amiro-os / unittests / periphery-lld / src / ut_alld_DW1000_v1.c @ 0ecf4119
History | View | Annotate | Download (14.645 KB)
1 |
/*
|
---|---|
2 |
AMiRo-OS is an operating system designed for the Autonomous Mini Robot (AMiRo) platform.
|
3 |
Copyright (C) 2016..2019 Thomas Schöpping et al.
|
4 |
|
5 |
This program is free software: you can redistribute it and/or modify
|
6 |
it under the terms of the GNU General Public License as published by
|
7 |
the Free Software Foundation, either version 3 of the License, or
|
8 |
(at your option) any later version.
|
9 |
|
10 |
This program is distributed in the hope that it will be useful,
|
11 |
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
13 |
GNU General Public License for more details.
|
14 |
|
15 |
You should have received a copy of the GNU General Public License
|
16 |
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
17 |
*/
|
18 |
|
19 |
#include <amiroos.h> |
20 |
|
21 |
#if ((AMIROOS_CFG_TESTS_ENABLE == true) && defined(AMIROLLD_CFG_DW1000) && (AMIROLLD_CFG_DW1000 == 1)) || defined(__DOXYGEN__) |
22 |
|
23 |
#include <aos_debug.h> |
24 |
#include <chprintf.h> |
25 |
#include <aos_thread.h> |
26 |
#include <math.h> |
27 |
#include <module.h> |
28 |
#include <alld_DW1000.h> |
29 |
#include <v1/deca_instance_v1.h> |
30 |
#include <v1/alld_dw1000_regs_v1.h> |
31 |
#include <string.h> |
32 |
|
33 |
|
34 |
/******************************************************************************/
|
35 |
/* LOCAL DEFINITIONS */
|
36 |
/******************************************************************************/
|
37 |
|
38 |
//#define UNIT_TEST_SNIPPETS_DW1000 // switch between unit test and demo apps
|
39 |
|
40 |
#define SWS1_SHF_MODE 0x02 //short frame mode (6.81M) |
41 |
#define SWS1_CH5_MODE 0x04 //channel 5 mode |
42 |
#define SWS1_ANC_MODE 0x08 //anchor mode |
43 |
#define SWS1_A1A_MODE 0x10 //anchor/tag address A1 |
44 |
#define SWS1_A2A_MODE 0x20 //anchor/tag address A2 |
45 |
#define SWS1_A3A_MODE 0x40 //anchor/tag address A3 |
46 |
|
47 |
#define S1_SWITCH_ON (1) |
48 |
#define S1_SWITCH_OFF (0) |
49 |
|
50 |
/******************************************************************************/
|
51 |
/* EXPORTED VARIABLES */
|
52 |
/******************************************************************************/
|
53 |
|
54 |
/******************************************************************************/
|
55 |
/* LOCAL TYPES */
|
56 |
/******************************************************************************/
|
57 |
|
58 |
/******************************************************************************/
|
59 |
/* LOCAL VARIABLES */
|
60 |
/******************************************************************************/
|
61 |
uint8_t s1switch = 0;
|
62 |
int instance_anchaddr = 0; |
63 |
int dr_mode = 0; |
64 |
int chan, tagaddr, ancaddr;
|
65 |
