Statistics
| Branch: | Tag: | Revision:

amiro-lld / drivers / DW1000 / v1 / deca_instance_common.c @ 9466e34d

History | View | Annotate | Download (71.11 KB)

1 69a601a5 Cung Sang
/*! ----------------------------------------------------------------------------
2
 *  @file    instance_common.c
3
 *  @brief   DecaWave application level common instance functions
4
 *
5
 * @attention
6
 *
7
 * Copyright 2015 (c) DecaWave Ltd, Dublin, Ireland.
8
 *
9
 * All rights reserved.
10
 *
11
 * @author DecaWave
12
 */
13
14
#include <alld_DW1000.h>
15 9466e34d Thomas Schöpping
#include <module.h>
16 69a601a5 Cung Sang
#include <string.h>
17
#include <math.h>
18 9466e34d Thomas Schöpping
#include <deca_instance.h>
19 33f54213 Cung Sang
20
21
/*! @brief Software defined configuration settings for RTLS applications */
22
/*! Configuration for DecaRangeRTLS TREK Modes (4 default use cases selected by the switch S1 [2,3] on EVB1000, indexed 0 to 3 )*/
23
instanceConfig_t chConfig[4] ={
24
                               //mode 1 - S1: 2 off, 3 off
25
                               {
26
                                .channelNumber = 2,             // channel
27
                                .preambleCode = 4,              // preambleCode
28
                                .pulseRepFreq = DWT_PRF_16M,    // prf
29
                                .dataRate = DWT_BR_110K,        // datarate
30
                                .preambleLen = DWT_PLEN_1024,   // preambleLength
31
                                .pacSize = DWT_PAC32,           // pacSize
32
                                .nsSFD = 1,                     // non-standard SFD
33
                                .sfdTO = (1025 + 64 - 32)       // SFD timeout
34
                               },
35
                               //mode 2 - S1: 2 on, 3 off
36
                               {
37
                                .channelNumber = 2,            // channel
38
                                .preambleCode = 4,             // preambleCode
39
                                .pulseRepFreq = DWT_PRF_16M,   // prf
40
                                .dataRate = DWT_BR_6M8,        // datarate
41
                                .preambleLen = DWT_PLEN_128,   // preambleLength
42
                                .pacSize = DWT_PAC8,           // pacSize
43
                                .nsSFD = 0,                    // non-standard SFD
44
                                .sfdTO = (129 + 8 - 8)        // SFD timeout
45
                               },
46
                               //mode 3 - S1: 2 off, 3 on
47
                               {
48
                                .channelNumber = 5,             // channel
49
                                .preambleCode = 3,              // preambleCode
50
                                .pulseRepFreq = DWT_PRF_16M,    // prf
51
                                .dataRate = DWT_BR_110K,        // datarate
52
                                .preambleLen = DWT_PLEN_1024,   // preambleLength
53
                                .pacSize = DWT_PAC32,           // pacSize
54
                                .nsSFD = 1,                     // non-standard SFD
55
                                .sfdTO = (1025 + 64 - 32)       // SFD timeout
56
                               },
57
                               //mode 4 - S1: 2 on, 3 on
58
                               {
59
                                .channelNumber = 5,            // channel
60
                                .preambleCode = 3,             // preambleCode
61
                                .pulseRepFreq = DWT_PRF_16M,   // prf
62
                                .dataRate = DWT_BR_6M8,        // datarate
63
                                .preambleLen = DWT_PLEN_128,   // preambleLength
64
                                .pacSize = DWT_PAC8,           // pacSize
65
                                .nsSFD = 0,                    // non-standard SFD
66
                                .sfdTO = (129 + 8 - 8)        // SFD timeout
67
                               }
68
};
69 69a601a5 Cung Sang
70
71 33f54213 Cung Sang
/*! Slot and Superframe Configuration for DecaRangeRTLS TREK Modes (4 default use cases selected by the switch S1 [2,3] on EVB1000, indexed 0 to 3 )*/
72
sfConfig_t sfConfig[4] ={
73
                         //mode 1 - S1: 2 off, 3 off
74
                         {
75
                          .slotPeriod = (28), //slot duration in milliseconds (NOTE: the ranging exchange must be able to complete in this time
76
                          //e.g. tag sends a poll, 4 anchors send responses and tag sends the final + processing time
77
                          .numSlots = (10),        //number of slots in the superframe (8 tag slots and 2 used for anchor to anchor ranging),
78
                          .sfPeriod = (10*28),  //in ms => 280ms frame means 3.57 Hz location rate
79
                          .pollSleepDly = (10*28), //tag period in ms (sleep time + ranging time)
80
                          .replyDly = (25000) //poll to final delay in microseconds (needs to be adjusted according to lengths of ranging frames)
81
                         },
82
#if (DISCOVERY == 1)
83
                         //mode 2 - S1: 2 on, 3 off
84
                         {
85
                          .slotPeriod = (10), //slot duration in milliseconds (NOTE: the ranging exchange must be able to complete in this time
86
                          //e.g. tag sends a poll, 4 anchors send responses and tag sends the final + processing time
87
                          .numSlots = (100),        //number of slots in the superframe (98 tag slots and 2 used for anchor to anchor ranging),
88
                          .sfPeriod = (10*100),  //in ms => 1000 ms frame means 1 Hz location rate
