Revision 1b3adcdd
devices/DiWheelDrive/global.hpp | ||
---|---|---|
176 | 176 |
// Thresh FL: 5241, FR: 25528 |
177 | 177 |
int threshProxyL = 5241; |
178 | 178 |
int threshProxyR = 25528; |
179 |
int threshWhite = 78000;
|
|
179 |
int threshWhite = 51056;
|
|
180 | 180 |
|
181 | 181 |
// PID for line following: |
182 | 182 |
float K_p = 0.0f; |
... | ... | |
189 | 189 |
|
190 | 190 |
// Debugging stuff -------------- |
191 | 191 |
int forwardSpeed = 10; |
192 |
int enableRecord = 0;
|
|
192 |
int enableRecord = 1;
|
|
193 | 193 |
|
194 | 194 |
// Buffer for sensor values |
195 | 195 |
struct sensorRecord |
devices/DiWheelDrive/linefollow2.cpp | ||
---|---|---|
2 | 2 |
#include "linefollow2.hpp" |
3 | 3 |
#include <cmath> |
4 | 4 |
|
5 |
// Trash |
|
6 |
void LineFollow::printSensorData(){ |
|
7 |
chprintf((BaseSequentialStream*) &SD1, "Test!"); |
|
8 |
} |
|
9 | 5 |
|
10 | 6 |
|
11 | 7 |
LineFollow::LineFollow(Global *global){ |
12 | 8 |
this->global = global; |
13 | 9 |
} |
14 |
|
|
15 |
// trash |
|
16 |
int LineFollow::delta(){ |
|
17 |
int delta = 0; |
|
18 |
int FL = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_LEFT].getProximityScaledWoOffset(); |
|
19 |
int FR = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_RIGHT].getProximityScaledWoOffset(); |
|
20 |
|
|
21 |
delta = abs(abs(global->threshProxyL-global->threshProxyR) - abs(FL-FR)); |
|
22 |
|
|
23 |
if (FR > global->threshProxyR && FL > global->threshProxyL ){ |
|
24 |
return delta ; |
|
25 |
}else { |
|
26 |
return delta* -1; |
|
27 |
} |
|
28 |
return delta; |
|
29 |
} |
|
30 |
|
|
31 |
// old and trash |
|
32 |
void LineFollow::stableFollow(int vcnl4020Proximity[4], int (&rpmFuzzyCtrl)[2], Global *global){ |
|
33 |
int targetSensor = 0x38; |
|
34 |
int actualSensorL = vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_LEFT] ; |
|
35 |
int actualSensorR = vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT] ; |
|
36 |
int targetSpeedL = global->rpmForward[constants::DiWheelDrive::LEFT_WHEEL]; |
|
37 |
int targetSpeedR = global->rpmForward[constants::DiWheelDrive::RIGHT_WHEEL]; |
|
38 |
|
|
39 |
|
|
40 |
int diff = actualSensorR - actualSensorL; |
|
41 |
int error = targetSensor - (actualSensorL + actualSensorR); |
|
42 |
|
|
43 |
accSum += error; |
|
44 |
int dTerm = error - oldError; |
|
45 |
|
|
46 |
if (diff > biggestDiff){ |
|
47 |
biggestDiff = diff; |
|
48 |
} |
|
49 |
int correctionSpeed = (int) (Kp * error + Ki * accSum + Kd * dTerm); |
|
50 |
chprintf((BaseSequentialStream*) &SD1, "Correction Speed: %d\n", correctionSpeed); |
|
51 |
rpmFuzzyCtrl[constants::DiWheelDrive::LEFT_WHEEL] = targetSpeedL + correctionSpeed; |
|
52 |
rpmFuzzyCtrl[constants::DiWheelDrive::RIGHT_WHEEL] = targetSpeedR - correctionSpeed; |
|
53 |
|
|
54 |
chprintf((BaseSequentialStream*) &SD1, "Diff: %d, Biggest: %d\n", correctionSpeed, biggestDiff); |
|
55 |
|
|
10 |
LineFollow::LineFollow(Global *global, LineFollowStrategy strategy){ |
|
11 |
this->global = global; |
|
12 |
this-> strategy = strategy; |
|
56 | 13 |
} |
57 | 14 |
|
58 | 15 |
/** |
59 | 16 |
* Calculate the error from front proxi sensors and fixed threshold values for those sensors. |
60 | 17 |
*/ |
61 | 18 |
int LineFollow::getError(){ |
62 |
|
|
19 |
// Get actual sensor data of both front sensors |
|
63 | 20 |
int FL = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_LEFT].getProximityScaledWoOffset(); |
64 | 21 |
int FR = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_RIGHT].getProximityScaledWoOffset(); |
65 | 22 |
int targetL = global->threshProxyL; |
66 | 23 |
int targetR = global->threshProxyR; |
67 |
int error = FL -targetL + FR - targetR; |
|
68 |
|
|
24 |
int error = 0; |
|
25 |
switch (this->strategy) |
|
26 |
{ |
|
27 |
case LineFollowStrategy::EDGE_RIGHT: |
|
28 |
error = -(FL -targetL + FR - targetR); |
|
29 |
break; |
|
30 |
case LineFollowStrategy::EDGE_LEFT: |
|
31 |
error = (FL -targetL + FR - targetR); |
|
32 |
break; |
|
33 |
case LineFollowStrategy::MIDDLE: |
|
34 |
// Assume that the smallest value means driving in the middle |
|
35 |
targetL = targetR = !(targetL<targetR)?targetR:targetL; |
|
36 |
error = (FL -targetL + FR - targetR); |
|
37 |
break; |
|
38 |
|
|
39 |
default: |
|
40 |
break; |
|
41 |
} |
|
42 |
// Debugging stuff ------ |
|
43 |
if (global->enableRecord){ |
|
44 |
global->senseRec[global->sensSamples].error = error; |
|
45 |
global->senseRec[global->sensSamples].FL = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_LEFT].getProximityScaledWoOffset(); |
|
46 |
global->senseRec[global->sensSamples].FR = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_RIGHT].getProximityScaledWoOffset(); |
|
47 |
global->sensSamples++; |
|
48 |
} |
|
49 |
// ---------------------- |
|
50 |
// Register white values |
|
69 | 51 |
if (FL+FR > global->threshWhite){ |
70 | 52 |
whiteFlag = 1; |
71 | 53 |
}else{ |
... | ... | |
74 | 56 |
return error; |
75 | 57 |
} |
76 | 58 |
|
77 |
/** |
|
78 |
* Follow strategy for left edge. |
|
79 |
*/ |
|
80 |
int LineFollow::followLeftEdge(int rpmSpeed[2]){ |
|
81 |
|
|
82 |
int correctionSpeed = getPidCorrectionSpeed(); |
|
83 |
chprintf((BaseSequentialStream*) &SD1, "Correction: %d, thresh: %d\n",correctionSpeed, global->threshWhite); |
|
59 |
int LineFollow::followLine(int (&rpmSpeed)[2]){ |
|
84 | 60 |
|
85 |
rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] = global->forwardSpeed + correctionSpeed; |
|
86 |
|
|
87 |
rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] = global->forwardSpeed - correctionSpeed; |
|
88 |
return whiteFlag; |
|
89 |
} |
|
90 |
|
|
91 |
/** |
|
92 |
* Follow strategy for right edge. |
|
93 |
*/ |
|
94 |
int LineFollow::followRightEdge(int rpmSpeed[2]){ |
|
61 |
switch (this->strategy) |
|
62 |
{ |
|
63 |
case LineFollowStrategy::FUZZY: |
|
64 |
for (int i = 0; i < 4; i++) { |
|
65 |
vcnl4020AmbientLight[i] = global->vcnl4020[i].getAmbientLight(); |
|
66 |
vcnl4020Proximity[i] = global->vcnl4020[i].getProximityScaledWoOffset(); |
|
67 |
} |
|
95 | 68 |
|
96 |
int correctionSpeed = getPidCorrectionSpeed(); |
|
97 |
chprintf((BaseSequentialStream*) &SD1, "Correction: %d, thresh: %d\n",correctionSpeed, global->threshWhite); |
|
69 |
lineFollowing(vcnl4020Proximity, rpmSpeed); |
|
70 |
break; |
|
71 |
|
|
72 |
default: |
|
73 |
int correctionSpeed = getPidCorrectionSpeed(); |
|
74 |
// chprintf((BaseSequentialStream*) &SD1, "Correction: %d, thresh: %d\n",correctionSpeed, global->threshWhite); |
|
98 | 75 |
|
99 |
rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] = global->forwardSpeed - correctionSpeed;
|
|
76 |
rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] = global->forwardSpeed + correctionSpeed;
|
|
100 | 77 |
|
101 |
rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] = global->forwardSpeed + correctionSpeed; |
|
102 |
return whiteFlag; |
|
78 |
rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] = global->forwardSpeed - correctionSpeed; |
|
79 |
return whiteFlag; |
|
80 |
break; |
|
81 |
} |
|
103 | 82 |
} |
104 | 83 |
|
84 |
|
|
105 | 85 |
/** |
106 | 86 |
* Pid controller which returns a corrections speed. |
107 | 87 |
*/ |
108 | 88 |
int LineFollow::getPidCorrectionSpeed(){ |
109 | 89 |
int error = getError(); |
110 |
int sloap = error - global->oldError;
|
|
111 |
int correctionSpeed = (int) (global->K_p*error + global->K_i*global->accumHist + global->K_d*sloap);
|
|
112 |
global->oldError = error;
|
|
113 |
global->accumHist += error;
|
|
90 |
int sloap = error - oldError; |
|
91 |
int correctionSpeed = (int) (Kp*error + Ki*accumHist + Kd*sloap);
|
|
92 |
oldError = error; |
|
93 |
// accumHist += (int) (0.01 * error);
|
|
114 | 94 |
if (abs(error) > global->maxDist.error){ |
115 | 95 |
global->maxDist.error = error; |
116 | 96 |
} |
117 | 97 |
return correctionSpeed; |
118 | 98 |
} |
119 | 99 |
|
120 |
// trash |
|
121 |
// void LineFollow::calibrateZiegler(float KCrit, int rpmSpeed[2]){ |
|
122 |
// int targetSpeedL = 5; |
|
123 |
// int targetSpeedR = 5; |
|
124 |
// int delta_ = error(); |
|
125 |
// int correctionSpeed = (int) (KCrit * delta_); |
|
126 |
// if (global->enableRecord){ |
|
127 |
// global->senseRec[global->sensSamples].error = delta_; |
|
128 |
// global->senseRec[global->sensSamples].FL = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_LEFT].getProximityScaledWoOffset(); |
|
129 |
// global->senseRec[global->sensSamples].FR = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_RIGHT].getProximityScaledWoOffset(); |
|
130 |
// global->sensSamples++; |
|
131 |
// } |
|
132 |
// if (abs(delta_) > global->maxDist.error){ |
|
133 |
// global->maxDist.error = delta_; |
|
134 |
// } |
|
135 |
|
|
136 |
// rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] = global->forwardSpeed + -1*correctionSpeed; |
|
137 |
// rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] = global->forwardSpeed + correctionSpeed; |
|
138 |
// chprintf((BaseSequentialStream*) &SD1, "CS:%d,LW:%d,RW:%d\n", correctionSpeed, rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL], rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL]); |
|
139 |
// } |
|
100 |
|
|
101 |
void LineFollow::setStrategy(LineFollowStrategy strategy){ |
|
102 |
this->strategy = strategy; |
|
103 |
} |
|
104 |
|
|
105 |
LineFollowStrategy LineFollow::getStrategy(){ |
|
106 |
return this->strategy; |
|
107 |
} |
|
108 |
void LineFollow::setGains(float Kp, float Ki, float Kd){ |
|
109 |
this->Kp = Kp; |
|
110 |
this->Ki = Ki; |
|
111 |
this->Kd = Kd; |
|
112 |
} |
|
113 |
|
|
114 |
|
|
115 |
|
|
116 |
|
|
117 |
|
|
118 |
// Lagacy code, fuzzy following----------------------------------------- |
|
119 |
// Line following by a fuzzy controler |
|
120 |
void LineFollow::lineFollowing(int (&proximity)[4], int (&rpmFuzzyCtrl)[2]) { |
|
121 |
// FUZZYFICATION |
|
122 |
// First we need to get the fuzzy value for our 3 values {BLACK, GREY, WHITE} |
|
123 |
float leftWheelFuzzyMemberValues[3], leftFrontFuzzyMemberValues[3], rightFrontFuzzyMemberValues[3], rightWheelFuzzyMemberValues[3]; |
|
124 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_WHEEL_LEFT], leftWheelFuzzyMemberValues); |
|
125 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_FRONT_LEFT], leftFrontFuzzyMemberValues); |
|
126 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT], rightFrontFuzzyMemberValues); |
|
127 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_WHEEL_RIGHT], rightWheelFuzzyMemberValues); |
|
128 |
|
|
129 |
// INFERENCE RULE DEFINITION |
|
130 |
// Get the member for each sensor |
|
131 |
colorMember member[4]; |
|
132 |
member[constants::DiWheelDrive::PROX_WHEEL_LEFT] = getMember(leftWheelFuzzyMemberValues); |
|
133 |