int instance_mode = ANCHOR;
|
66 |
|
67 |
|
68 |
/******************************************************************************/
|
69 |
/* LOCAL FUNCTIONS */
|
70 |
/******************************************************************************/
|
71 |
|
72 |
/*! @brief Change the SPI speed configuration on the fly */
|
73 |
void setHighSpeed_SPI(bool speedValue, DW1000Driver* drv){ |
74 |
spiStop(drv->spid); |
75 |
if (speedValue == FALSE){
|
76 |
spiStart(drv->spid, &moduleHalSpiUwbLsConfig); // low speed spi configuration
|
77 |
} |
78 |
else{
|
79 |
spiStart(drv->spid, &moduleHalSpiUwbHsConfig); // high speed spi configuration
|
80 |
} |
81 |
} |
82 |
|
83 |
/*! @brief entry point to the IRQn event in DW1000 module */
|
84 |
void process_deca_irq(void){ |
85 |
do{
|
86 |
dwt_isr(); |
87 |
//while IRS line active (ARM can only do edge sensitive interrupts)
|
88 |
}while(port_CheckEXT_IRQ() == 1); |
89 |
} |
90 |
|
91 |
/*! @brief Manually set the chip select pin of the SPI */
|
92 |
void set_SPI_chip_select(void){ |
93 |
apalGpioWrite(moduleGpioSpiChipSelect.gpio, APAL_GPIO_HIGH); |
94 |
} |
95 |
|
96 |
/*! @brief Manually reset the chip select pin of the SPI */
|
97 |
void clear_SPI_chip_select(void){ |
98 |
apalGpioWrite(moduleGpioSpiChipSelect.gpio, APAL_GPIO_LOW); |
99 |
} |
100 |
|
101 |
/*! @brief Manually reset the DW1000 module */
|
102 |
void reset_DW1000(void){ |
103 |
// Set the pin as output
|
104 |
palSetLineMode(moduleGpioDw1000Reset.gpio->line, APAL_GPIO_DIRECTION_OUTPUT); |
105 |
//drive the RSTn pin low
|
106 |
apalGpioWrite(moduleGpioDw1000Reset.gpio, APAL_GPIO_LOW); |
107 |
//put the pin back to tri-state ... as input
|
108 |
// palSetLineMode(moduleGpioDw1000Reset.gpio->line, APAL_GPIO_DIRECTION_INPUT); // TODO:
|
109 |
aosThdMSleep(7);
|
110 |
} |
111 |
|
112 |
/*! @brief waking up the DW1000 module using Chip Select pin */
|
113 |
void wakeup_DW1000(void){ |
114 |
clear_SPI_chip_select(); |
115 |
aosThdMSleep(1);
|
116 |
set_SPI_chip_select(); |
117 |
aosThdMSleep(7); // wait for XTAL to stabilize |
118 |
|
119 |
// set wakeup pin directly high
|
120 |
// apalGpioWrite(moduleGpioDw1000WakeUp.gpio, APAL_GPIO_HIGH);
|
121 |
aosThdMSleep(10);
|
122 |
} |
123 |
|
124 |
/*! @brief Configure instance tag/anchor/etc... addresses */
|
125 |
void addressconfigure(uint8_t s1switch, uint8_t mode){
|
126 |
uint16_t instAddress ; |
127 |
instance_anchaddr = (((s1switch & SWS1_A1A_MODE) << 2) + (s1switch & SWS1_A2A_MODE) + ((s1switch & SWS1_A3A_MODE) >> 2)) >> 4; |
128 |
if(mode == ANCHOR) {
|
129 |
if(instance_anchaddr > 3) { |
130 |
instAddress = GATEWAY_ANCHOR_ADDR | 0x4 ; //listener |
131 |
} |
132 |
else {
|
133 |
instAddress = GATEWAY_ANCHOR_ADDR | (uint16_t)instance_anchaddr; |
134 |
} |
135 |
} |
136 |
else{
|
137 |
instAddress = (uint16_t)instance_anchaddr; |
138 |
} |
139 |