89
                          .pollSleepDly = (10*100), //tag period in ms (sleep time + ranging time)
90
                          .replyDly = (2500) //poll to final delay in microseconds (needs to be adjusted according to lengths of ranging frames)
91
92
                         },
93
#else
94
                         //mode 2 - S1: 2 on, 3 off
95
                         {
96
                          .slotPeriod = (10), //slot duration in milliseconds (NOTE: the ranging exchange must be able to complete in this time
97
                          //e.g. tag sends a poll, 4 anchors send responses and tag sends the final + processing time
98
                          .numSlots = (10),        //number of slots in the superframe (8 tag slots and 2 used for anchor to anchor ranging),
99
                          .sfPeriod = (10*10),  //in ms => 100 ms frame means 10 Hz location rate
100
                          .pollSleepDly = (10*10), //tag period in ms (sleep time + ranging time)
101
                          .replyDly = (2500) //poll to final delay in microseconds (needs to be adjusted according to lengths of ranging frames)
102
                         },
103
#endif
104
                         //mode 3 - S1: 2 off, 3 on
105
                         {
106
                          .slotPeriod = (28), //slot duration in milliseconds (NOTE: the ranging exchange must be able to complete in this time
107
                          //e.g. tag sends a poll, 4 anchors send responses and tag sends the final + processing time
108
                          .numSlots = (10),        //number of slots in the superframe (8 tag slots and 2 used for anchor to anchor ranging),
109
                          .sfPeriod = (10*28),  //in ms => 280ms frame means 3.57 Hz location rate
110
                          .pollSleepDly = (10*28), //tag period in ms (sleep time + ranging time)
111
                          .replyDly = (20000) //poll to final delay in microseconds (needs to be adjusted according to lengths of ranging frames)
112
113
                         },
114
                         //mode 4 - S1: 2 on, 3 on
115
                         {
116
                          .slotPeriod = (10), //slot duration in milliseconds (NOTE: the ranging exchange must be able to complete in this time
117
                          //e.g. tag sends a poll, 4 anchors send responses and tag sends the final + processing time
118
                          .numSlots = (10),        //number of slots in the superframe (8 tag slots and 2 used for anchor to anchor ranging),
119
                          .sfPeriod = (10*10),  //in ms => 100 ms frame means 10 Hz location rate
120
                          .pollSleepDly = (10*10), //tag period in ms (sleep time + ranging time)
121
                          .replyDly = (2500) //poll to final delay in microseconds (needs to be adjusted according to lengths of ranging frames)
122
                         }
123
};
124 69a601a5 Cung Sang
125
126
// -------------------------------------------------------------------------------------------------------------------
127
128
//The table below specifies the default TX spectrum configuration parameters... this has been tuned for DW EVK hardware units
129
//the table is set for smart power - see below in the instance_config function how this is used when not using smart power
130
const tx_struct txSpectrumConfig[8] =
131
{
132
    //Channel 0 ----- this is just a place holder so the next array element is channel 1
133
    {
134
            0x0,   //0
135
            {
136
                    0x0, //0
137
                    0x0 //0
138
            }
139
    },
140
    //Channel 1
141
    {
142
            0xc9,   //PG_DELAY
143
            {
144
                    0x15355575, //16M prf power
145
                    0x07274767 //64M prf power
146
            }
147
148
    },
149
    //Channel 2
150
    {
151
            0xc2,   //PG_DELAY
152
            {
153
                    0x15355575, //16M prf power
154
                    0x07274767 //64M prf power
155
            }
156
    },
157
    //Channel 3
158
    {
159
            0xc5,   //PG_DELAY
160
            {
161
                    0x0f2f4f6f, //16M prf power
162
                    0x2b4b6b8b //64M prf power
163
            }
164
    },
165
    //Channel 4
166
    {
167
            0x95,   //PG_DELAY
168
            {
169
                    0x1f1f3f5f, //16M prf power
170
                    0x3a5a7a9a //64M prf power
171
            }
172
    },
173
    //Channel 5
174
    {
175
            0xc0,   //PG_DELAY
176
            {
177
                    0x0E082848, //16M prf power
178
                    0x25456585 //64M prf power
179
            }
180
    },
181
    //Channel 6 ----- this is just a place holder so the next array element is channel 7
182
    {
183
            0x0,   //0
184
            {
185
                    0x0, //0
186
                    0x0 //0
187
            }
188
    },
189
    //Channel 7
190
    {
191
            0x93,   //PG_DELAY
192
            {
193
                    0x32527292, //16M prf power
194
                    0x5171B1d1 //64M prf power
195
            }
196
    }
197
};
198
199
//these are default antenna delays for EVB1000, these can be used if there is no calibration data in the DW1000,
200
//or instead of the calibration data
201
const uint16_t rfDelays[2] = {
202 26dead12 Cung Sang
        (uint16_t) (((double)DWT_PRF_16M_RFDLY/ 2.0) * 1e-9 / DWT_TIME_UNITS),//PRF 16
203
        (uint16_t) (((double)DWT_PRF_64M_RFDLY/ 2.0) * 1e-9 / DWT_TIME_UNITS)
204 69a601a5 Cung Sang
};
205
206
//these are default TREK Tag/Anchor antenna delays
207
const uint16_t rfDelaysTREK[2] = {
208 26dead12 Cung Sang