member[constants::DiWheelDrive::PROX_FRONT_LEFT] = getMember(leftFrontFuzzyMemberValues); |
|
134 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] = getMember(rightFrontFuzzyMemberValues); |
|
135 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] = getMember(rightWheelFuzzyMemberValues); |
|
136 |
|
|
137 |
// visualize sensors via LEDs |
|
138 |
global->robot.setLightColor(constants::LightRing::LED_WNW, memberToLed(member[constants::DiWheelDrive::PROX_WHEEL_LEFT])); |
|
139 |
global->robot.setLightColor(constants::LightRing::LED_NNW, memberToLed(member[constants::DiWheelDrive::PROX_FRONT_LEFT])); |
|
140 |
global->robot.setLightColor(constants::LightRing::LED_NNE, memberToLed(member[constants::DiWheelDrive::PROX_FRONT_RIGHT])); |
|
141 |
global->robot.setLightColor(constants::LightRing::LED_ENE, memberToLed(member[constants::DiWheelDrive::PROX_WHEEL_RIGHT])); |
|
142 |
|
|
143 |
// chprintf((BaseSequentialStream*) &SD1, "Left: BLACK: %f, GREY: %f, WHITE: %f\r\n", leftWheelFuzzyMemberValues[BLACK], leftWheelFuzzyMemberValues[GREY], leftWheelFuzzyMemberValues[WHITE]); |
|
144 |
// chprintf((BaseSequentialStream*) &SD1, "Right: BLACK: %f, GREY: %f, WHITE: %f\r\n", rightFuzzyMemberValues[BLACK], rightFuzzyMemberValues[GREY], rightFuzzyMemberValues[WHITE]); |
|
145 |
|
|
146 |
// DEFUZZYFICATION |
|
147 |
defuzzyfication(member, rpmFuzzyCtrl); |
|
148 |
// defuzz(member, rpmFuzzyCtrl); |
|
149 |
} |
|
150 |
|
|
151 |
|
|
152 |
Color LineFollow::memberToLed(colorMember member) { |
|
153 |
switch (member) { |
|
154 |
case BLACK: |
|
155 |
return Color(Color::GREEN); |
|
156 |
case GREY: |
|
157 |
return Color(Color::YELLOW); |
|
158 |
case WHITE: |
|
159 |
return Color(Color::RED); |
|
160 |
default: |
|
161 |
return Color(Color::WHITE); |
|
162 |
} |
|
163 |
} |
|
164 |
|
|
165 |
void LineFollow::defuzzyfication(colorMember (&member)[4], int (&rpmFuzzyCtrl)[2]) { |
|
166 |
whiteFlag = 0; |
|
167 |
// all sensors are equal |
|
168 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_LEFT] && |
|
169 |
member[constants::DiWheelDrive::PROX_FRONT_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_RIGHT] && |
|
170 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == member[constants::DiWheelDrive::PROX_WHEEL_RIGHT]) { |
|
171 |
// something is wrong -> stop |
|
172 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
|
173 |
// both front sensor detect a line |
|
174 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK && |
|
175 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK) { |
|
176 |
// straight |
|
177 |
copyRpmSpeed(global->rpmForward, rpmFuzzyCtrl); |
|
178 |
// exact one front sensor detects a line |
|
179 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK || |
|
180 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK) { |
|
181 |
// soft correction |
|
182 |
if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY) { |
|
183 |
// soft right |
|
184 |
copyRpmSpeed(global->rpmSoftRight, rpmFuzzyCtrl); |
|
185 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == WHITE) { |
|
186 |
// hard right |
|
187 |
copyRpmSpeed(global->rpmHardRight, rpmFuzzyCtrl); |
|
188 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) { |
|
189 |
// soft left |
|
190 |
copyRpmSpeed(global->rpmSoftLeft, rpmFuzzyCtrl); |
|
191 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == WHITE) { |
|
192 |
// hard left |
|
193 |
copyRpmSpeed(global->rpmHardLeft, rpmFuzzyCtrl); |
|
194 |
} |
|
195 |
// both wheel sensors detect a line |
|
196 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK && |
|
197 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) { |
|
198 |
// something is wrong -> stop |
|
199 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
|
200 |
// exactly one wheel sensor detects a line |
|
201 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK || |
|
202 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) { |
|
203 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK) { |
|
204 |
// turn left |
|
205 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
|
206 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) { |
|
207 |
// turn right |
|
208 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
|
209 |
} |
|
210 |
// both front sensors may detect a line |
|
211 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY && |
|
212 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) { |
|
213 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY) { |
|
214 |
// turn left |
|
215 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
|
216 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) { |
|
217 |
// turn right |
|
218 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
|
219 |
} |
|
220 |
// exactly one front sensor may detect a line |
|
221 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY || |
|
222 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) { |
|
223 |
if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY) { |
|
224 |
// turn left |
|
225 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
|
226 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) { |
|
227 |
// turn right |
|
228 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
|
229 |
} |
|
230 |
// both wheel sensors may detect a line |
|
231 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY && |
|
232 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) { |
