((mode & DWT_NO_SYNC_PTRS) == 0) |
2998 |
{ |
2999 |
dwt_syncrxbufptrs(); |
3000 |
} |
3001 |
|
3002 |
temp = (uint16)SYS_CTRL_RXENAB ; |
3003 |
|
3004 |
if (mode & DWT_START_RX_DELAYED)
|
3005 |
{ |
3006 |
temp |= (uint16)SYS_CTRL_RXDLYE ; |
3007 |
} |
3008 |
|
3009 |
dwt_write16bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, temp); |
3010 |
|
3011 |
if (mode & DWT_START_RX_DELAYED) // check for errors |
3012 |
{ |
3013 |
temp1 = dwt_read8bitoffsetreg(SYS_STATUS_ID, 3); // Read 1 byte at offset 3 to get the 4th byte out of 5 |
3014 |
if ((temp1 & (SYS_STATUS_HPDWARN >> 24)) != 0) // if delay has passed do immediate RX on unless DWT_IDLE_ON_DLY_ERR is true |
3015 |
{ |
3016 |
dwt_forcetrxoff(); // turn the delayed receive off
|
3017 |
|
3018 |
if((mode & DWT_IDLE_ON_DLY_ERR) == 0) // if DWT_IDLE_ON_DLY_ERR not set then re-enable receiver |
3019 |
{ |
3020 |
dwt_write16bitoffsetreg(SYS_CTRL_ID, SYS_CTRL_OFFSET, SYS_CTRL_RXENAB); |
3021 |
} |
3022 |
return DWT_ERROR; // return warning indication |
3023 |
} |
3024 |
} |
3025 |
|
3026 |
return DWT_SUCCESS;
|
3027 |
} // end dwt_rxenable()
|
3028 |
|
3029 |
/*! ------------------------------------------------------------------------------------------------------------------
|
3030 |
* @fn dwt_setrxtimeout()
|
3031 |
*
|
3032 |
* @brief This call enables RX timeout (SY_STAT_RFTO event)
|
3033 |
*
|
3034 |
* input parameters
|
3035 |
* @param time - how long the receiver remains on from the RX enable command
|
3036 |
* The time parameter used here is in 1.0256 us (512/499.2MHz) units
|
3037 |
* If set to 0 the timeout is disabled.
|
3038 |
*
|
3039 |
* output parameters
|
3040 |
*
|
3041 |
* no return value
|
3042 |
*/
|
3043 |
void dwt_setrxtimeout(uint16 time)
|
3044 |
{ |
3045 |
uint8 temp ; |
3046 |
|
3047 |
temp = dwt_read8bitoffsetreg(SYS_CFG_ID, 3); // Read at offset 3 to get the upper byte only |
3048 |
|
3049 |
if(time > 0) |
3050 |
{ |
3051 |
dwt_write16bitoffsetreg(RX_FWTO_ID, RX_FWTO_OFFSET, time) ; |
3052 |
|
3053 |
temp |= (uint8)(SYS_CFG_RXWTOE>>24); // Shift RXWTOE mask as we read the upper byte only |
3054 |
// OR in 32bit value (1 bit set), I know this is in high byte.
|
3055 |
pdw1000local->sysCFGreg |= SYS_CFG_RXWTOE; |
3056 |
|
3057 |
dwt_write8bitoffsetreg(SYS_CFG_ID, 3, temp); // Write at offset 3 to write the upper byte only |
3058 |
} |
3059 |
else
|
3060 |
{ |
3061 |
temp &= ~((uint8)(SYS_CFG_RXWTOE>>24)); // Shift RXWTOE mask as we read the upper byte only |
3062 |
// AND in inverted 32bit value (1 bit clear), I know this is in high byte.
|
3063 |
pdw1000local->sysCFGreg &= ~(SYS_CFG_RXWTOE); |
3064 |
|
3065 |
dwt_write8bitoffsetreg(SYS_CFG_ID, 3, temp); // Write at offset 3 to write the upper byte only |
3066 |
} |
3067 |
|
3068 |
} // end dwt_setrxtimeout()
|
3069 |
|
3070 |
|
3071 |
/*! ------------------------------------------------------------------------------------------------------------------
|
3072 |
* @fn dwt_setpreambledetecttimeout()
|
3073 |
*
|
3074 |
* @brief This call enables preamble timeout (SY_STAT_RXPTO event)
|
3075 |
*
|
3076 |
* input parameters
|
3077 |
* @param timeout - Preamble detection timeout, expressed in multiples of PAC size. The counter automatically adds 1 PAC
|
3078 |
* size to the value set. Min value that can be set is 1 (i.e. a timeout of 2 PAC size).
|
3079 |
*
|
3080 |
* Note: value of 0 disables the preamble timeout
|
3081 |
* output parameters
|
3082 |
*
|
3083 |
* no return value
|
3084 |
*/
|
3085 |
void dwt_setpreambledetecttimeout(uint16 timeout)
|
3086 |
{ |
3087 |
dwt_write16bitoffsetreg(DRX_CONF_ID, DRX_PRETOC_OFFSET, timeout); |
3088 |
} |
3089 |
|
3090 |
/*! ------------------------------------------------------------------------------------------------------------------
|
3091 |
* @fn void dwt_setinterrupt()
|
3092 |
*
|
3093 |
* @brief This function enables the specified events to trigger an interrupt.
|
3094 |
* The following events can be enabled:
|
3095 |
* DWT_INT_TFRS 0x00000080 // frame sent
|
3096 |
* DWT_INT_RFCG 0x00004000 // frame received with good CRC
|
3097 |
* DWT_INT_RPHE 0x00001000 // receiver PHY header error
|
3098 |
* DWT_INT_RFCE 0x00008000 // receiver CRC error
|
3099 |
* DWT_INT_RFSL 0x00010000 // receiver sync loss error
|
3100 |
* DWT_INT_RFTO 0x00020000 // frame wait timeout
|
3101 |
* DWT_INT_RXPTO 0x00200000 // preamble detect timeout
|
3102 |
* DWT_INT_SFDT 0x04000000 // SFD timeout
|
3103 |
* DWT_INT_ARFE 0x20000000 // frame rejected (due to frame filtering configuration)
|
3104 |
*
|
3105 |
*
|
3106 |
* input parameters:
|
3107 |
* @param bitmask - sets the events which will generate interrupt
|
3108 |
* @param operation - if set to 1 the interrupts (only the ones selected in the bitmask) are enabled else they are cleared
|
3109 |
* - if set to 2 the interrupts in the bitmask are forced to selected state - i.e. the mask is written to the register directly.