        (uint16_t) (((double)514.83f/ 2.0) * 1e-9 / DWT_TIME_UNITS),//channel 2
209
        (uint16_t) (((double)514.65f/ 2.0) * 1e-9 / DWT_TIME_UNITS) //channel 5
210 69a601a5 Cung Sang
};
211
212
213
// -------------------------------------------------------------------------------------------------------------------
214
//      Data Definitions
215
// -------------------------------------------------------------------------------------------------------------------
216
217
instance_data_t instance_data[NUM_INST] ;
218
219
static double inst_tdist[MAX_TAG_LIST_SIZE] ;
220
static double inst_idist[MAX_ANCHOR_LIST_SIZE] ;
221
static double inst_idistraw[MAX_ANCHOR_LIST_SIZE] ;
222
223
instance_data_t instance_data[NUM_INST] ;
224
225 26dead12 Cung Sang
typedef struct __attribute__((packed))
226 69a601a5 Cung Sang
{
227
    uint32_t      deviceID ;
228
    uint8_t       chan;               // added chan here - used in the reading of acc
229
    uint16_t      rfrxDly;            // rf delay (delay though the RF blocks before the signal comes out of the antenna i.e. "antenna delay")
230
    uint16_t      rftxDly;            // rf delay (delay though the RF blocks before the signal comes out of the antenna i.e. "antenna delay")
231
    uint32_t      antennaDly;         // antenna delay read from OTP 64 PRF value is in high 16 bits and 16M PRF in low 16 bits
232
    uint32_t      antennaCals[4];     // antenna delays for the TREKs (Anchor high 16-bits, Tag low 16-bits)
233
    uint32_t      txPowCfg[12];       // stores the Tx power configuration read from OTP (6 channels consecutively with PRF16 then 64, e.g. Ch 1 PRF16 is index 0 and 64 index 1)
234
    uint32_t      states[3] ;         //MP workaround debug states register
235
    uint8_t       statescount ;
236
    int           prfIndex ;
237
    uint32_t      ldoTune ;           //low 32 bits of LDO tune value
238
} platform_local_data_t ;
239
240
static platform_local_data_t platformLocalData ; // Static local device data
241
242
// -------------------------------------------------------------------------------------------------------------------
243
// Functions
244
// -------------------------------------------------------------------------------------------------------------------
245
246
// -------------------------------------------------------------------------------------------------------------------
247
// convert microseconds to device time
248
uint64_t convertmicrosectodevicetimeu (double microsecu){
249
  uint64_t dt;
250
  long double dtime;
251
252 26dead12 Cung Sang
  dtime = (long double)((microsecu / (double) DWT_TIME_UNITS) / 1e6);
253 69a601a5 Cung Sang
254
  dt =  (uint64_t) (dtime) ;
255
256
  return dt;
257
}
258
259
double convertdevicetimetosec(int32_t dt){
260
  double f = 0;
261
262
  f =  dt * DWT_TIME_UNITS ;  // seconds #define TIME_UNITS          (1.0/499.2e6/128.0) = 15.65e-12
263
264
  return f ;
265
}
266
267
#pragma GCC optimize ("O3")
268
int reportTOF(int idx, uint32_t tofx){
269
  double distance ;
270
  double distance_to_correct;
271
  double tof ;
272 26dead12 Cung Sang
  int64_t tofi ;
273 69a601a5 Cung Sang
274
  // check for negative results and accept them making them proper negative integers
275
  tofi = (int32_t) tofx ; // make it signed
276
  if (tofi > 0x7FFFFFFF){  // close up TOF may be negative
277
    tofi -= 0x80000000 ;  //
278
  }
279
280
  // convert to seconds (as floating point)
281 26dead12 Cung Sang
  tof = convertdevicetimetosec((int32_t)tofi) ;          //this is divided by 4 to get single time of flight
282 69a601a5 Cung Sang
  inst_idistraw[idx] = distance = tof * SPEED_OF_LIGHT;
283
284
#if (CORRECT_RANGE_BIAS == 1)
285
  //for the 6.81Mb data rate we assume gating gain of 6dB is used,
286
  //thus a different range bias needs to be applied
287
  //if(inst->configData.dataRate == DWT_BR_6M8)
288
  if(instance_data[0].configData.smartPowerEn){
289
    //1.31 for channel 2 and 1.51 for channel 5
290
    if(instance_data[0].configData.chan == 5){
291
      distance_to_correct = distance/1.51;
292
    }
293
    else{   //channel 2
294
      distance_to_correct = distance/1.31;
295
    }
296
  }
297
  else{
298
    distance_to_correct = distance;
299
  }
300
301
  distance = distance - dwt_getrangebias(instance_data[0].configData.chan, (float) distance_to_correct, instance_data[0].configData.prf);
302
#endif
303
304
  if ((distance < 0) || (distance > 20000.000))    // discard any results less than <0 cm or >20 km
305
    return 0;
306
307
  inst_idist[idx] = distance;
308
309
  instance_data[0].longTermRangeCount++ ;                          // for computing a long term average
310
311
  return 1;
312
}// end of reportTOF
313
314
void setTagDist(int tidx, int aidx){
315
  inst_tdist[tidx] = inst_idist[aidx];
316
}
317
318
double getTagDist(int idx){
319
  return inst_tdist[idx];
320
}
321
322
void clearDistTable(int idx){
323
  inst_idistraw[idx] = 0;
324
  inst_idist[idx] = 0;
325
}
326
327
void instancecleardisttableall(void){
328
  int i;
329
330
  for(i=0; i<MAX_ANCHOR_LIST_SIZE; i++)  {
331
    inst_idistraw[i] = 0xffff;
332
    inst_idist[i] = 0xffff;
333
  }
334
}
335
336
// -------------------------------------------------------------------------------------------------------------------
337
#if NUM_INST != 1
338
#error These functions assume one instance only
339
#else
340
341
342
// -------------------------------------------------------------------------------------------------------------------
343
// Set this instance role as the Tag, Anchor or Listener
344
void instancesetrole(int inst_mode){
345
  // assume instance 0, for this
346 26dead12 Cung Sang
  instance_data[0].mode =  (INST_MODE)inst_mode;                   // set the role
347 69a601a5 Cung Sang
}
348
349
int instancegetrole(void){