instancesetaddresses(instAddress); |
140 |
} |
141 |
|
142 |
/*! @brief returns the use case / operational mode */
|
143 |
int decarangingmode(uint8_t s1switch){
|
144 |
int mode = 0; |
145 |
if(s1switch & SWS1_SHF_MODE) {
|
146 |
mode = 1;
|
147 |
} |
148 |
if(s1switch & SWS1_CH5_MODE) {
|
149 |
mode = mode + 2;
|
150 |
} |
151 |
return mode;
|
152 |
} |
153 |
|
154 |
/*! @brief Check connection setting and initialize DW1000 module */
|
155 |
int32_t inittestapplication(uint8_t s1switch, DW1000Driver* drv){ |
156 |
uint32_t devID ; |
157 |
int result;
|
158 |
|
159 |
setHighSpeed_SPI(FALSE, drv); //low speed spi max. ~4M
|
160 |
devID = instancereaddeviceid() ; |
161 |
|
162 |
if(DWT_DEVICE_ID != devID) {
|
163 |
clear_SPI_chip_select(); |
164 |
Sleep(1);
|
165 |
set_SPI_chip_select(); |
166 |
Sleep(7);
|
167 |
devID = instancereaddeviceid() ; |
168 |
if(DWT_DEVICE_ID != devID){
|
169 |
return(-1) ; |
170 |
} |
171 |
dwt_softreset(); |
172 |
} |
173 |
reset_DW1000(); //reset the DW1000 by driving the RSTn line low
|
174 |
if((s1switch & SWS1_ANC_MODE) == 0){ |
175 |
instance_mode = TAG; |
176 |
} |
177 |
else{
|
178 |
instance_mode = ANCHOR; |
179 |
} |
180 |
result = instance_init(drv); |
181 |
if (0 > result){ |
182 |
return(-1) ; |
183 |
} |
184 |
setHighSpeed_SPI(TRUE, drv); // high speed spi max. ~ 20M
|
185 |
devID = instancereaddeviceid() ; |
186 |
if (DWT_DEVICE_ID != devID){
|
187 |
return(-1) ; |
188 |
} |
189 |
addressconfigure(s1switch, (uint8_t)instance_mode) ; |
190 |
if((instance_mode == ANCHOR) && (instance_anchaddr > 0x3)){ |
191 |
instance_mode = LISTENER; |
192 |
} |
193 |
instancesetrole(instance_mode) ; // Set this instance role
|
194 |
dr_mode = decarangingmode(s1switch); |
195 |
chan = chConfig[dr_mode].channelNumber ; |
196 |
instance_config(&chConfig[dr_mode], &sfConfig[dr_mode], drv) ; |
197 |
|
198 |
return (int32_t)devID;
|
199 |
} |
200 |
|
201 |
/*! @brief Main Entry point to Initialization of UWB DW1000 configuration */
|
202 |
#pragma GCC optimize ("O3") |
203 |
int UWB_Init(DW1000Driver* drv){
|
204 |
|
205 |
/*! Software defined Configurartion for TAG, ANC, and other settings as needed */
|
206 |
s1switch = S1_SWITCH_OFF << 1 // (on = 6.8 Mbps, off = 110 kbps) |
207 |
| S1_SWITCH_OFF << 2 // (on = CH5, off = CH2) |
208 |
| S1_SWITCH_OFF << 3 // (on = Anchor, off = TAG) |
209 |
| S1_SWITCH_OFF << 4 // (configure Tag or anchor ID no.) |
210 |
| S1_SWITCH_OFF << 5 // (configure Tag or anchor ID no.) |
211 |
| S1_SWITCH_OFF << 6 // (configure Tag or anchor ID no.) |
212 |
| S1_SWITCH_OFF << 7; // Not use in this demo |
213 |
|
214 |
port_DisableEXT_IRQ(); //disable ScenSor IRQ until we configure the device
|
215 |
if(inittestapplication(s1switch, drv) == -1) { |
216 |
return (-1); //error |
217 |
} |
218 |
aosThdMSleep(5);
|
219 |
port_EnableEXT_IRQ(); //enable DW1000 IRQ before starting