|
233 |
// something is wrong -> stop |
|
234 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
|
235 |
// exactly one wheel sensor may detect a line |
|
236 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY || |
|
237 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) { |
|
238 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY) { |
|
239 |
// turn left |
|
240 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
|
241 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) { |
|
242 |
// turn right |
|
243 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
|
244 |
} |
|
245 |
// no sensor detects anything |
|
246 |
} else { |
|
247 |
// line is lost -> stop |
|
248 |
whiteFlag = 1; |
|
249 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
|
250 |
} |
|
251 |
chprintf((BaseSequentialStream*) &SD1, "Fuzzy Speed: Left: %d, Right: %d\n", rpmFuzzyCtrl[0], rpmFuzzyCtrl[1]); |
|
252 |
return; |
|
253 |
} |
|
254 |
|
|
255 |
colorMember LineFollow::getMember(float (&fuzzyValue)[3]) { |
|
256 |
colorMember member; |
|
257 |
|
|
258 |
if (fuzzyValue[BLACK] > fuzzyValue[GREY]) |
|
259 |
if (fuzzyValue[BLACK] > fuzzyValue[WHITE]) |
|
260 |
member = BLACK; |
|
261 |
else |
|
262 |
member = WHITE; |
|
263 |
else |
|
264 |
if (fuzzyValue[GREY] > fuzzyValue[WHITE]) |
|
265 |
member = GREY; |
|
266 |
else |
|
267 |
member = WHITE; |
|
268 |
|
|
269 |
return member; |
|
270 |
} |
|
271 |
|
|
272 |
// Fuzzyfication of the sensor values |
|
273 |
void LineFollow::fuzzyfication(int sensorValue, float (&fuzziedValue)[3]) { |
|
274 |
if (sensorValue < blackStartFalling ) { |
|
275 |
// Only black value |
|
276 |
fuzziedValue[BLACK] = 1.0f; |
|
277 |
fuzziedValue[GREY] = 0.0f; |
|
278 |
fuzziedValue[WHITE] = 0.0f; |
|
279 |
} else if (sensorValue > whiteOn ) { |
|
280 |
// Only white value |
|
281 |
fuzziedValue[BLACK] = 0.0f; |
|
282 |
fuzziedValue[GREY] = 0.0f; |
|
283 |
fuzziedValue[WHITE] = 1.0f; |
|
284 |
} else if ( sensorValue < greyMax) { |
|
285 |
// Some greyisch value between black and grey |
|
286 |
|
|
287 |
// Black is going down |
|
288 |
if ( sensorValue > blackOff) { |
|
289 |
fuzziedValue[BLACK] = 0.0f; |
|
290 |
} else { |
|
291 |
fuzziedValue[BLACK] = static_cast<float>(sensorValue-blackOff) / (blackStartFalling-blackOff); |
|
292 |
} |
|
293 |
|
|
294 |
// Grey is going up |
|
295 |
if ( sensorValue < greyStartRising) { |
|
296 |
fuzziedValue[GREY] = 0.0f; |
|
297 |
} else { |
|
298 |
fuzziedValue[GREY] = static_cast<float>(sensorValue-greyStartRising) / (greyMax-greyStartRising); |
|
299 |
} |
|
300 |
|
|
301 |
// White is absent |
|
302 |
fuzziedValue[WHITE] = 0.0f; |
|
303 |
|
|
304 |
} else if ( sensorValue >= greyMax) { |
|
305 |
// Some greyisch value between grey white |
|
306 |
|
|
307 |
// Black is absent |
|
308 |
fuzziedValue[BLACK] = 0.0f; |
|
309 |
|
|
310 |
// Grey is going down |
|
311 |
if ( sensorValue < greyOff) { |
|
312 |
fuzziedValue[GREY] = static_cast<float>(sensorValue-greyOff) / (greyMax-greyOff); |
|
313 |
} else { |
|
314 |
fuzziedValue[GREY] = 0.0f; |
|
315 |
} |
|
316 |
|
|
317 |
// White is going up |
|
318 |
if ( sensorValue < whiteStartRising) { |
|
319 |
fuzziedValue[WHITE] = 0.0f; |
|
320 |
} else { |
|
321 |
fuzziedValue[WHITE] = static_cast<float>(sensorValue-whiteStartRising) / (whiteOn-whiteStartRising); |
|
322 |
} |
|
323 |
} |
|
324 |
} |
|
325 |
|
|
326 |
void LineFollow::copyRpmSpeed(const int (&source)[2], int (&target)[2]) { |
|
327 |
target[constants::DiWheelDrive::LEFT_WHEEL] = source[constants::DiWheelDrive::LEFT_WHEEL]; |
|
328 |
target[constants::DiWheelDrive::RIGHT_WHEEL] = source[constants::DiWheelDrive::RIGHT_WHEEL]; |
|
329 |
// chprintf((BaseSequentialStream*) &SD1, "Speed left: %d, Speed right: %d\r\n", target[0], target[1]); |
|
330 |
} |
devices/DiWheelDrive/linefollow2.hpp | ||
---|---|---|
6 | 6 |
#include <amiroosconf.h> |
7 | 7 |
|
8 | 8 |
namespace amiro { |
9 |
enum class LineFollowStrategy{ |
|
10 |
EDGE_LEFT, |
|
11 |
EDGE_RIGHT, |
|
12 |
MIDDLE, |
|
13 |
FUZZY |
|
14 |
}; |
|
15 |
|
|
16 |
enum colorMember : uint8_t { |
|
17 |
BLACK=0, |
|
18 |
GREY=1, |
|
19 |
WHITE=2 |
|
20 |
}; |
|
9 | 21 |
|
10 | 22 |
class LineFollow |
11 | 23 |
{ |
12 | 24 |
public: |
13 |
void printSensorData(); |
|
14 |
void stableFollow(int vcnl4020Proximity[4], int (&rpmFuzzyCtrl)[2], Global *global); |
|
15 |
float SetPoint = 0x4000; // (0x1800+0x2800) >> 8 |
|
16 |
float Kp = 0.001; |
|
17 |
float Ki = 0.00001; |
|
18 |
float Kd = 0.5; |
|
19 |
int accSum = 0; |
|
20 |
float oldError = 0; |
|
25 |
|
|
26 |
|
|
21 | 27 |
int biggestDiff = 0; |
22 | 28 |
Global *global; |
23 | 29 |
LineFollow(Global *global); |
30 |
LineFollow(Global *global, LineFollowStrategy strategy); |
|
24 | 31 |
// void calibrateZiegler(float KCrit, int rpmSpeed[2]); |
25 |
int followLeftEdge(int rpmSpeed[2]); |
|
26 |
int followRightEdge(int rpmSpeed[2]); |
|
32 |
int followLine(int (&rpmSpeed)[2]); |
|
33 |
// int followLeftEdge(int rpmSpeed[2]); |
|
34 |
// int followRightEdge(int rpmSpeed[2]); |
|
35 |
// int followMiddle(int rpmSpeed[2]); |
|
36 |
void setStrategy(LineFollowStrategy strategy); |
|
37 |
LineFollowStrategy getStrategy(); |
|
38 |
void setGains(float Kp, float Ki, float Kd); |
|
39 |
|
|
40 |
|
|
41 |
const int rpmTurnLeft[2] = {-10, 10}; |
|
42 |