350 26dead12 Cung Sang
  return (int)instance_data[0].mode;
351 69a601a5 Cung Sang
}
352
353
int instancenewrange(void){
354
  int x = instance_data[0].newRange;
355
  instance_data[0].newRange = TOF_REPORT_NUL;
356
  return x;
357
}
358
359
int instancenewrangeancadd(void){
360
  return instance_data[0].newRangeAncAddress;
361
}
362
363
int instancenewrangetagadd(void){
364
  return instance_data[0].newRangeTagAddress;
365
}
366
367 26dead12 Cung Sang
uint32_t instancenewrangetim(void){
368 69a601a5 Cung Sang
  return instance_data[0].newRangeTime;
369
}
370
371
// -------------------------------------------------------------------------------------------------------------------
372
// function to clear counts/averages/range values
373
//
374
void instanceclearcounts(void){
375
  int instance = 0 ;
376
  int i= 0 ;
377
378
  instance_data[instance].rxTimeouts = 0 ;
379
380
  dwt_configeventcounters(1); //enable and clear - NOTE: the counters are not preserved when in DEEP SLEEP
381
382
  instance_data[instance].frameSN = 0;
383
384
  instance_data[instance].longTermRangeCount  = 0;
385
386
387
  for(i=0; i<MAX_ANCHOR_LIST_SIZE; i++){
388
    instance_data[instance].tofArray[i] = INVALID_TOF;
389
  }
390
391
  for(i=0; i<MAX_TAG_LIST_SIZE; i++){
392
    instance_data[instance].tof[i] = INVALID_TOF;
393
  }
394
395
} // end instanceclearcounts()
396
397
398
// -------------------------------------------------------------------------------------------------------------------
399
// function to initialise instance structures
400
//
401
// Returns 0 on success and -1 on error
402 33f54213 Cung Sang
int instance_init(DW1000Driver* drv){
403 69a601a5 Cung Sang
  int instance = 0 ;
404
  int i;
405
  int result;
406
407
  instance_data[instance].mode =  ANCHOR;                                // assume listener,
408
  instance_data[instance].testAppState = TA_INIT ;
409
  instance_data[instance].instToSleep = FALSE;
410
411
412
  // Reset the IC (might be needed if not getting here from POWER ON)
413
  // ARM code: Remove soft reset here as using hard reset in the inittestapplication() in the main.c file
414
  //dwt_softreset();
415
416
  //this initialises DW1000 and uses specified configurations from OTP/ROM
417 26dead12 Cung Sang
  result = dwt_initialise(DWT_LOADUCODE, drv);
418 69a601a5 Cung Sang
419
  //this is platform dependent - only program if DW EVK/EVB
420
  dwt_setleds(3) ; //configure the GPIOs which control the leds on EVBs
421
422
  if (DWT_SUCCESS != result){
423
    return (-1) ;   // device initialise has failed
424
  }
425
426
427
  instanceclearcounts() ;
428
429
  instance_data[instance].panID = 0xdeca ;
430
431
  instance_data[instance].wait4ack = 0;
432
  instance_data[instance].stopTimer = 0;
433
  instance_data[instance].instanceTimerEn = 0;
434
435
  instance_clearevents();
436
437
  //dwt_geteui(instance_data[instance].eui64);
438
  memset(instance_data[instance].eui64, 0, ADDR_BYTE_SIZE_L);
439
440
  instance_data[instance].tagSleepCorrection = 0;
441
442
//  dwt_setautorxreenable(0); //disable auto RX re-enable
443
  dwt_setdblrxbuffmode(0); //disable double RX buffer
444
445
  // if using auto CRC check (DWT_INT_RFCG and DWT_INT_RFCE) are used instead of DWT_INT_RDFR flag
446
  // other errors which need to be checked (as they disable receiver) are
447
  //dwt_setinterrupt(DWT_INT_TFRS | DWT_INT_RFCG | (DWT_INT_SFDT | DWT_INT_RFTO /*| DWT_INT_RXPTO*/), 1);
448
  dwt_setinterrupt(DWT_INT_TFRS | DWT_INT_RFCG | (DWT_INT_ARFE | DWT_INT_RFSL | DWT_INT_SFDT | DWT_INT_RPHE | DWT_INT_RFCE | DWT_INT_RFTO | DWT_INT_RXPTO), 1);
449
450
  dwt_setcallbacks(instance_txcallback, instance_rxcallback, instance_rxtimeoutcallback,instance_rxerrorcallback );
451
452
  instance_data[instance].monitor = 0;
453
454
  instance_data[instance].lateTX = 0;
455
  instance_data[instance].lateRX = 0;
456
457
  instance_data[instance].responseTO = -1; //initialise
458
  for(i=0; i<256; i++)  {
459
    instance_data[instance].rxResps[i] = -10;
460
  }
461
462
  instance_data[instance].delayedReplyTime = 0;
463
464
  return 0 ;
465
}
466
467
// -------------------------------------------------------------------------------------------------------------------
468
//
469
// Return the Device ID register value, enables higher level validation of physical device presence
470
//
471
472
uint32_t instancereaddeviceid(void){
473
  return dwt_readdevid() ;
474
}
475
476
477
// -------------------------------------------------------------------------------------------------------------------
478
//
479
// function to allow application configuration be passed into instance and affect underlying device operation
480
//
481 4172c48d Cung Sang
void instance_config(instanceConfig_t *config, sfConfig_t *sfConfig, DW1000Driver* drv){
482 69a601a5 Cung Sang
  int instance = 0 ;
483
  uint32_t power = 0;
484
  uint8_t otprev ;
485
486
  instance_data[instance].configData.chan = config->channelNumber ;
487
  instance_data[instance].configData.rxCode =  config->preambleCode ;
488
  instance_data[instance].configData.txCode = config->preambleCode ;
489
  instance_data[instance].configData.prf = config->pulseRepFreq ;
490
  instance_data[instance].configData.dataRate = config->dataRate ;
491
  instance_data[instance].configData.txPreambLength = config->preambleLen ;
492
  instance_data[instance].configData.rxPAC = config->pacSize ;
493
  instance_data[instance].configData.nsSFD = config->nsSFD ;
494
  instance_data[instance].configData.phrMode = DWT_PHRMODE_STD ;
495
  instance_data[instance].configData.sfdTO = config->sfdTO;
496
497
  //the DW1000 will automatically use gating gain for frames < 1ms duration (i.e. 6.81Mbps data rate)
498
  //smartPowerEn should be set based on the frame length, but we can also use dtaa rate.