|
3110 |
*
|
3111 |
* output parameters
|
3112 |
*
|
3113 |
* no return value
|
3114 |
*/
|
3115 |
void dwt_setinterrupt(uint32 bitmask, uint8 operation)
|
3116 |
{ |
3117 |
decaIrqStatus_t stat ; |
3118 |
uint32 mask ; |
3119 |
|
3120 |
// Need to beware of interrupts occurring in the middle of following read modify write cycle
|
3121 |
stat = decamutexon() ; |
3122 |
|
3123 |
if(operation == 2) |
3124 |
{ |
3125 |
dwt_write32bitreg(SYS_MASK_ID, bitmask) ; // New value
|
3126 |
} |
3127 |
else
|
3128 |
{ |
3129 |
mask = dwt_read32bitreg(SYS_MASK_ID) ; // Read register
|
3130 |
if(operation == 1) |
3131 |
{ |
3132 |
mask |= bitmask ; |
3133 |
} |
3134 |
else
|
3135 |
{ |
3136 |
mask &= ~bitmask ; // Clear the bit
|
3137 |
} |
3138 |
dwt_write32bitreg(SYS_MASK_ID, mask) ; // New value
|
3139 |
} |
3140 |
|
3141 |
decamutexoff(stat) ; |
3142 |
} |
3143 |
|
3144 |
/*! ------------------------------------------------------------------------------------------------------------------
|
3145 |
* @fn dwt_configeventcounters()
|
3146 |
*
|
3147 |
* @brief This is used to enable/disable the event counter in the IC
|
3148 |
*
|
3149 |
* input parameters
|
3150 |
* @param - enable - 1 enables (and reset), 0 disables the event counters
|
3151 |
* output parameters
|
3152 |
*
|
3153 |
* no return value
|
3154 |
*/
|
3155 |
void dwt_configeventcounters(int enable) |
3156 |
{ |
3157 |
// Need to clear and disable, can't just clear
|
3158 |
dwt_write8bitoffsetreg(DIG_DIAG_ID, EVC_CTRL_OFFSET, (uint8)(EVC_CLR)); |
3159 |
|
3160 |
if(enable)
|
3161 |
{ |
3162 |
dwt_write8bitoffsetreg(DIG_DIAG_ID, EVC_CTRL_OFFSET, (uint8)(EVC_EN)); // Enable
|
3163 |
} |
3164 |
} |
3165 |
|
3166 |
/*! ------------------------------------------------------------------------------------------------------------------
|
3167 |
* @fn dwt_readeventcounters()
|
3168 |
*
|
3169 |
* @brief This is used to read the event counters in the IC
|
3170 |
*
|
3171 |
* input parameters
|
3172 |
* @param counters - pointer to the dwt_deviceentcnts_t structure which will hold the read data
|
3173 |
*
|
3174 |
* output parameters
|
3175 |
*
|
3176 |
* no return value
|
3177 |
*/
|
3178 |
void dwt_readeventcounters(dwt_deviceentcnts_t *counters)
|
3179 |
{ |
3180 |
uint32 temp; |
3181 |
|
3182 |
temp= dwt_read32bitoffsetreg(DIG_DIAG_ID, EVC_PHE_OFFSET); // Read sync loss (31-16), PHE (15-0)
|
3183 |
counters->PHE = temp & 0xFFF;
|
3184 |
counters->RSL = (temp >> 16) & 0xFFF; |
3185 |
|
3186 |
temp = dwt_read32bitoffsetreg(DIG_DIAG_ID, EVC_FCG_OFFSET); // Read CRC bad (31-16), CRC good (15-0)
|
3187 |
counters->CRCG = temp & 0xFFF;
|
3188 |
counters->CRCB = (temp >> 16) & 0xFFF; |
3189 |
|
3190 |
temp = dwt_read32bitoffsetreg(DIG_DIAG_ID, EVC_FFR_OFFSET); // Overruns (31-16), address errors (15-0)
|
3191 |
counters->ARFE = temp & 0xFFF;
|
3192 |
counters->OVER = (temp >> 16) & 0xFFF; |
3193 |
|
3194 |
temp = dwt_read32bitoffsetreg(DIG_DIAG_ID, EVC_STO_OFFSET); // Read PTO (31-16), SFDTO (15-0)
|
3195 |
counters->PTO = (temp >> 16) & 0xFFF; |
3196 |
counters->SFDTO = temp & 0xFFF;
|
3197 |
|
3198 |
temp = dwt_read32bitoffsetreg(DIG_DIAG_ID, EVC_FWTO_OFFSET); // Read RX TO (31-16), TXFRAME (15-0)
|
3199 |
counters->TXF = (temp >> 16) & 0xFFF; |
3200 |
counters->RTO = temp & 0xFFF;
|
3201 |
|
3202 |
temp = dwt_read32bitoffsetreg(DIG_DIAG_ID, EVC_HPW_OFFSET); // Read half period warning events
|
3203 |
counters->HPW = temp & 0xFFF;
|
3204 |
counters->TXW = (temp >> 16) & 0xFFF; // Power-up warning events |
3205 |
|
3206 |
} |
3207 |
|
3208 |
/*! ------------------------------------------------------------------------------------------------------------------
|
3209 |
* @fn dwt_rxreset()
|
3210 |
*
|
3211 |
* @brief this function resets the receiver of the DW1000
|
3212 |
*
|
3213 |
* input parameters:
|
3214 |
*
|
3215 |
* output parameters
|
3216 |
*
|
3217 |
* no return value
|
3218 |
*/
|
3219 |
void dwt_rxreset(void) |
3220 |
{ |
3221 |
// Set RX reset
|
3222 |
dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_SOFTRESET_OFFSET, PMSC_CTRL0_RESET_RX); |
3223 |
|
3224 |
// Clear RX reset
|
3225 |
dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_SOFTRESET_OFFSET, PMSC_CTRL0_RESET_CLEAR); |
3226 |
} |
3227 |
|
3228 |
/*! ------------------------------------------------------------------------------------------------------------------
|
3229 |
* @fn dwt_softreset()
|
3230 |
*
|
3231 |
* @brief this function resets the DW1000
|
3232 |
*
|
3233 |
* input parameters:
|
3234 |
*
|
3235 |
* output parameters
|
3236 |
*
|
3237 |
* no return value
|
3238 |
*/
|
3239 |
void dwt_softreset(void) |
3240 |
{ |
3241 |
_dwt_disablesequencing(); |
3242 |
|
3243 |
// Clear any AON auto download bits (as reset will trigger AON download)