const int rpmTurnRight[2] = {rpmTurnLeft[1],rpmTurnLeft[0]}; |
|
43 |
const int rpmHalt[2] = {0, 0}; |
|
44 |
// Definition of the fuzzyfication function |
|
45 |
// | Membership |
|
46 |
// 1|_B__ G __W__ |
|
47 |
// | \ /\ / |
|
48 |
// | \/ \/ |
|
49 |
// |_____/\__/\______ Sensor values |
|
50 |
// SEE MATLAB SCRIPT "fuzzyRule.m" for adjusting the values |
|
51 |
// All values are "raw sensor values" |
|
52 |
/* Use these values for white ground surface (e.g. paper) */ |
|
53 |
|
|
54 |
const int blackStartFalling = 0x1000; // Where the black curve starts falling |
|
55 |
const int blackOff = 0x1800; // Where no more black is detected |
|
56 |
const int whiteStartRising = 0x2800; // Where the white curve starts rising |
|
57 |
const int whiteOn = 0x6000; // Where the white curve has reached the maximum value |
|
58 |
const int greyMax = (whiteOn + blackStartFalling) / 2; // Where grey has its maximum |
|
59 |
const int greyStartRising = blackStartFalling; // Where grey starts rising |
|
60 |
const int greyOff = whiteOn; // Where grey is completely off again |
|
27 | 61 |
|
28 | 62 |
private: |
29 | 63 |
int delta(); |
30 | 64 |
int getError(); |
31 | 65 |
int getPidCorrectionSpeed(); |
66 |
void lineFollowing(int (&proximity)[4], int (&rpmFuzzyCtrl)[2]); |
|
67 |
// void defuzz(colorMember (&member)[4], int (&rpmFuzzyCtrl)[2]); |
|
68 |
Color memberToLed(colorMember member); |
|
69 |
void defuzzyfication(colorMember (&member)[4], int (&rpmFuzzyCtrl)[2]); |
|
70 |
colorMember getMember(float (&fuzzyValue)[3]); |
|
71 |
void fuzzyfication(int sensorValue, float (&fuzziedValue)[3]); |
|
72 |
void copyRpmSpeed(const int (&source)[2], int (&target)[2]); |
|
32 | 73 |
|
33 | 74 |
char whiteFlag = 0; |
34 |
|
|
35 |
|
|
75 |
LineFollowStrategy strategy = LineFollowStrategy::EDGE_RIGHT; |
|
76 |
float Kp = 0.003; |
|
77 |
float Ki = 0; |
|
78 |
float Kd = 0; |
|
79 |
int accumHist = 0; |
|
80 |
float oldError = 0; |
|
81 |
int vcnl4020AmbientLight[4] = {0}; |
|
82 |
int vcnl4020Proximity[4] = {0}; |
|
36 | 83 |
}; |
37 | 84 |
|
85 |
|
|
86 |
|
|
38 | 87 |
} // end of namespace amiro |
39 | 88 |
|
40 | 89 |
#endif // AMIRO_LINEFOLLOWING_H |
devices/DiWheelDrive/main.cpp | ||
---|---|---|
702 | 702 |
* |
703 | 703 |
* */ |
704 | 704 |
void calibrateLineSensores(BaseSequentialStream *chp, int argc, char *argv[]) { |
705 |
int vcnl4020AmbientLight[4]; |
|
705 |
// int vcnl4020AmbientLight[4];
|
|
706 | 706 |
int vcnl4020Proximity[4]; |
707 | 707 |
int rounds = 1; |
708 | 708 |
int proxyL = 0; |
... | ... | |
725 | 725 |
|
726 | 726 |
for (int j = 0; j < rounds; j++) { |
727 | 727 |
for (int i = 0; i < 4; i++) { |
728 |
vcnl4020AmbientLight[i] = global.vcnl4020[i].getAmbientLight(); |
|
728 |
// vcnl4020AmbientLight[i] = global.vcnl4020[i].getAmbientLight();
|
|
729 | 729 |
vcnl4020Proximity[i] = global.vcnl4020[i].getProximityScaledWoOffset(); |
730 | 730 |
} |
731 | 731 |
global.robot.setLightColor(j % 8, Color(Color::BLACK)); |
... | ... | |
769 | 769 |
|
770 | 770 |
|
771 | 771 |
void proxySensorData(BaseSequentialStream *chp, int argc, char *argv[]) { |
772 |
uint16_t vcnl4020AmbientLight[4]; |
|
772 |
// uint16_t vcnl4020AmbientLight[4];
|
|
773 | 773 |
uint16_t vcnl4020Proximity[4]; |
774 | 774 |
uint16_t rounds = 1; |
775 |
uint16_t proxyL = global.threshProxyL; |
|
776 |
uint16_t proxyR = global.threshProxyR; |
|
777 |
uint16_t maxDelta = 0; |
|
775 |
// uint16_t proxyL = global.threshProxyL;
|
|
776 |
// uint16_t proxyR = global.threshProxyR;
|
|
777 |
// uint16_t maxDelta = 0;
|
|
778 | 778 |
|
779 |
int sensorL = 0; |
|
780 |
int sensorR = 0; |
|
779 |
// int sensorL = 0;
|
|
780 |
// int sensorR = 0;
|
|
781 | 781 |
if (argc == 1){ |
782 | 782 |
chprintf(chp, "Test %i rounds \n", atoi(argv[0])); |
783 | 783 |
rounds = atoi(argv[0]); |
... | ... | |
787 | 787 |
|
788 | 788 |
for (int j = 0; j < rounds; j++) { |
789 | 789 |
for (int i = 0; i < 4; i++) { |
790 |
vcnl4020AmbientLight[i] = global.vcnl4020[i].getAmbientLight(); |
|
790 |
// vcnl4020AmbientLight[i] = global.vcnl4020[i].getAmbientLight();
|
|
791 | 791 |
vcnl4020Proximity[i] = global.vcnl4020[i].getProximityScaledWoOffset(); |
792 | 792 |
} |
793 | 793 |
|
... | ... | |
827 | 827 |
|
828 | 828 |
|
829 | 829 |
void zieglerMeth2(BaseSequentialStream *chp, int argc, char *argv[]) { |
830 |
int vcnl4020AmbientLight[4]; |
|
831 |
int vcnl4020Proximity[4]; |
|
830 |
// int vcnl4020AmbientLight[4];
|
|
831 |
// int vcnl4020Proximity[4];
|
|
832 | 832 |
int rpmSpeed[2] = {0}; |
833 | 833 |
int steps = 0; |
834 |
int proxyL = global.threshProxyL; |
|
835 |
int proxyR = global.threshProxyR; |
|
834 |
// int proxyL = global.threshProxyL;
|
|
835 |
// int proxyR = global.threshProxyR;
|
|
836 | 836 |
int maxDelta = 0; |
837 | 837 |
float KCrit = 0.0f; |
838 | 838 |
global.sensSamples = 0; |
... | ... | |
865 | 865 |
// global.motorcontrol.setTargetRPM(rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] * 1000000, rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] * 1000000); |
866 | 866 |
int checkWhite = 0; |
867 | 867 |
int it_switch = steps / 2; |
868 |
// lf.setStrategie(LineFollowStrategie::MIDDLE); |
|
868 | 869 |
for(int s=0; s < steps; s++){ |
870 |
|
|
871 |
checkWhite = lf.followLine(rpmSpeed); |
|
869 | 872 |
// chprintf(chp,"S:%d,",s); |
870 |
if(global.threshWhite) |
|
871 |
if(s < it_switch){ |