499
  if(instance_data[instance].configData.dataRate == DWT_BR_6M8)  {
500
    instance_data[instance].configData.smartPowerEn = 1;
501
  }
502
  else{
503
    instance_data[instance].configData.smartPowerEn = 0;
504
  }
505
506
  //configure the channel parameters
507
  dwt_configure(&instance_data[instance].configData) ;
508
509
  instance_data[instance].configTX.PGdly = txSpectrumConfig[config->channelNumber].PGdelay ;    //Default
510
511
  //firstly check if there are calibrated TX power value in the DW1000 OTP
512
  power = dwt_getotptxpower(config->pulseRepFreq, instance_data[instance].configData.chan);
513
514
  if((power == 0x0) || (power == 0xFFFFFFFF)) {    //if there are no calibrated values... need to use defaults
515
    power = txSpectrumConfig[config->channelNumber].txPwr[config->pulseRepFreq- DWT_PRF_16M];
516
  }
517
518
  //Configure TX power
519
  instance_data[instance].configTX.power = power;
520
521
  //configure the tx spectrum parameters (power and PG delay)
522
  dwt_configuretxrf(&instance_data[instance].configTX);
523
524
  otprev = dwt_otprevision() ;  // this revision tells us how OTP is programmed.
525
526
  if ((2 == otprev) || (3 == otprev))  {  // board is calibrated with TREK1000 with antenna delays set for each use case)
527
    uint8_t mode = (instance_data[instance].mode == ANCHOR ? 1 : 0);
528
    uint8_t chanindex = 0;
529
530
    instance_data[instance].txAntennaDelay
531
    = dwt_getTREKOTPantennadelay(mode,
532
                                 instance_data[instance].configData.chan,
533
                                 instance_data[instance].configData.dataRate) ;
534
535
    // if nothing was actually programmed then set a reasonable value anyway
536
    if ((instance_data[instance].txAntennaDelay == 0)
537
        || (instance_data[instance].txAntennaDelay == 0xffff)){
538
      if(instance_data[instance].configData.chan == 5){
539
        chanindex = 1;
540
      }
541
542
      instance_data[instance].txAntennaDelay = rfDelaysTREK[chanindex];
543
    }
544
545
  }
546
  else {  // assume it is older EVK1000 programming.
547
    //get the antenna delay that was read from the OTP calibration area
548
    instance_data[instance].txAntennaDelay = dwt_readantennadelay(config->pulseRepFreq) >> 1;
549
550
    // if nothing was actually programmed then set a reasonable value anyway
551
    if ((instance_data[instance].txAntennaDelay == 0)
552
        || (instance_data[instance].txAntennaDelay == 0xffff)){
553
      instance_data[instance].txAntennaDelay = rfDelays[config->pulseRepFreq - DWT_PRF_16M];
554
    }
555
  }
556
557
  // -------------------------------------------------------------------------------------------------------------------
558
  // set the antenna delay, we assume that the RX is the same as TX.
559
  dwt_setrxantennadelay(instance_data[instance].txAntennaDelay);
560
  dwt_settxantennadelay(instance_data[instance].txAntennaDelay);
561
562
  instance_data[instance].rxAntennaDelay = instance_data[instance].txAntennaDelay;
563
564
  if(config->preambleLen == DWT_PLEN_64)  {  //if preamble length is 64
565
    //reduce SPI to < 3MHz
566 4172c48d Cung Sang
    setHighSpeed_SPI(FALSE, drv);
567 69a601a5 Cung Sang
    dwt_loadopsettabfromotp(0);
568
    //increase SPI to max
569 4172c48d Cung Sang
    setHighSpeed_SPI(TRUE, drv);
570 69a601a5 Cung Sang
  }
571
572
  instancesettagsleepdelay(sfConfig->pollSleepDly); //set the Tag sleep time
573
  instance_data[instance].sframePeriod = sfConfig->sfPeriod;
574
  instance_data[instance].slotPeriod = sfConfig->slotPeriod;
575
  instance_data[instance].tagSleepRnd = sfConfig->slotPeriod;
576
  instance_data[instance].numSlots = sfConfig->numSlots;
577
578
  //last two slots are used for anchor to anchor ranging
579
  instance_data[instance].a0SlotTime = (instance_data[instance].numSlots-2) * instance_data[instance].slotPeriod;
580
581
  //set the default response delays
582
  instancesetreplydelay(sfConfig->replyDly);
583
584
}
585
586
// -------------------------------------------------------------------------------------------------------------------
587
// function to set the tag sleep time (in ms)
588
//
589
void instancesettagsleepdelay(int sleepdelay) {  //sleep in ms
590
  int instance = 0 ;
591
  instance_data[instance].tagSleepTime_ms = sleepdelay; //subtract the micro system delays (time it takes to switch states etc.)
592
}
593
594
595
int instancegetrnum(void) {  //get ranging number
596
  return instance_data[0].rangeNum;
597
}
598
599
int instancegetrnuma(int idx){  //get ranging number
600
  return instance_data[0].rangeNumA[idx];
601
}
602
603
int instancegetrnumanc(int idx){  //get ranging number
604
  return instance_data[0].rangeNumAAnc[idx];
605
}
606
607
int instancegetlcount(void) {  //get count of ranges used for calculation of lt avg
608
  int x = instance_data[0].longTermRangeCount;
609
610
  return (x);
611
}
612
613
double instancegetidist(int idx) {  //get instantaneous range
614
  double x ;
615
616
  idx &= (MAX_ANCHOR_LIST_SIZE - 1);
617
618
  x = inst_idist[idx];
619
620
  return (x);
621
}
622
623
double instancegetidistraw(int idx) { //get instantaneous range (uncorrected)
624
  double x ;
625
626
  idx &= (MAX_ANCHOR_LIST_SIZE - 1);
627
628
  x = inst_idistraw[idx];
629
630
  return (x);
631
}
632
633
int instancegetidist_mm(int idx) {  //get instantaneous range
634
  int x ;
635
636
  idx &= (MAX_ANCHOR_LIST_SIZE - 1);