|
3244 |
dwt_write16bitoffsetreg(AON_ID, AON_WCFG_OFFSET, 0x00);
|
3245 |
// Clear the wake-up configuration
|
3246 |
dwt_write8bitoffsetreg(AON_ID, AON_CFG0_OFFSET, 0x00);
|
3247 |
// Upload the new configuration
|
3248 |
_dwt_aonarrayupload(); |
3249 |
|
3250 |
// Reset HIF, TX, RX and PMSC (set the reset bits)
|
3251 |
dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_SOFTRESET_OFFSET, PMSC_CTRL0_RESET_ALL); |
3252 |
|
3253 |
// DW1000 needs a 10us sleep to let clk PLL lock after reset - the PLL will automatically lock after the reset
|
3254 |
// Could also have polled the PLL lock flag, but then the SPI needs to be < 3MHz !! So a simple delay is easier
|
3255 |
deca_sleep(1);
|
3256 |
|
3257 |
// Clear the reset bits
|
3258 |
dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_SOFTRESET_OFFSET, PMSC_CTRL0_RESET_CLEAR); |
3259 |
|
3260 |
pdw1000local->wait4resp = 0;
|
3261 |
} |
3262 |
|
3263 |
/*! ------------------------------------------------------------------------------------------------------------------
|
3264 |
* @fn dwt_setxtaltrim()
|
3265 |
*
|
3266 |
* @brief This is used to adjust the crystal frequency
|
3267 |
*
|
3268 |
* input parameters:
|
3269 |
* @param value - crystal trim value (in range 0x0 to 0x1F) 31 steps (~1.5ppm per step)
|
3270 |
*
|
3271 |
* output parameters
|
3272 |
*
|
3273 |
* no return value
|
3274 |
*/
|
3275 |
void dwt_setxtaltrim(uint8 value)
|
3276 |
{ |
3277 |
// The 3 MSb in this 8-bit register must be kept to 0b011 to avoid any malfunction.
|
3278 |
uint8 reg_val = (3 << 5) | (value & FS_XTALT_MASK); |
3279 |
dwt_write8bitoffsetreg(FS_CTRL_ID, FS_XTALT_OFFSET, reg_val); |
3280 |
} |
3281 |
|
3282 |
/*! ------------------------------------------------------------------------------------------------------------------
|
3283 |
* @fn dwt_getxtaltrim()
|
3284 |
*
|
3285 |
* @brief This function returns current value of XTAL trim. If this is called after dwt_initalise it will return the OTP value
|
3286 |
* if OTP value is non-zero or FS_XTALT_MIDRANGE if OTP value is zero (not programmed).
|
3287 |
*
|
3288 |
* input parameters
|
3289 |
*
|
3290 |
* output parameters
|
3291 |
*
|
3292 |
* returns the current XTAL trim value
|
3293 |
*/
|
3294 |
uint8 dwt_getxtaltrim(void)
|
3295 |
{ |
3296 |
return (dwt_read8bitoffsetreg(FS_CTRL_ID, FS_XTALT_OFFSET) & FS_XTALT_MASK);
|
3297 |
} |
3298 |
|
3299 |
/*! ------------------------------------------------------------------------------------------------------------------
|
3300 |
* @fn dwt_configcwmode()
|
3301 |
*
|
3302 |
* @brief this function sets the DW1000 to transmit cw signal at specific channel frequency
|
3303 |
*
|
3304 |
* input parameters:
|
3305 |
* @param chan - specifies the operating channel (e.g. 1, 2, 3, 4, 5, 6 or 7)
|
3306 |
*
|
3307 |
* output parameters
|
3308 |
*
|
3309 |
* no return value
|
3310 |
*/
|
3311 |
void dwt_configcwmode(uint8 chan)
|
3312 |
{ |
3313 |
#ifdef DWT_API_ERROR_CHECK
|
3314 |
assert((chan >= 1) && (chan <= 7) && (chan != 6)); |
3315 |
#endif
|
3316 |
|
3317 |
//
|
3318 |
// Disable TX/RX RF block sequencing (needed for cw frame mode)
|
3319 |
//
|
3320 |
_dwt_disablesequencing(); |
3321 |
|
3322 |
// Config RF pll (for a given channel)
|
3323 |
// Configure PLL2/RF PLL block CFG/TUNE
|
3324 |
dwt_write32bitoffsetreg(FS_CTRL_ID, FS_PLLCFG_OFFSET, fs_pll_cfg[chan_idx[chan]]); |
3325 |
dwt_write8bitoffsetreg(FS_CTRL_ID, FS_PLLTUNE_OFFSET, fs_pll_tune[chan_idx[chan]]); |
3326 |
// PLL wont be enabled until a TX/RX enable is issued later on
|
3327 |
// Configure RF TX blocks (for specified channel and prf)
|
3328 |
// Config RF TX control
|
3329 |
dwt_write32bitoffsetreg(RF_CONF_ID, RF_TXCTRL_OFFSET, tx_config[chan_idx[chan]]); |
3330 |
|
3331 |
//
|
3332 |
// Enable RF PLL
|
3333 |
//
|
3334 |
dwt_write32bitreg(RF_CONF_ID, RF_CONF_TXPLLPOWEN_MASK); // Enable LDO and RF PLL blocks
|
3335 |
dwt_write32bitreg(RF_CONF_ID, RF_CONF_TXALLEN_MASK); // Enable the rest of TX blocks
|
3336 |
|
3337 |
//
|
3338 |
// Configure TX clocks
|
3339 |
//
|
3340 |
dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, 0x22);
|
3341 |
dwt_write8bitoffsetreg(PMSC_ID, 0x1, 0x07); |
3342 |
|
3343 |
// Disable fine grain TX sequencing
|
3344 |
dwt_setfinegraintxseq(0);
|
3345 |
|
3346 |
// Configure CW mode
|
3347 |
dwt_write8bitoffsetreg(TX_CAL_ID, TC_PGTEST_OFFSET, TC_PGTEST_CW); |
3348 |
} |
3349 |
|
3350 |
/*! ------------------------------------------------------------------------------------------------------------------
|
3351 |
* @fn dwt_configcontinuousframemode()
|
3352 |
*
|
3353 |
* @brief this function sets the DW1000 to continuous tx frame mode for regulatory approvals testing.