|
872 |
|
|
873 |
checkWhite = lf.followRightEdge(rpmSpeed); |
|
874 |
}else{ |
|
875 |
checkWhite = lf.followLeftEdge(rpmSpeed); |
|
876 |
} |
|
873 |
// if(global.threshWhite) |
|
874 |
// if(s < it_switch){ |
|
875 |
// lf.setStrategie(LineFollowStrategie::EDGE_LEFT); |
|
876 |
// checkWhite = lf.followLine(rpmSpeed); |
|
877 |
// }else{ |
|
878 |
// lf.setStrategie(LineFollowStrategie::EDGE_RIGHT); |
|
879 |
// checkWhite = lf.followLine(rpmSpeed); |
|
880 |
// } |
|
877 | 881 |
if(checkWhite){ |
882 |
global.motorcontrol.setTargetRPM(0,0); |
|
878 | 883 |
for(led=0; led<8; led++){ |
879 | 884 |
global.robot.setLightColor(led, Color(Color::RED)); |
880 | 885 |
} |
881 |
global.motorcontrol.setTargetRPM(0,0); |
|
882 | 886 |
}else{ |
883 | 887 |
global.motorcontrol.setTargetRPM(rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] * 1000000, rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] * 1000000); |
884 | 888 |
} |
... | ... | |
891 | 895 |
} |
892 | 896 |
|
893 | 897 |
|
894 |
|
|
895 |
void recordMove(BaseSequentialStream *chp, int argc, char *argv[]){ |
|
896 |
// int vcnl4020AmbientLight[4]; |
|
897 |
int vcnl4020Proximity[4]; |
|
898 |
int rpmSpeed[2] = {0}; |
|
899 |
int steps = 0; |
|
898 |
void followLine(BaseSequentialStream *chp, int argc, char *argv[]){ |
|
899 |
int steps = 1000; |
|
900 | 900 |
int speed = 0; |
901 |
int strategy = 0; |
|
902 |
int led = 0; |
|
903 |
int checkWhite = 0; |
|
904 |
int rpmSpeed[2] = {0}; |
|
905 |
LineFollow lf(&global); |
|
901 | 906 |
if (argc == 1){ |
902 | 907 |
chprintf(chp, "%i steps \n", atoi(argv[0])); |
903 | 908 |
steps = atoi(argv[0]); |
904 |
speed = 30; |
|
905 |
}else if (argc == 2){ |
|
906 |
steps = atoi(argv[0]); |
|
907 |
speed = atoi(argv[1]); |
|
908 |
}else{ |
|
909 |
chprintf(chp, "No steps given!\n"); |
|
910 |
return; |
|
911 |
} |
|
912 |
global.sensSamples = steps; |
|
913 |
chprintf((BaseSequentialStream*)&global.sercanmux1, "Recodring starts in five seconds...\n"); |
|
914 |
BaseThread::sleep(MS2ST(5000)); |
|
915 |
// int sensSamples = 0; |
|
916 |
// sensorRecord senseRec[1000]; |
|
917 |
|
|
918 |
for (int j = 0; j < steps; j++) { |
|
919 |
for (int i = 0; i < 4; i++) { |
|
920 |
// vcnl4020AmbientLight[i] = global.vcnl4020[i].getAmbientLight(); |
|
921 |
vcnl4020Proximity[i] = global.vcnl4020[i].getProximityScaledWoOffset(); |
|
909 |
}else if (argc == 2){ |
|
910 |
steps = atoi(argv[0]); |
|
911 |
speed = atoi(argv[1]); |
|
912 |
}else if (argc == 3){ |
|
913 |
steps = atoi(argv[0]); |
|
914 |
speed = atoi(argv[1]); |
|
915 |
strategy = atoi(argv[2]); |
|
916 |
}else{ |
|
917 |
chprintf(chp, "Use: followLine <steps> <speed> <strategy>\n"); |
|
918 |
return; |
|
919 |
} |
|
920 |
global.forwardSpeed = speed; |
|
921 |
switch (strategy) |
|
922 |
{ |
|
923 |
case 0: |
|
924 |
lf.setStrategy(amiro::LineFollowStrategy::EDGE_RIGHT); |
|
925 |
break; |
|
926 |
case 1: |
|
927 |
lf.setStrategy(amiro::LineFollowStrategy::EDGE_LEFT); |
|
928 |
break; |
|
929 |
case 2: |
|
930 |
lf.setStrategy(amiro::LineFollowStrategy::FUZZY); |
|
931 |
break; |
|
932 |
default: |
|
933 |
break; |
|
922 | 934 |
} |
923 | 935 |
|
924 |
int FL = global.vcnl4020[constants::DiWheelDrive::PROX_FRONT_LEFT].getProximityScaledWoOffset(); |
|
925 |
int FR = global.vcnl4020[constants::DiWheelDrive::PROX_FRONT_RIGHT].getProximityScaledWoOffset(); |
|
926 |
|
|
927 | 936 |
|
928 |
global.senseRec[j].FL = FL; |
|
929 |
global.senseRec[j].FR = FR; |
|
930 |
// chprintf(chp,"FL: 0x%x, FR: 0x%x, Delta: %d, ProxyL: %x, ProxyR: %x, MaxDelta: %d\n", |
|
931 |
// vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_LEFT], |
|
932 |
// vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT], |
|
933 |
// vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_LEFT] - vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT]); |
|
934 |
global.motorcontrol.setTargetRPM(speed * 1000000, -speed * 1000000); |
|
935 |
BaseThread::sleep(CAN::UPDATE_PERIOD); |
|
937 |
for(int s=0; s < steps; s++){ |
|
938 |
|
|
939 |
checkWhite = lf.followLine(rpmSpeed); |
|
940 |
if(checkWhite){ |
|
941 |
global.motorcontrol.setTargetRPM(0,0); |
|
942 |
for(led=0; led<8; led++){ |
|
943 |
global.robot.setLightColor(led, Color(Color::RED)); |
|
944 |
} |
|
945 |
}else{ |
|
946 |
global.motorcontrol.setTargetRPM(rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] * 1000000, rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] * 1000000); |
|
947 |
} |
|
948 |
|
|
949 |
BaseThread::sleep(CAN::UPDATE_PERIOD); |
|
936 | 950 |
} |
951 |
|
|
937 | 952 |
global.motorcontrol.setTargetRPM(0,0); |
938 |
for(int k=0; k<8;k++){ |
|
939 |
global.robot.setLightColor(k, Color(Color::WHITE)); |
|
940 |
} |
|
941 |
BaseThread::sleep(MS2ST(1000)); |
|
942 |
for(int k=0; k<8;k++){ |
|
943 |
global.robot.setLightColor(k, Color(Color::BLACK)); |
|
944 |
} |
|
945 | 953 |
} |
946 | 954 |
|
955 |
|
|
947 | 956 |
void printMove(BaseSequentialStream *chp, int argc, char *argv[]){ |
948 | 957 |
|
949 | 958 |
for (int j=0; j<global.sensSamples;j++){ |
... | ... | |
985 | 994 |
{"dev_ziegler2", zieglerMeth2}, |
986 | 995 |
// TODO: Stop user process from execution to finish/force calibration before anything starts |
987 | 996 |
{"calibrate_line", calibrateLineSensores}, |
988 |
{"record_move_l", recordMove},
|
|
997 |
// {"record_move", recordMove},