637
638
  x = (int)(inst_idist[idx]*1000);
639
640
  return (x);
641
}
642
643
int instancegetidistraw_mm(int idx) {  //get instantaneous range (uncorrected)
644
  int x ;
645
646
  idx &= (MAX_ANCHOR_LIST_SIZE - 1);
647
648
  x = (int)(inst_idistraw[idx]*1000);
649
650
  return (x);
651
}
652
653
void instance_backtoanchor(instance_data_t *inst){
654
  //stay in RX and behave as anchor
655
  inst->testAppState = TA_RXE_WAIT ;
656
  inst->mode = ANCHOR ;
657
  dwt_setrxtimeout(0);
658
  dwt_setpreambledetecttimeout(0);
659
  dwt_setrxaftertxdelay(0);
660
}
661
662
663
#pragma GCC optimize ("O3")
664
void inst_processrxtimeout(instance_data_t *inst){
665
666
  //inst->responseTimeouts ++ ;
667
  inst->rxTimeouts ++ ;
668
  inst->done = INST_NOT_DONE_YET;
669
670
  if(inst->mode == ANCHOR) { //we did not receive the final - wait for next poll
671
    //only enable receiver when not using double buffering
672
    inst->testAppState = TA_RXE_WAIT ;              // wait for next frame
673
    dwt_setrxtimeout(0);
674
  }
675
676
  else if(inst->mode == TAG) {
677
    //if tag times out - no response (check if we are to send a final)
678
    //send the final only if it has received response from anchor 0
679
    if((inst->previousState == TA_TXPOLL_WAIT_SEND) && ((inst->rxResponseMask & 0x1) == 0)) {
680
      inst->instToSleep = TRUE ; //set sleep to TRUE so that tag will go to DEEP SLEEP before next ranging attempt
681
      inst->testAppState = TA_TXE_WAIT ;
682
      inst->nextState = TA_TXPOLL_WAIT_SEND ;
683
    }
684
    else if (inst->previousState == TA_TXFINAL_WAIT_SEND) {  //got here from main (error sending final - handle as timeout)
685
      dwt_forcetrxoff();        //this will clear all events
686
      inst->instToSleep = TRUE ;
687
      // initiate the re-transmission of the poll that was not responded to
688
      inst->testAppState = TA_TXE_WAIT ;
689
      inst->nextState = TA_TXPOLL_WAIT_SEND ;
690
    }
691
    else {  //send the final
692
      // initiate the re-transmission of the poll that was not responded to
693
      inst->testAppState = TA_TXE_WAIT ;
694
      inst->nextState = TA_TXFINAL_WAIT_SEND ;
695
    }
696
697
  }
698
  else {  //ANCHOR_RNG
699
    //no Response form the other anchor
700
    if(
701
        ((inst->previousState == TA_TXPOLL_WAIT_SEND)
702
            && ((A1_ANCHOR_ADDR == inst->instanceAddress16) && ((inst->rxResponseMaskAnc & 0x4) == 0)))
703
            ||
704
            ((inst->previousState == TA_TXPOLL_WAIT_SEND)
705
                && ((GATEWAY_ANCHOR_ADDR == inst->instanceAddress16) && ((inst->rxResponseMaskAnc & 0x2) == 0)))
706
    )  {
707
      instance_backtoanchor(inst);
708
    }
709
    else if (inst->previousState == TA_TXFINAL_WAIT_SEND) {  //got here from main (error ending final - handle as timeout)
710
      instance_backtoanchor(inst);
711
    }
712
    else {  //send the final
713
      // initiate the re-transmission of the poll that was not responded to
714
      inst->testAppState = TA_TXE_WAIT ;
715
      inst->nextState = TA_TXFINAL_WAIT_SEND ;
716
    }
717
  }
718
719
  //timeout - disable the radio (if using SW timeout the rx will not be off)
720
  //dwt_forcetrxoff() ;
721
}
722
723
//
724
// NB: This function is called from the (TX) interrupt handler
725
//
726
#pragma GCC optimize ("O3")
727
void instance_txcallback(const dwt_cb_data_t *txd){
728
729
  (void) txd;
730
  int instance = 0;
731
  uint8_t txTimeStamp[5] = {0, 0, 0, 0, 0};
732
//  uint8 txevent = txd->event;
733
  event_data_t dw_event;
734
735
  dw_event.uTimeStamp = portGetTickCnt();
736
737 26dead12 Cung Sang
  dwt_readtxtimestamp(txTimeStamp) ;
738
  dw_event.timeStamp32l = (uint32_t)txTimeStamp[0] + ((uint32_t)txTimeStamp[1] << 8) + ((uint32_t)txTimeStamp[2] << 16) + ((uint32_t)txTimeStamp[3] << 24);
739
  dw_event.timeStamp = txTimeStamp[4];
740
  dw_event.timeStamp <<= 32;
741
  dw_event.timeStamp += dw_event.timeStamp32l;
742
  dw_event.timeStamp32h = ((uint32_t)txTimeStamp[4] << 24) + (dw_event.timeStamp32l >> 8);
743 69a601a5 Cung Sang
744 26dead12 Cung Sang
  instance_data[instance].stopTimer = 0;
745 69a601a5 Cung Sang
746 26dead12 Cung Sang
  dw_event.rxLength = instance_data[instance].psduLength;
747
  dw_event.type =  0;
748
  dw_event.type_pend =  0;
749
  dw_event.type_save = DWT_SIG_TX_DONE;
750 69a601a5 Cung Sang
751 26dead12 Cung Sang
  memcpy((uint8_t *)&dw_event.msgu.frame[0], (uint8_t *)&instance_data[instance].msg_f, instance_data[instance].psduLength);
752 69a601a5 Cung Sang
753 26dead12 Cung Sang
  instance_putevent(dw_event, DWT_SIG_TX_DONE);
754 69a601a5 Cung Sang
755 26dead12 Cung Sang
  instance_data[instance].txMsgCount++;
756 69a601a5 Cung Sang
757
  instance_data[instance].monitor = 0;
758
}
759
760
/**
761
 * @brief function to re-enable the receiver and also adjust the timeout before sending the final message
762
 * if it is time so send the final message, the callback will notify the application, else the receiver is
763
 * automatically re-enabled
764
 *
765
 * this function is only used for tag when ranging to other anchors
766
 */
767
uint8_t tagrxreenable(uint16_t sourceAddress){
768
  uint8_t type_pend = DWT_SIG_DW_IDLE;
769
  uint8_t anc = sourceAddress & 0x3;
770
  int instance = 0;
771
772
  switch(anc){
773
  //if we got Response from anchor 3 - this is the last expected response - send the final
774
  case 3:
775
    type_pend = DWT_SIG_DW_IDLE;
776
    break;