|
3354 |
*
|
3355 |
* input parameters:
|
3356 |
* @param framerepetitionrate - This is a 32-bit value that is used to set the interval between transmissions.
|
3357 |
* The minimum value is 4. The units are approximately 8 ns. (or more precisely 512/(499.2e6*128) seconds)).
|
3358 |
*
|
3359 |
* output parameters
|
3360 |
*
|
3361 |
* no return value
|
3362 |
*/
|
3363 |
void dwt_configcontinuousframemode(uint32 framerepetitionrate)
|
3364 |
{ |
3365 |
//
|
3366 |
// Disable TX/RX RF block sequencing (needed for continuous frame mode)
|
3367 |
//
|
3368 |
_dwt_disablesequencing(); |
3369 |
|
3370 |
//
|
3371 |
// Enable RF PLL and TX blocks
|
3372 |
//
|
3373 |
dwt_write32bitreg(RF_CONF_ID, RF_CONF_TXPLLPOWEN_MASK); // Enable LDO and RF PLL blocks
|
3374 |
dwt_write32bitreg(RF_CONF_ID, RF_CONF_TXALLEN_MASK); // Enable the rest of TX blocks
|
3375 |
|
3376 |
//
|
3377 |
// Configure TX clocks
|
3378 |
//
|
3379 |
_dwt_enableclocks(FORCE_SYS_PLL); |
3380 |
_dwt_enableclocks(FORCE_TX_PLL); |
3381 |
|
3382 |
// Set the frame repetition rate
|
3383 |
if(framerepetitionrate < 4) |
3384 |
{ |
3385 |
framerepetitionrate = 4;
|
3386 |
} |
3387 |
dwt_write32bitreg(DX_TIME_ID, framerepetitionrate); |
3388 |
|
3389 |
//
|
3390 |
// Configure continuous frame TX
|
3391 |
//
|
3392 |
dwt_write8bitoffsetreg(DIG_DIAG_ID, DIAG_TMC_OFFSET, (uint8)(DIAG_TMC_TX_PSTM)); // Turn the tx power spectrum test mode - continuous sending of frames
|
3393 |
} |
3394 |
|
3395 |
/*! ------------------------------------------------------------------------------------------------------------------
|
3396 |
* @fn dwt_readtempvbat()
|
3397 |
*
|
3398 |
* @brief this function reads the raw battery voltage and temperature values of the DW IC.
|
3399 |
* The values read here will be the current values sampled by DW IC AtoD converters.
|
3400 |
*
|
3401 |
* NB: To correctly read the temperature this read should be done with xtal clock
|
3402 |
* however that means that the receiver will be switched off, if receiver needs to be on then
|
3403 |
* the timer is used to make sure the value is stable before reading
|
3404 |
*
|
3405 |
* input parameters:
|
3406 |
* @param fastSPI - set to 1 if SPI rate > than 3MHz is used
|
3407 |
*
|
3408 |
* output parameters
|
3409 |
*
|
3410 |
* returns (temp_raw<<8)|(vbat_raw)
|
3411 |
*/
|
3412 |
uint16 dwt_readtempvbat(uint8 fastSPI) |
3413 |
{ |
3414 |
uint8 wr_buf[2];
|
3415 |
uint8 vbat_raw; |
3416 |
uint8 temp_raw; |
3417 |
|
3418 |
// These writes should be single writes and in sequence
|
3419 |
wr_buf[0] = 0x80; // Enable TLD Bias |
3420 |
dwt_writetodevice(RF_CONF_ID,0x11,1,wr_buf); |
3421 |
|
3422 |
wr_buf[0] = 0x0A; // Enable TLD Bias and ADC Bias |
3423 |
dwt_writetodevice(RF_CONF_ID,0x12,1,wr_buf); |
3424 |
|
3425 |
wr_buf[0] = 0x0f; // Enable Outputs (only after Biases are up and running) |
3426 |
dwt_writetodevice(RF_CONF_ID,0x12,1,wr_buf); // |
3427 |
|
3428 |
if(fastSPI == 1) |
3429 |
{ |
3430 |
// Reading All SAR inputs
|
3431 |
wr_buf[0] = 0x00; |
3432 |
dwt_writetodevice(TX_CAL_ID, TC_SARL_SAR_C,1,wr_buf);
|
3433 |
wr_buf[0] = 0x01; // Set SAR enable |
3434 |
dwt_writetodevice(TX_CAL_ID, TC_SARL_SAR_C,1,wr_buf);
|
3435 |
|
3436 |
deca_sleep(1); // If using PLL clocks(and fast SPI rate) then this sleep is needed |
3437 |
// Read voltage and temperature.
|
3438 |
dwt_readfromdevice(TX_CAL_ID, TC_SARL_SAR_LVBAT_OFFSET,2,wr_buf);
|
3439 |
} |
3440 |
else //change to a slow clock |
3441 |
{ |
3442 |
_dwt_enableclocks(FORCE_SYS_XTI); // NOTE: set system clock to XTI - this is necessary to make sure the values read are reliable
|
3443 |
// Reading All SAR inputs
|
3444 |
wr_buf[0] = 0x00; |
3445 |
dwt_writetodevice(TX_CAL_ID, TC_SARL_SAR_C,1,wr_buf);
|
3446 |
wr_buf[0] = 0x01; // Set SAR enable |
3447 |
dwt_writetodevice(TX_CAL_ID, TC_SARL_SAR_C,1,wr_buf);
|
3448 |
|
3449 |
// Read voltage and temperature.
|
3450 |
dwt_readfromdevice(TX_CAL_ID, TC_SARL_SAR_LVBAT_OFFSET,2,wr_buf);
|
3451 |
// Default clocks (ENABLE_ALL_SEQ)
|
3452 |
_dwt_enableclocks(ENABLE_ALL_SEQ); // Enable clocks for sequencing
|
3453 |
} |
3454 |
|
3455 |
vbat_raw = wr_buf[0];
|
3456 |
temp_raw = wr_buf[1];
|
3457 |
|
3458 |
wr_buf[0] = 0x00; // Clear SAR enable |
3459 |
dwt_writetodevice(TX_CAL_ID, TC_SARL_SAR_C,1,wr_buf);
|
3460 |
|
3461 |
return (((uint16)temp_raw<<8)|(vbat_raw)); |
3462 |
} |
3463 |
|
3464 |
/*! ------------------------------------------------------------------------------------------------------------------
|
3465 |
* @fn dwt_convertrawtemperature()
|
3466 |
*
|
3467 |
* @brief this function takes in a raw temperature value and applies the conversion factor
|
3468 |
* to give true temperature. The dwt_initialise needs to be called before call to this to
|
3469 |
* ensure pdw1000local->tempP contains the SAR_LTEMP value from OTP.