|
220 |
|
221 |
return 0; |
222 |
} |
223 |
|
224 |
|
225 |
/******************************************************************************/
|
226 |
/* EXPORTED FUNCTIONS */
|
227 |
/******************************************************************************/
|
228 |
aos_utresult_t utAlldDw1000Func(BaseSequentialStream* stream, aos_unittest_t* ut) { |
229 |
|
230 |
aosDbgCheck(ut->data != NULL);
|
231 |
aos_utresult_t result = {0, 0}; |
232 |
|
233 |
#if defined (AMIROLLD_CFG_MIC9404x)
|
234 |
// Enable 3.3 and 1.8 supply voltages for powering up the DW1000 module in AMiRo Light Ring
|
235 |
if ((ut->data != NULL) && (((ut_dw1000data_t*)(ut->data))->mic9404xd != NULL)){ |
236 |
mic9404x_lld_state_t state; |
237 |
uint32_t status = APAL_STATUS_OK; |
238 |
|
239 |
chprintf(stream, "reading current status of the Power..\n");
|
240 |
status = mic9404x_lld_get(((ut_dw1000data_t*)(ut->data))->mic9404xd, &state); |
241 |
if (status == APAL_STATUS_OK) {
|
242 |
aosUtPassedMsg(stream, &result, "power %s\n", (state == MIC9404x_LLD_STATE_ON) ? "enabled" : "disabled"); |
243 |
} else {
|
244 |
aosUtFailed(stream, &result); |
245 |
} |
246 |
if (state == MIC9404x_LLD_STATE_OFF) {
|
247 |
chprintf(stream, "enabling the power ...\n");
|
248 |
status = mic9404x_lld_set(((ut_dw1000data_t*)(ut->data))->mic9404xd, MIC9404x_LLD_STATE_ON); |
249 |
status |= mic9404x_lld_get(((ut_dw1000data_t*)(ut->data))->mic9404xd, &state); |
250 |
if (state == MIC9404x_LLD_STATE_ON) {
|
251 |
aosThdSSleep(2);
|
252 |
status |= mic9404x_lld_get(((ut_dw1000data_t*)(ut->data))->mic9404xd, &state); |
253 |
} |
254 |
if ((status == APAL_STATUS_OK) && (state == MIC9404x_LLD_STATE_ON)) {
|
255 |
aosUtPassed(stream, &result); |
256 |
} else {
|
257 |
aosUtFailed(stream, &result); |
258 |
} |
259 |
} |
260 |
aosThdSleep(1);
|
261 |
return result;
|
262 |
} |
263 |
#endif /* defined (AMIROLLD_CFG_MIC9404x) */ |
264 |
|
265 |
|
266 |
// Start the DW1000 module UT after powering up
|
267 |
chprintf(stream, "init DW1000...\n");
|
268 |
aosThdSleep(1);
|
269 |
ut_dw1000data_t* h_dw1000data = NULL;
|
270 |
if((ut->data != NULL) && (((ut_dw1000data_t*)(ut->data))->dw1000d != NULL)){ |
271 |
h_dw1000data = ut->data; |
272 |
chprintf(stream, "assign handle for DW1000Driver struct \n");
|
273 |
} |
274 |
else {
|
275 |
chprintf(stream, "unsupported data type \n");
|
276 |
return result;
|
277 |
} |
278 |
aosThdSleep(1);
|
279 |
|
280 |
reset_DW1000(); // hard reset
|
281 |
// wakeup_DW1000();
|
282 |
aosThdMSleep(5);
|
283 |
int init = dwt_initialise(DWT_LOADUCODE, h_dw1000data->dw1000d);
|
284 |
if (init == 0){ |
285 |
chprintf(stream, "DW1000 is initialized \n");
|
286 |
} |
287 |
else {
|
288 |
chprintf(stream, "init error with return value: %d \n", init);
|
289 |
} |
290 |
aosThdMSleep(5);
|
291 |
|
292 |
/*! Unit Test snippets for DW1000.