|
|
989 | 998 |
{"print_record", printMove}, |
990 | 999 |
{"setRecord", setRecord}, |
1000 |
{"followLine", followLine}, |
|
991 | 1001 |
{NULL, NULL} |
992 | 1002 |
}; |
993 | 1003 |
|
devices/DiWheelDrive/userthread.cpp | ||
---|---|---|
42 | 42 |
// BLACK is the line itselfe |
43 | 43 |
// GREY is the boarder between the line and the surface |
44 | 44 |
// WHITE is the common surface |
45 |
enum colorMember : uint8_t { |
|
46 |
BLACK=0, |
|
47 |
GREY=1, |
|
48 |
WHITE=2 |
|
49 |
}; |
|
45 |
// enum colorMember : uint8_t {
|
|
46 |
// BLACK=0,
|
|
47 |
// GREY=1,
|
|
48 |
// WHITE=2
|
|
49 |
// };
|
|
50 | 50 |
|
51 | 51 |
// a buffer for the z-value of the accelerometer |
52 | 52 |
int16_t accel_z; |
... | ... | |
57 | 57 |
int policyCounter = 0; // Do not change this, it points to the beginning of the policy |
58 | 58 |
|
59 | 59 |
// Different speed settings (all values in "rounds per minute") |
60 |
const int rpmTurnLeft[2] = {-10, 10}; |
|
61 |
const int rpmTurnRight[2] = {rpmTurnLeft[1],rpmTurnLeft[0]}; |
|
62 |
const int rpmHalt[2] = {0, 0}; |
|
60 |
// const int rpmTurnLeft[2] = {-10, 10};
|
|
61 |
// const int rpmTurnRight[2] = {rpmTurnLeft[1],rpmTurnLeft[0]};
|
|
62 |
// const int rpmHalt[2] = {0, 0};
|
|
63 | 63 |
|
64 | 64 |
// Definition of the fuzzyfication function |
65 | 65 |
// | Membership |
... | ... | |
71 | 71 |
// All values are "raw sensor values" |
72 | 72 |
/* Use these values for white ground surface (e.g. paper) */ |
73 | 73 |
|
74 |
const int blackStartFalling = 0x1000; // Where the black curve starts falling |
|
75 |
const int blackOff = 0x1800; // Where no more black is detected |
|
76 |
const int whiteStartRising = 0x2800; // Where the white curve starts rising |
|
77 |
const int whiteOn = 0x6000; // Where the white curve has reached the maximum value |
|
78 |
const int greyMax = (whiteOn + blackStartFalling) / 2; // Where grey has its maximum |
|
79 |
const int greyStartRising = blackStartFalling; // Where grey starts rising |
|
80 |
const int greyOff = whiteOn; // Where grey is completely off again |
|
74 |
// const int blackStartFalling = 0x1000; // Where the black curve starts falling
|
|
75 |
// const int blackOff = 0x1800; // Where no more black is detected
|
|
76 |
// const int whiteStartRising = 0x2800; // Where the white curve starts rising
|
|
77 |
// const int whiteOn = 0x6000; // Where the white curve has reached the maximum value
|
|
78 |
// const int greyMax = (whiteOn + blackStartFalling) / 2; // Where grey has its maximum
|
|
79 |
// const int greyStartRising = blackStartFalling; // Where grey starts rising
|
|
80 |
// const int greyOff = whiteOn; // Where grey is completely off again
|
|
81 | 81 |
|
82 | 82 |
/* Use these values for gray ground surfaces */ |
83 | 83 |
/* |
... | ... | |
111 | 111 |
// chprintf((BaseSequentialStream*) &SD1, "Speed left: %d, Speed right: %d\r\n", target[0], target[1]); |
112 | 112 |
} |
113 | 113 |
|
114 |
// Fuzzyfication of the sensor values |
|
115 |
void fuzzyfication(int sensorValue, float (&fuzziedValue)[3]) { |
|
116 |
if (sensorValue < blackStartFalling ) { |
|
117 |
// Only black value |
|
118 |
fuzziedValue[BLACK] = 1.0f; |
|
119 |
fuzziedValue[GREY] = 0.0f; |
|
120 |
fuzziedValue[WHITE] = 0.0f; |
|
121 |
} else if (sensorValue > whiteOn ) { |
|
122 |
// Only white value |
|
123 |
fuzziedValue[BLACK] = 0.0f; |
|
124 |
fuzziedValue[GREY] = 0.0f; |
|
125 |
fuzziedValue[WHITE] = 1.0f; |
|
126 |
} else if ( sensorValue < greyMax) { |
|
127 |
// Some greyisch value between black and grey |
|
128 |
|
|
129 |
// Black is going down |
|
130 |
if ( sensorValue > blackOff) { |
|
131 |
fuzziedValue[BLACK] = 0.0f; |
|
132 |
} else { |
|
133 |
fuzziedValue[BLACK] = static_cast<float>(sensorValue-blackOff) / (blackStartFalling-blackOff); |
|
134 |
} |
|
135 |
|
|
136 |
// Grey is going up |
|
137 |
if ( sensorValue < greyStartRising) { |
|
138 |
fuzziedValue[GREY] = 0.0f; |
|
139 |
} else { |
|
140 |
fuzziedValue[GREY] = static_cast<float>(sensorValue-greyStartRising) / (greyMax-greyStartRising); |
|
141 |
} |
|
142 |
|
|
143 |
// White is absent |
|
144 |
fuzziedValue[WHITE] = 0.0f; |
|
145 |
|
|
146 |
} else if ( sensorValue >= greyMax) { |
|
147 |
// Some greyisch value between grey white |
|
148 |
|
|
149 |
// Black is absent |
|
150 |
fuzziedValue[BLACK] = 0.0f; |
|
151 |
|
|
152 |
// Grey is going down |
|
153 |
if ( sensorValue < greyOff) { |
|
154 |
fuzziedValue[GREY] = static_cast<float>(sensorValue-greyOff) / (greyMax-greyOff); |
|
155 |
} else { |
|
156 |
fuzziedValue[GREY] = 0.0f; |
|
157 |
} |
|
158 |
|
|
159 |
// White is going up |
|
160 |
if ( sensorValue < whiteStartRising) { |
|
161 |
fuzziedValue[WHITE] = 0.0f; |
|
162 |
} else { |
|
163 |
fuzziedValue[WHITE] = static_cast<float>(sensorValue-whiteStartRising) / (whiteOn-whiteStartRising); |
|
164 |
} |
|
165 |
} |
|
166 |
} |
|
167 |
|
|
168 |
// Return the color, which has the highest fuzzy value |
|
169 |
colorMember getMember(float (&fuzzyValue)[3]) { |
|
170 |
colorMember member; |
|
171 |
|
|
172 |
if (fuzzyValue[BLACK] > fuzzyValue[GREY]) |
|
173 |
if (fuzzyValue[BLACK] > fuzzyValue[WHITE]) |
|
174 |
member = BLACK; |
|
175 |
else |
|
176 |
member = WHITE; |
|
177 |
else |
|
178 |
if (fuzzyValue[GREY] > fuzzyValue[WHITE]) |
|
179 |
member = GREY; |
|
180 |
else |
|
181 |
member = WHITE; |
|