|
3470 |
*
|
3471 |
* input parameters:
|
3472 |
* @param raw_temp - this is the 8-bit raw temperature value as read by dwt_readtempvbat
|
3473 |
*
|
3474 |
* output parameters:
|
3475 |
*
|
3476 |
* returns: temperature sensor value in degrees
|
3477 |
*/
|
3478 |
float dwt_convertrawtemperature(uint8 raw_temp)
|
3479 |
{ |
3480 |
float realtemp;
|
3481 |
#ifdef DWT_API_ERROR_CHECK
|
3482 |
assert(pdw1000local->otp_mask & DWT_READ_OTP_TMP); |
3483 |
#endif
|
3484 |
// the User Manual formula is: Temperature (?C) = ( (SAR_LTEMP ? OTP_READ(Vtemp @ 23?C) ) x 1.14) + 23
|
3485 |
realtemp = ((raw_temp - pdw1000local->tempP) * SAR_TEMP_TO_CELCIUS_CONV) + 23 ;
|
3486 |
|
3487 |
return realtemp;
|
3488 |
} |
3489 |
|
3490 |
/*! ------------------------------------------------------------------------------------------------------------------
|
3491 |
* @fn dwt_convertdegtemptoraw()
|
3492 |
*
|
3493 |
* @brief this function takes in an externally measured temperature in 10ths of degrees Celcius
|
3494 |
* and applies the conversion factor to give a value in IC temperature units, as produced by the SAR A/D.
|
3495 |
* The dwt_initialise needs to be called before call to this to ensure pdw1000local->tempP contains the SAR_LTEMP value from OTP.
|
3496 |
*
|
3497 |
* input parameters:
|
3498 |
* @param externaltemp - this is the an externally measured temperature in 10ths of degrees Celcius to convert
|
3499 |
*
|
3500 |
* output parameters:
|
3501 |
*
|
3502 |
* returns: temperature sensor value in DW IC temperature units (1.14?C steps)
|
3503 |
*/
|
3504 |
uint8 dwt_convertdegtemptoraw(int16 externaltemp) |
3505 |
{ |
3506 |
int32 raw_temp; |
3507 |
#ifdef DWT_API_ERROR_CHECK
|
3508 |
assert(pdw1000local->otp_mask & DWT_READ_OTP_TMP); |
3509 |
assert((externaltemp > -800) && (externaltemp < 1500)) |
3510 |
#endif
|
3511 |
// the User Manual formula is: Temperature (?C) = ( (SAR_LTEMP ? OTP_READ(Vtemp @ 23?C) ) x 1.14) + 23
|
3512 |
raw_temp = ((externaltemp - 230 + 5) * DCELCIUS_TO_SAR_TEMP_CONV) ; //+5 for better rounding |
3513 |
|
3514 |
if(raw_temp < 0) //negative |
3515 |
{ |
3516 |
raw_temp = (-raw_temp >> 8) ;
|
3517 |
raw_temp = -raw_temp ; |
3518 |
} |
3519 |
else
|
3520 |
raw_temp = raw_temp >> 8 ;
|
3521 |
|
3522 |
return (uint8) (raw_temp + pdw1000local->tempP);
|
3523 |
} |
3524 |
|
3525 |
/*! ------------------------------------------------------------------------------------------------------------------
|
3526 |
* @fn dwt_convertrawvoltage()
|
3527 |
*
|
3528 |
* @brief this function takes in a raw voltage value and applies the conversion factor
|
3529 |
* to give true voltage. The dwt_initialise needs to be called before call to this to
|
3530 |
* ensure pdw1000local->vBatP contains the SAR_LVBAT value from OTP
|
3531 |
*
|
3532 |
* input parameters:
|
3533 |
* @param raw_voltage - this is the 8-bit raw voltage value as read by dwt_readtempvbat
|
3534 |
*
|
3535 |
* output parameters:
|
3536 |
*
|
3537 |
* returns: voltage sensor value in volts
|
3538 |
*/
|
3539 |
float dwt_convertrawvoltage(uint8 raw_voltage)
|
3540 |
{ |
3541 |
float realvolt;
|
3542 |
|
3543 |
#ifdef DWT_API_ERROR_CHECK
|
3544 |
assert(pdw1000local->otp_mask & DWT_READ_OTP_BAT); |
3545 |
#endif
|
3546 |
// the User Manual formula is: Voltage (V) = ( (SAR_LVBAT ? OTP_READ(Vmeas @ 3.3 V) ) / 173 ) + 3.3
|
3547 |
realvolt = ((float)(raw_voltage - pdw1000local->vBatP) * SAR_VBAT_TO_VOLT_CONV) + 3.3 ; |
3548 |
|
3549 |
return realvolt;
|
3550 |
} |
3551 |
|
3552 |
/*! ------------------------------------------------------------------------------------------------------------------
|
3553 |
* @fn dwt_convertvoltstoraw()
|
3554 |
*
|
3555 |
* @brief this function takes in a true voltage in millivolts and applies the conversion factor to
|
3556 |
* give a raw DW IC value. The dwt_initialise needs to be called before call to this to
|
3557 |
* ensure pdw1000local->vBatP contains the SAR_LVBAT value from OTP.