|
293 |
* @Note: Event IRQ for DW1000 should be tested separately
|
294 |
*/
|
295 |
#if defined(UNIT_TEST_SNIPPETS_DW1000)
|
296 |
uint32_t actual_devID; |
297 |
port_DisableEXT_IRQ(); |
298 |
|
299 |
/*! UT1: Low speed SPI result */
|
300 |
setHighSpeed_SPI(false, h_dw1000data->dw1000d);
|
301 |
chprintf(stream, "expected ID (LS SPI): 0xDECA0130 \n");
|
302 |
aosThdMSleep(5);
|
303 |
actual_devID = instancereaddeviceid(); |
304 |
chprintf(stream, "read ID (LS SPI): 0x%x\n", actual_devID);
|
305 |
aosThdMSleep(5);
|
306 |
|
307 |
//if the read of device ID fails, the DW1000 could be asleep
|
308 |
if(DWT_DEVICE_ID != actual_devID){
|
309 |
clear_SPI_chip_select(); |
310 |
aosThdMSleep(1);
|
311 |
set_SPI_chip_select(); |
312 |
aosThdMSleep(7);
|
313 |
actual_devID = instancereaddeviceid() ; |
314 |
if(DWT_DEVICE_ID != actual_devID){
|
315 |
chprintf(stream, "SPI is not working or Unsupported Device ID\n");
|
316 |
chprintf(stream, "actual device ID is: 0x%x\n", actual_devID);
|
317 |
chprintf(stream, "expected device ID: 0xDECA0130 \n");
|
318 |
aosThdMSleep(5);
|
319 |
} |
320 |
dwt_softreset(); |
321 |
} |
322 |
|
323 |
if (actual_devID == DWT_DEVICE_ID){
|
324 |
aosUtPassed(stream, &result); |
325 |
} else {
|
326 |
aosUtFailed(stream, &result); |
327 |
} |
328 |
|
329 |
/*! Blinking TX and RX LED simultenously for 5 times */
|
330 |
chprintf(stream, "blinking TX and RX LEDs simultenously for 5 times \n");
|
331 |
for(int i =0; i< 5; i++){ |
332 |
uint8_t mode = 3;
|
333 |
uint32_t reg ; |
334 |
|
335 |
// Set up for LED output.
|
336 |
reg = dwt_read32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET); // Hardcoded = 0xDE001400
|
337 |
reg &= ~(GPIO_MSGP2_MASK | GPIO_MSGP3_MASK); |
338 |
reg |= (GPIO_PIN2_RXLED | GPIO_PIN3_TXLED); |
339 |
dwt_write32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET, reg); |
340 |
|
341 |
// Enable LP Oscillator to run from counter and turn on de-bounce clock.
|
342 |
reg = dwt_read32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET); // hard-coded = 0xF0B40200
|
343 |
reg |= (PMSC_CTRL0_GPDCE | PMSC_CTRL0_KHZCLEN); |
344 |
dwt_write32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, reg); |
345 |
|
346 |
// Enable LEDs to blink and set default blink time.
|
347 |
reg = PMSC_LEDC_BLNKEN | PMSC_LEDC_BLINK_TIME_DEF; |
348 |
// Make LEDs blink once if requested.
|
349 |
if (mode & DWT_LEDS_INIT_BLINK)
|
350 |
{ |
351 |
reg |= PMSC_LEDC_BLINK_NOW_ALL; |
352 |
} |
353 |
dwt_write32bitoffsetreg(PMSC_ID, PMSC_LEDC_OFFSET, reg); |
354 |
// Clear force blink bits if needed.