777
778
    //if we got Response from anchor 0, 1, or 2 - go back to wait for next anchor's response
779
  case 0:
780
  case 1:
781
  case 2:
782
  default:
783
    if(instance_data[instance].responseTO > 0) {  //can get here as result of error frame so need to check
784 26dead12 Cung Sang
      dwt_setrxtimeout((uint16_t)(instance_data[instance].fwtoTime_sy * instance_data[instance].responseTO)); //reconfigure the timeout
785 69a601a5 Cung Sang
      dwt_rxenable(DWT_START_RX_IMMEDIATE) ;
786
      type_pend = DWT_SIG_RX_PENDING ;
787
    }
788
    else //last response was not received (got error/frame was corrupt)
789
    {
790
      type_pend = DWT_SIG_DW_IDLE; //report timeout - send the final
791
    }
792
    break;
793
  }
794
795
  return type_pend;
796
}
797
798
/**
799
 * @brief function to re-enable the receiver and also adjust the timeout before sending the final message
800
 * if it is time so send the final message, the callback will notify the application, else the receiver is
801
 * automatically re-enabled
802
 *
803
 * this function is only used for anchors (having a role of ANCHOR_RNG) when ranging to other anchors
804
 */
805
uint8_t ancsendfinalorrxreenable(uint16_t sourceAddress){
806
  uint8_t type_pend = DWT_SIG_DW_IDLE;
807
  uint8_t anc = sourceAddress & 0x3;
808
  int instance = 0;
809
810
  if(instance_data[instance].instanceAddress16 == GATEWAY_ANCHOR_ADDR) {
811
    switch(anc) {
812
    //if we got Response from anchor 1 - go back to wait for next anchor's response
813
    case 1:
814
      dwt_setrxtimeout((uint16_t)instance_data[instance].fwtoTime_sy); //reconfigure the timeout
815
      dwt_rxenable(DWT_START_RX_IMMEDIATE) ;
816
      type_pend = DWT_SIG_RX_PENDING ;
817
      break;
818
819
      //if we got Response from anchor 2 - this is the last expected response - send the final
820
    case 2:
821
    default:
822
      type_pend = DWT_SIG_DW_IDLE;
823
      break;
824
    }
825
  }
826
827
  if(instance_data[instance].instanceAddress16 == A1_ANCHOR_ADDR){
828
    switch(anc)
829
    {
830
    //if we got Response from anchor 2 - this is the last expected response - send the final
831
    case 2:
832
    default:
833
      type_pend = DWT_SIG_DW_IDLE;
834
      break;
835
    }
836
  }
837
  return type_pend;
838
}
839
840
/**
841
 * @brief this function either enables the receiver (delayed)
842
 *
843
 **/
844
void ancenablerx(void){
845
  int instance = 0;
846
  //subtract preamble length
847
  dwt_setdelayedtrxtime(instance_data[instance].delayedReplyTime - instance_data[instance].fixedReplyDelayAncP) ;
848
  if(dwt_rxenable(DWT_START_RX_DELAYED)) {  //delayed rx
849
    //if the delayed RX failed - time has passed - do immediate enable
850
    //led_on(LED_PC9);
851
    dwt_setrxtimeout((uint16_t)instance_data[instance].fwtoTimeAnc_sy*2); //reconfigure the timeout before enable
852
    //longer timeout as we cannot do delayed receive... so receiver needs to stay on for longer
853
    dwt_rxenable(DWT_START_RX_IMMEDIATE);
854
    dwt_setrxtimeout((uint16_t)instance_data[instance].fwtoTimeAnc_sy); //restore the timeout for next RX enable
855
    instance_data[instance].lateRX++;
856
    //led_off(LED_PC9);
857
  }
858
859
}
860
861
/**
862
 * @brief this function either re-enables the receiver (delayed or immediate) or transmits the response frame
863
 *
864
 * @param the sourceAddress is the address of the sender of the current received frame
865
 * @param ancToAncTWR == 1 means that the anchor is ranging to another anchor, if == 0 then ranging to a tag
866
 *
867
 */
868
#pragma GCC optimize ("O0")
869
uint8_t anctxorrxreenable(uint16_t sourceAddress, int ancToAncTWR){
870
  uint8_t type_pend = DWT_SIG_DW_IDLE;
871
  int sendResp = 0;
872
  int instance = 0;
873
874
  if(instance_data[instance].responseTO == 0) {  //go back to RX without TO - ranging has finished. (wait for Final but no TO)
875
    dwt_setrxtimeout(0); //reconfigure the timeout
876
    dwt_setpreambledetecttimeout(0);
877
  }
878
879
  if((ancToAncTWR & 1) == 1)  {
880
    if(instance_data[instance].responseTO == 1) {  //if one response left to receive (send a response now)
881
      sendResp = 1;
882
    }
883
    //if A0 or A3 go back to RX as they do not send any responses when Anchor to Anchor ranging
884
    if((instance_data[instance].gatewayAnchor)
885
        || (instance_data[instance].shortAdd_idx == 3)) { //if this is anchor ID 3 do not reply to anchor poll
886
      dwt_setrxtimeout(0);
887
      dwt_rxenable(DWT_START_RX_IMMEDIATE);
888
      return DWT_SIG_RX_PENDING ;
889
    }
890
  }
891
892
  //configure delayed reply time (this is incremented for each received frame) it is timed from Poll rx time
893
  instance_data[instance].delayedReplyTime += (instance_data[instance].fixedReplyDelayAnc >> 8);
894
895
  //this checks if to send a frame
896
  if((((ancToAncTWR & 1) == 0) && ((instance_data[instance].responseTO + instance_data[instance].shortAdd_idx) == NUM_EXPECTED_RESPONSES)) //it's our turn to tx
897
      || (sendResp == 1)) {
898
    //led_on(LED_PC9);
899
    //response is expected
900
    instance_data[instance].wait4ack = DWT_RESPONSE_EXPECTED; //re has/will be re-enabled
901
902
    dwt_setdelayedtrxtime(instance_data[instance].delayedReplyTime) ;
903
    if(dwt_starttx(DWT_START_TX_DELAYED | DWT_RESPONSE_EXPECTED)) {
904
      //if TX has failed - we need to re-enable RX for the next response or final reception...