|
3558 |
*
|
3559 |
* input parameters:
|
3560 |
* @param realvolt - this is a true voltage in millivolts to convert
|
3561 |
*
|
3562 |
* output parameters:
|
3563 |
*
|
3564 |
* returns: voltage sensor value in DW IC voltage units
|
3565 |
*/
|
3566 |
uint8 dwt_convertvoltstoraw(int32 externalmvolt) |
3567 |
{ |
3568 |
uint32 raw_voltage; |
3569 |
#ifdef DWT_API_ERROR_CHECK
|
3570 |
assert(pdw1000local->otp_mask & DWT_READ_OTP_BAT); |
3571 |
#endif
|
3572 |
// the User Manual formula is: Voltage (V) = ( (SAR_LVBAT ? OTP_READ(Vmeas @ 3.3 V) ) / 173 ) + 3.3
|
3573 |
raw_voltage = ((externalmvolt - 3300) * MVOLT_TO_SAR_VBAT_CONV) + pdw1000local->vBatP ;
|
3574 |
|
3575 |
return (uint8) raw_voltage;
|
3576 |
} |
3577 |
|
3578 |
/*! ------------------------------------------------------------------------------------------------------------------
|
3579 |
* @fn dwt_readwakeuptemp()
|
3580 |
*
|
3581 |
* @brief this function reads the temperature of the DW1000 that was sampled
|
3582 |
* on waking from Sleep/Deepsleep. They are not current values, but read on last
|
3583 |
* wakeup if DWT_TANDV bit is set in mode parameter of dwt_configuresleep
|
3584 |
*
|
3585 |
* input parameters:
|
3586 |
*
|
3587 |
* output parameters:
|
3588 |
*
|
3589 |
* returns: 8-bit raw temperature sensor value
|
3590 |
*/
|
3591 |
uint8 dwt_readwakeuptemp(void)
|
3592 |
{ |
3593 |
return dwt_read8bitoffsetreg(TX_CAL_ID, TC_SARL_SAR_LTEMP_OFFSET);
|
3594 |
} |
3595 |
|
3596 |
/*! ------------------------------------------------------------------------------------------------------------------
|
3597 |
* @fn dwt_readwakeupvbat()
|
3598 |
*
|
3599 |
* @brief this function reads the battery voltage of the DW1000 that was sampled
|
3600 |
* on waking from Sleep/Deepsleep. They are not current values, but read on last
|
3601 |
* wakeup if DWT_TANDV bit is set in mode parameter of dwt_configuresleep
|
3602 |
*
|
3603 |
* input parameters:
|
3604 |
*
|
3605 |
* output parameters:
|
3606 |
*
|
3607 |
* returns: 8-bit raw battery voltage sensor value
|
3608 |
*/
|
3609 |
uint8 dwt_readwakeupvbat(void)
|
3610 |
{ |
3611 |
return dwt_read8bitoffsetreg(TX_CAL_ID, TC_SARL_SAR_LVBAT_OFFSET);
|
3612 |
} |
3613 |
|
3614 |
/*! ------------------------------------------------------------------------------------------------------------------
|
3615 |
* @fn dwt_calcbandwidthtempadj()
|
3616 |
*
|
3617 |
* @brief this function determines the corrected bandwidth setting (PG_DELAY register setting)
|
3618 |
* of the DW1000 which changes over temperature.
|
3619 |
*
|
3620 |
* NOTE 1: SPI Frequency must be < 3MHz.
|
3621 |
* NOTE 2: The sleep to allow the calibration to complete is set to 1ms here, but can be as low as 10us.
|
3622 |
*
|
3623 |
* input parameters:
|
3624 |
* @param target_count - uint16 - the PG count target to reach in order to correct the bandwidth
|
3625 |
*
|
3626 |
* output parameters:
|
3627 |
*
|
3628 |
* returns: (uint32) The setting to be programmed into the PG_DELAY value
|
3629 |
*/
|
3630 |
uint32 dwt_calcbandwidthtempadj(uint16 target_count) |
3631 |
{ |
3632 |
int i;
|
3633 |
uint8 bit_field, curr_bw; |
3634 |
int32 delta_count = 0;
|
3635 |
uint32 best_bw = 0;
|
3636 |
uint16 raw_count = 0;
|
3637 |
int32 delta_lowest; |
3638 |
|
3639 |
// Used to store the current values of the registers so that they can be restored after
|
3640 |
uint8 old_pmsc_ctrl0; |
3641 |
uint16 old_pmsc_ctrl1; |
3642 |
uint32 old_rf_conf_txpow_mask; |
3643 |
|
3644 |
// Record the current values of these registers, to restore later
|
3645 |
old_pmsc_ctrl0 = dwt_read8bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET); |
3646 |
old_pmsc_ctrl1 = dwt_read16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET); |
3647 |
old_rf_conf_txpow_mask = dwt_read32bitreg(RF_CONF_ID); |
3648 |
|
3649 |
// Set clock to XTAL
|
3650 |
dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, PMSC_CTRL0_SYSCLKS_19M); |
3651 |
|
3652 |
// Disable sequencing
|
3653 |
dwt_write16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET, PMSC_CTRL1_PKTSEQ_DISABLE); |
3654 |
|
3655 |
// Turn on CLK PLL, Mix Bias and PG
|
3656 |
dwt_write32bitreg(RF_CONF_ID, RF_CONF_TXPOW_MASK | RF_CONF_PGMIXBIASEN_MASK); |
3657 |
|
3658 |
// Set sys and TX clock to PLL
|
3659 |
dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, PMSC_CTRL0_SYSCLKS_125M | PMSC_CTRL0_TXCLKS_125M); |
3660 |
|
3661 |
// Set the MSB high for first guess
|
3662 |
curr_bw = 0x80;
|
3663 |
// Set starting bit
|
3664 |
bit_field = 0x80;
|
3665 |
// Initial lowest delta is the maximum difference that we should allow the count value to be from the target.
|
3666 |
// If the algorithm is successful, it will be overwritten by a smaller value where the count value is closer
|
3667 |
// to the target
|
3668 |
delta_lowest = 300;
|
3669 |
|
3670 |
for (i = 0; i < 7; i++) |
3671 |
{ |
3672 |
// start with 0xc0 and test.