|
355 |
if(mode & DWT_LEDS_INIT_BLINK)
|
356 |
{ |
357 |
reg &= ~PMSC_LEDC_BLINK_NOW_ALL; |
358 |
dwt_write32bitoffsetreg(PMSC_ID, PMSC_LEDC_OFFSET, reg); |
359 |
} |
360 |
aosThdMSleep(500);
|
361 |
} |
362 |
|
363 |
/*! UT2: Initialization of the DW1000 module */
|
364 |
reset_DW1000(); |
365 |
chprintf(stream, "initialise the instance for DW1000 \n");
|
366 |
aosThdMSleep(100);
|
367 |
int x_init = instance_init(h_dw1000data->dw1000d) ;
|
368 |
if (x_init != 0){ |
369 |
chprintf(stream, "init error with return value: %d \n", x_init);
|
370 |
} |
371 |
else {
|
372 |
chprintf(stream, "succeed init! \n");
|
373 |
} |
374 |
aosThdMSleep(100);
|
375 |
if (x_init == 0){ |
376 |
aosUtPassed(stream, &result); |
377 |
} else {
|
378 |
aosUtFailed(stream, &result); |
379 |
} |
380 |
|
381 |
/*! UT3: High speed SPI Testing */
|
382 |
setHighSpeed_SPI(true, h_dw1000data->dw1000d);
|
383 |
chprintf(stream, "expected ID (HS SPI): 0xDECA0130\n");
|
384 |
actual_devID = instancereaddeviceid(); |
385 |
chprintf(stream, "Read ID (HS SPI): 0x%x\n", actual_devID);
|
386 |
aosThdMSleep(100);
|
387 |
if (actual_devID == DWT_DEVICE_ID){
|
388 |
aosUtPassed(stream, &result); |
389 |
} else {
|
390 |
aosUtFailed(stream, &result); |
391 |
} |
392 |
|
393 |
/*! UT4: Configuration of UWB module
|
394 |
* If all the five unit tests are passed, the module is ready to run.
|
395 |
* Note that the interrupt IRQn should be tested separately.
|
396 |
*/
|
397 |
port_EnableEXT_IRQ(); |
398 |
reset_DW1000(); |
399 |
chprintf(stream, "initialise the configuration for UWB application \n");
|
400 |
aosThdSleep(1);
|
401 |
int uwb_init = UWB_Init(h_dw1000data->dw1000d);
|
402 |
if (uwb_init != 0){ |
403 |
chprintf(stream, "UWB config error with return value: %d \n", uwb_init);
|
404 |
} |
405 |
else {
|
406 |
chprintf(stream, "succeed UWB config process \n", uwb_init);
|
407 |
} |
408 |
if (uwb_init == 0){ |
409 |
aosUtPassed(stream, &result); |
410 |
} else {
|
411 |
aosUtFailed(stream, &result); |
412 |
} |
413 |
|
414 |
/************** End of UNIT_TEST_SNIPPETS_DW1000 *****************/
|
415 |
|
416 |
#else /* defined(UNIT_TEST_SNIPPETS_DW1000) */ |
417 |
|
418 |
/*! RUN THE STATE MACHINE DEMO APP (RTLS) */
|
419 |
chprintf(stream, "initialise the State Machine \n");
|
420 |
aosThdSleep(2);
|
421 |
|
422 |
/* Initialize UWB system with user defined configuration */
|
423 |
int uwb_init = UWB_Init(h_dw1000data->dw1000d);
|
424 |
|
425 |
if (uwb_init != 0){ |
426 |
chprintf(stream, "error in UWB config with return value: %d \n", uwb_init);
|
427 |
} |
428 |
else {
|
429 |
chprintf(stream, "succeed the init of UWB config \n");
|
430 |
} |
431 |
aosThdSleep(1);
|
432 |
chprintf(stream, "running the RTLS demo application ... \n");
|
433 |
|
434 |
/*! Run the localization system demo app as a thread */
|
435 |
while(1){ |
436 |
instance_run(); |
437 |
// aosThdUSleep(10);
|
438 |
// aosThdMSleep(1);
|
439 |
} |
440 |
|
441 |
#endif /* defined(UNIT_TEST_SNIPPETS_DW1000) */ |
442 |
|
443 |
return result;
|
444 |
} |
445 |
|
446 |
|
447 |
#endif /* (AMIROOS_CFG_TESTS_ENABLE == true) && defined(AMIROLLD_CFG_DW1000) && (AMIROLLD_CFG_DW1000 == 1) */ |