905
      dwt_setrxaftertxdelay(0);
906
      instance_data[instance].wait4ack = 0; //clear the flag as the TX has failed the TRX is off
907
      instance_data[instance].lateTX++;
908
      instance_data[instance].delayedReplyTime += 2*(instance_data[instance].fixedReplyDelayAnc >> 8); //to take into account W4R
909
      ancenablerx();
910
      type_pend = DWT_SIG_RX_PENDING ;
911
    }
912
    else {
913
      instance_data[instance].delayedReplyTime += (instance_data[instance].fixedReplyDelayAnc >> 8); //to take into account W4R
914
      type_pend = DWT_SIG_TX_PENDING ; // exit this interrupt and notify the application/instance that TX is in progress.
915
      instance_data[instance].timeofTx = portGetTickCnt();
916
      instance_data[instance].monitor = 1;
917
    }
918
    //led_off(LED_PC9);
919
  }
920
  else {  //stay in receive
921
    if(sourceAddress == 0) { //we got here after RX error, as we don't need to TX, we just enable RX
922
      dwt_setrxtimeout(0);
923
      dwt_rxenable(DWT_START_RX_IMMEDIATE);
924
    }
925
    else{
926
      //led_on(LED_PC9);
927
      ancenablerx();
928
      //led_off(LED_PC9);
929
    }
930
931
    type_pend = DWT_SIG_RX_PENDING ;
932
  }
933
  //if time to send a response
934
935
  return type_pend;
936
}
937
938
/**
939
 * @brief this function handles frame error event, it will either signal TO or re-enable the receiver
940
 */
941
void handle_error_unknownframe(event_data_t dw_event){
942
  int instance = 0;
943
  //re-enable the receiver (after error frames as we are not using auto re-enable
944
  //for ranging application rx error frame is same as TO - as we are not going to get the expected frame
945
  if(instance_data[instance].mode == ANCHOR){
946
    //if we are participating in the ranging (i.e. Poll was received)
947
    //and we get an rx error (in one of the responses)
948
    //need to consider this as a timeout as we could be sending our response next and
949
    //the applications needs to know to change the state
950
    //
951
    if(instance_data[instance].responseTO > 0){
952
      instance_data[instance].responseTO--;
953
954
      //send a response or re-enable rx
955
      dw_event.type_pend = anctxorrxreenable(0, 0);
956
      dw_event.type = 0;
957
      dw_event.type_save = 0x40 | DWT_SIG_RX_TIMEOUT;
958
      dw_event.rxLength = 0;
959
960
      instance_putevent(dw_event, DWT_SIG_RX_TIMEOUT);
961
    }
962
    else{
963
      dwt_setrxtimeout(0); //reconfigure the timeout
964
      dwt_rxenable(DWT_START_RX_IMMEDIATE) ;
965
    }
966
  }
967
  else if(instance_data[instance].mode == LISTENER){
968
    dwt_rxenable(DWT_START_RX_IMMEDIATE) ;
969
  }
970
  else{
971
    instance_data[instance].responseTO--; //got something (need to reduce timeout (for remaining responses))
972
973
    dw_event.type_pend = tagrxreenable(0); //check if receiver will be re-enabled or it's time to send the final
974
    dw_event.type = 0;
975
    dw_event.type_save = 0x40 | DWT_SIG_RX_TIMEOUT;
976
    dw_event.rxLength = 0;
977
978
    instance_putevent(dw_event, DWT_SIG_RX_TIMEOUT);
979
  }
980
}
981
982
983
/**
984
 * @brief this function prepares and writes the anchor to anchor response frame into the TX buffer
985
 * it is called after anchor receives a Poll from an anchor
986
 */
987
void ancprepareresponse2(uint16_t sourceAddress, uint8_t srcAddr_index, uint8_t fcode_index, uint8_t *frame){
988
  uint16_t frameLength = 0;
989
  uint8_t tof_idx = (sourceAddress) & 0x3 ;
990
  int instance = 0;
991
992
  instance_data[instance].psduLength = frameLength = ANCH_RESPONSE_MSG_LEN + FRAME_CRTL_AND_ADDRESS_S + FRAME_CRC;
993
  //set the destination address (copy source as this is a reply)
994
  memcpy(&instance_data[instance].msg_f.destAddr[0], &frame[srcAddr_index], ADDR_BYTE_SIZE_S); //remember who to send the reply to (set destination address)
995
  instance_data[instance].msg_f.sourceAddr[0] = instance_data[instance].eui64[0];
996
  instance_data[instance].msg_f.sourceAddr[1] = instance_data[instance].eui64[1];
997
  // Write calculated TOF into response message (get the previous ToF+range number from that anchor)
998
  memcpy(&(instance_data[instance].msg_f.messageData[TOFR]), &instance_data[instance].tofAnc[tof_idx], 4);
999
  instance_data[instance].msg_f.messageData[TOFRN] = instance_data[instance].rangeNumAAnc[tof_idx]; //get the previous range number
1000
1001
  instance_data[instance].rangeNumAAnc[tof_idx] = 0; //clear the entry
1002
  instance_data[instance].rangeNumAnc = frame[POLL_RNUM + fcode_index] ;
1003
  instance_data[instance].msg_f.seqNum = instance_data[instance].frameSN++;
1004
1005
  //set the delayed rx on time (the final message will be sent after this delay)
1006 26dead12 Cung Sang
  dwt_setrxaftertxdelay((uint32_t)instance_data[instance].ancRespRxDelay);  //units are 1.0256us - wait for wait4respTIM before RX on (delay RX)
1007