|
3673 |
bit_field = bit_field >> 1;
|
3674 |
curr_bw = curr_bw | bit_field; |
3675 |
|
3676 |
// Write bw setting to PG_DELAY register
|
3677 |
dwt_write8bitoffsetreg(TX_CAL_ID, TC_PGDELAY_OFFSET, curr_bw); |
3678 |
|
3679 |
// Set cal direction and time
|
3680 |
dwt_write8bitoffsetreg(TX_CAL_ID, TC_PGCCTRL_OFFSET, TC_PGCCTRL_DIR_CONV | TC_PGCCTRL_TMEAS_MASK); |
3681 |
|
3682 |
// Start cal
|
3683 |
dwt_write8bitoffsetreg(TX_CAL_ID, TC_PGCCTRL_OFFSET, TC_PGCCTRL_DIR_CONV | TC_PGCCTRL_TMEAS_MASK | TC_PGCCTRL_CALSTART); |
3684 |
// Allow cal to complete
|
3685 |
deca_sleep(1);
|
3686 |
|
3687 |
// Read count value from the PG cal block
|
3688 |
raw_count = dwt_read16bitoffsetreg(TX_CAL_ID, TC_PGCAL_STATUS_OFFSET) & TC_PGCAL_STATUS_DELAY_MASK; |
3689 |
|
3690 |
// lets keep track of the closest value to the target in case we overshoot
|
3691 |
delta_count = abs((int)raw_count - (int)target_count); |
3692 |
if (delta_count < delta_lowest)
|
3693 |
{ |
3694 |
delta_lowest = delta_count; |
3695 |
best_bw = curr_bw; |
3696 |
} |
3697 |
|
3698 |
// Test the count results
|
3699 |
if (raw_count > target_count)
|
3700 |
// Count was lower, BW was lower so increase PG DELAY
|
3701 |
curr_bw = curr_bw | bit_field; |
3702 |
else
|
3703 |
// Count was higher
|
3704 |
curr_bw = curr_bw & (~(bit_field)); |
3705 |
} |
3706 |
|
3707 |
// Restore old register values
|
3708 |
dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, old_pmsc_ctrl0); |
3709 |
dwt_write16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET, old_pmsc_ctrl1); |
3710 |
dwt_write32bitreg(RF_CONF_ID, old_rf_conf_txpow_mask); |
3711 |
|
3712 |
// Returns the best PG_DELAY setting
|
3713 |
return best_bw;
|
3714 |
} |
3715 |
|
3716 |
|
3717 |
/*! ------------------------------------------------------------------------------------------------------------------
|
3718 |
* @fn _dwt_computetxpowersetting()
|
3719 |
*
|
3720 |
* @brief this function calculates the appropriate change to the TX_POWER register to compensate
|
3721 |
* the TX power output at different temperatures.
|
3722 |
*
|
3723 |
* input parameters:
|
3724 |
* @param ref_powerreg - uint32 - the TX_POWER register value recorded when reference measurements were made
|
3725 |
* @param power_adj - uint32 - the adjustment in power level to be made, in 0.5dB steps
|
3726 |
*
|
3727 |
* output parameters:
|
3728 |
*
|
3729 |
* returns: (uint32) The setting to be programmed into the TX_POWER register
|
3730 |
*/
|
3731 |
uint32 _dwt_computetxpowersetting(uint32 ref_powerreg, int32 power_adj) |
3732 |
{ |
3733 |
int8 da_attn_change, mixer_gain_change; |
3734 |
uint8 current_da_attn, current_mixer_gain; |
3735 |
uint8 new_da_attn, new_mixer_gain; |
3736 |
uint32 new_regval = 0;
|
3737 |
int i;
|
3738 |
|
3739 |
for(i = 0; i < 4; i++) |
3740 |
{ |
3741 |
da_attn_change = 0;
|
3742 |
mixer_gain_change = power_adj; |
3743 |
current_da_attn = ((ref_powerreg >> (i*8)) & 0xE0) >> 5; |
3744 |
current_mixer_gain = (ref_powerreg >> (i*8)) & 0x1F; |
3745 |
|
3746 |
// Mixer gain gives best performance between gain value of 4 and 20
|
3747 |
while((current_mixer_gain + mixer_gain_change < 4) || |
3748 |
(current_mixer_gain + mixer_gain_change > 20))
|
3749 |
{ |
3750 |
// If mixer gain goes outside bounds, adjust the DA attenuation to compensate
|
3751 |
if(current_mixer_gain + mixer_gain_change > 20) |
3752 |
{ |
3753 |
da_attn_change -= 1;
|
3754 |
|
3755 |
if(da_attn_change == 0) //DA attenuation has reached the max value |
3756 |
{ |
3757 |
da_attn_change = 1; //restore the value and exit the loop - DA is at max allowed |
3758 |
break;
|
3759 |
} |
3760 |
|
3761 |
mixer_gain_change -= (int8) (MIX_DA_FACTOR); |
3762 |
} |
3763 |
else if(current_mixer_gain + mixer_gain_change < 4) |
3764 |
{ |
3765 |
da_attn_change += 1;
|
3766 |
|
3767 |
if(da_attn_change == 0x8) //DA attenuation has reached the min value |
3768 |
{ |
3769 |
da_attn_change = 7; //restore the value and exit the loop - DA is at min allowed |
3770 |
break;
|
3771 |
} |
3772 |
|
3773 |
mixer_gain_change += (int8) (MIX_DA_FACTOR); |
3774 |
} |
3775 |
} |
3776 |
|
3777 |
new_da_attn = (current_da_attn + da_attn_change) & 0x7;
|
3778 |
new_mixer_gain = (current_mixer_gain + mixer_gain_change) & 0x1F;
|
3779 |
|
3780 |
new_regval |= ((uint32) ((new_da_attn << 5) | new_mixer_gain)) << (i * 8); |
3781 |
} |
3782 |
|
3783 |
return (uint32)new_regval;
|
3784 |
} |
3785 |
|
3786 |
/*! ------------------------------------------------------------------------------------------------------------------
|
3787 |
* @fn dwt_calcpowertempadj()
|
3788 |
*
|
3789 |
* @brief this function determines the corrected power setting (TX_POWER setting) for the
|
3790 |
* DW1000 which changes over temperature.
|
3791 |
*
|
3792 |
* Note: only ch2 or ch5 are supported, if other channel is used - the COMP factor should be calculated and adjusted
|
3793 |
*
|
3794 |
* input parameters:
|
3795 |
* @param channel - uint8 - the channel at which compensation of power level will be applied: 2 or 5
|
3796 |
* @param ref_powerreg - uint32 - the TX_POWER register value recorded when reference measurements were made
|
3797 |
* @param delta_temp - int - the difference between current ambient temperature (raw value units)
|
3798 |
* and the temperature at which reference measurements were made (raw value units)
|
3799 |
|
3800 |
* output parameters: None
|
3801 |
*
|
3802 |
* returns: (uint32) The corrected TX_POWER register value
|
3803 |
*/
|
3804 |
uint32 dwt_calcpowertempadj(uint8 channel, uint32 ref_powerreg, int delta_temp)
|
3805 |
{ |
3806 |
int8 delta_power; |
3807 |
int negative = 0; |
3808 |
|
3809 |
if(delta_temp < 0) |
3810 |
{ |
3811 |
negative = 1;
|
3812 |
delta_temp = -delta_temp; //make (-)ve into (+)ve number
|
3813 |
} |
3814 |
|
3815 |
// Calculate the expected power differential at the current temperature
|
3816 |
if(channel == 5) |
3817 |
{ |
3818 |
delta_power = ((delta_temp * TEMP_COMP_FACTOR_CH5) >> 12); //>>12 is same as /4096 |
3819 |
} |
3820 |
else if(channel == 2) |
3821 |
{ |
3822 |
delta_power = ((delta_temp * TEMP_COMP_FACTOR_CH2) >> 12); //>>12 is same as /4096 |
3823 |
} |
3824 |
else
|
3825 |
delta_power = 0;
|
3826 |
|
3827 |
if(negative == 1) |
3828 |
{ |
3829 |
delta_power = -delta_power; //restore the sign
|
3830 |
} |
3831 |
|
3832 |
if(delta_power == 0) |
3833 |
return ref_powerreg ; //no change to power register |
3834 |
|
3835 |
// Adjust the TX_POWER register value
|
3836 |
return _dwt_computetxpowersetting(ref_powerreg, delta_power);
|
3837 |
} |
3838 |
|
3839 |
/*! ------------------------------------------------------------------------------------------------------------------
|
3840 |
* @fn dwt_calcpgcount()
|
3841 |
*
|
3842 |
* @brief this function calculates the value in the pulse generator counter register (PGC_STATUS) for a given PG_DELAY
|
3843 |
* This is used to take a reference measurement, and the value recorded as the reference is used to adjust the
|
3844 |
* bandwidth of the device when the temperature changes.
|
3845 |
*
|
3846 |
* NOTE 1: SPI Frequency must be < 3MHz.
|
3847 |
* NOTE 2: The sleep to allow the calibration to complete is set to 1ms here, but can be as low as 10us.
|
3848 |
*
|
3849 |
* input parameters:
|
3850 |
* @param pgdly - uint8 - the PG_DELAY to set (to control bandwidth), and to find the corresponding count value for
|
3851 |
* output parameters: None
|
3852 |
*
|
3853 |
* returns: (uint16) PGC_STATUS count value calculated from the provided PG_DELAY value - used as reference for later
|
3854 |
* bandwidth adjustments
|
3855 |
*/
|
3856 |
uint16 dwt_calcpgcount(uint8 pgdly) |
3857 |
{ |
3858 |
// Perform PG count read ten times and take an average to smooth out any noise
|
3859 |
const int NUM_SAMPLES = 10; |
3860 |
uint32 sum_count = 0;
|
3861 |
uint16 average_count = 0, count = 0; |
3862 |
int i = 0; |
3863 |
|
3864 |
// Used to store the current values of the registers so that they can be restored after
|
3865 |
uint8 old_pmsc_ctrl0; |
3866 |
uint16 old_pmsc_ctrl1; |
3867 |
uint32 old_rf_conf_txpow_mask; |
3868 |
|
3869 |
// Record the current values of these registers, to restore later
|
3870 |
old_pmsc_ctrl0 = dwt_read8bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET); |
3871 |
old_pmsc_ctrl1 = dwt_read16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET); |
3872 |
old_rf_conf_txpow_mask = dwt_read32bitreg(RF_CONF_ID); |
3873 |
|
3874 |
// Set clock to XTAL
|
3875 |
dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, PMSC_CTRL0_SYSCLKS_19M); |
3876 |
// Disable sequencing
|
3877 |
dwt_write16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET, PMSC_CTRL1_PKTSEQ_DISABLE); |
3878 |
// Turn on CLK PLL, Mix Bias and PG
|
3879 |
dwt_write32bitreg(RF_CONF_ID, RF_CONF_TXPOW_MASK | RF_CONF_PGMIXBIASEN_MASK); |
3880 |
// Set sys and TX clock to PLL
|
3881 |
dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, PMSC_CTRL0_SYSCLKS_125M | PMSC_CTRL0_TXCLKS_125M); |
3882 |
|
3883 |
for(i = 0; i < NUM_SAMPLES; i++) { |
3884 |
// Write bw setting to PG_DELAY register
|
3885 |
dwt_write8bitoffsetreg(TX_CAL_ID, TC_PGDELAY_OFFSET, pgdly); |
3886 |
|
3887 |
// Set cal direction and time
|
3888 |
dwt_write8bitoffsetreg(TX_CAL_ID, TC_PGCCTRL_OFFSET, TC_PGCCTRL_DIR_CONV | TC_PGCCTRL_TMEAS_MASK); |
3889 |
|
3890 |
// Start cal
|
3891 |
dwt_write8bitoffsetreg(TX_CAL_ID, TC_PGCCTRL_OFFSET, TC_PGCCTRL_DIR_CONV | TC_PGCCTRL_TMEAS_MASK | TC_PGCCTRL_CALSTART); |
3892 |
|
3893 |
// Allow cal to complete - the TC_PGCCTRL_CALSTART bit will clear automatically
|
3894 |
deca_sleep(1);
|
3895 |
|
3896 |
// Read count value from the PG cal block
|
3897 |
count = dwt_read16bitoffsetreg(TX_CAL_ID, TC_PGCAL_STATUS_OFFSET) & TC_PGCAL_STATUS_DELAY_MASK; |
3898 |
|
3899 |
sum_count += count; |
3900 |
} |
3901 |
|
3902 |
// Restore old register values
|
3903 |
dwt_write8bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, old_pmsc_ctrl0); |
3904 |
dwt_write16bitoffsetreg(PMSC_ID, PMSC_CTRL1_OFFSET, old_pmsc_ctrl1); |
3905 |
dwt_write32bitreg(RF_CONF_ID, old_rf_conf_txpow_mask); |
3906 |
|
3907 |
average_count = (int)(sum_count / NUM_SAMPLES);
|
3908 |
return average_count;
|
3909 |
} |
3910 |
|
3911 |
|
3912 |
/* ===============================================================================================
|
3913 |
List of expected (known) device ID handled by this software
|
3914 |
===============================================================================================
|
3915 |
|
3916 |
0xDECA0130 // DW1000 - MP
|
3917 |
|
3918 |
===============================================================================================
|
3919 |
*/
|
3920 |
|