182 |
|
|
183 |
return member; |
|
184 |
} |
|
185 |
|
|
186 |
// Get a crisp output for the steering commands |
|
187 |
void defuzzyfication(colorMember (&member)[4], int (&rpmFuzzyCtrl)[2]) { |
|
188 |
|
|
189 |
// all sensors are equal |
|
190 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_LEFT] && |
|
191 |
member[constants::DiWheelDrive::PROX_FRONT_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_RIGHT] && |
|
192 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == member[constants::DiWheelDrive::PROX_WHEEL_RIGHT]) { |
|
193 |
// something is wrong -> stop |
|
194 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
|
195 |
// both front sensor detect a line |
|
196 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK && |
|
197 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK) { |
|
198 |
// straight |
|
199 |
copyRpmSpeed(global.rpmForward, rpmFuzzyCtrl); |
|
200 |
// exact one front sensor detects a line |
|
201 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK || |
|
202 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK) { |
|
203 |
// soft correction |
|
204 |
if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY) { |
|
205 |
// soft right |
|
206 |
copyRpmSpeed(global.rpmSoftRight, rpmFuzzyCtrl); |
|
207 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == WHITE) { |
|
208 |
// hard right |
|
209 |
copyRpmSpeed(global.rpmHardRight, rpmFuzzyCtrl); |
|
210 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) { |
|
211 |
// soft left |
|
212 |
copyRpmSpeed(global.rpmSoftLeft, rpmFuzzyCtrl); |
|
213 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == WHITE) { |
|
214 |
// hard left |
|
215 |
copyRpmSpeed(global.rpmHardLeft, rpmFuzzyCtrl); |
|
216 |
} |
|
217 |
// both wheel sensors detect a line |
|
218 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK && |
|
219 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) { |
|
220 |
// something is wrong -> stop |
|
221 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
|
222 |
// exactly one wheel sensor detects a line |
|
223 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK || |
|
224 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) { |
|
225 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK) { |
|
226 |
// turn left |
|
227 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
|
228 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) { |
|
229 |
// turn right |
|
230 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
|
231 |
} |
|
232 |
// both front sensors may detect a line |
|
233 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY && |
|
234 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) { |
|
235 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY) { |
|
236 |
// turn left |
|
237 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
|
238 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) { |
|
239 |
// turn right |
|
240 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
|
241 |
} |
|
242 |
// exactly one front sensor may detect a line |
|
243 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY || |
|
244 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) { |
|
245 |
if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY) { |
|
246 |
// turn left |
|
247 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
|
248 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) { |
|
249 |
// turn right |
|
250 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
|
251 |
} |
|
252 |
// both wheel sensors may detect a line |
|
253 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY && |
|
254 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) { |
|
255 |
// something is wrong -> stop |
|
256 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
|
257 |
// exactly one wheel sensor may detect a line |
|
258 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY || |
|
259 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) { |
|
260 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY) { |
|
261 |
// turn left |
|
262 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
|
263 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) { |
|
264 |
// turn right |
|
265 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
|
266 |
} |
|
267 |
// no sensor detects anything |
|
268 |
} else { |
|
269 |
// line is lost -> stop |
|
270 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
|
271 |
} |
|
272 |
|
|
273 |
return; |
|
274 |
} |
|
275 |
|
|
276 |
Color memberToLed(colorMember member) { |
|
277 |
switch (member) { |
|
278 |
case BLACK: |
|
279 |
return Color(Color::GREEN); |
|
280 |
case GREY: |
|
281 |
return Color(Color::YELLOW); |
|
282 |
case WHITE: |
|
283 |
return Color(Color::RED); |
|
284 |
default: |
|
285 |
return Color(Color::WHITE); |
|
286 |
} |
|
287 |
} |
|
288 |
|
|
289 |
//void lineFollowing_new(xyz) {} |
|
290 |
|
|
291 |
void defuzz(colorMember (&member)[4], int (&rpmFuzzyCtrl)[2]){ |
|
292 |
// all sensors are equal |
|
293 |
// if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_LEFT] && |
|
294 |
// member[constants::DiWheelDrive::PROX_FRONT_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_RIGHT] && |
|
295 |
// member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == member[constants::DiWheelDrive::PROX_WHEEL_RIGHT]) { |
|
296 |
// // something is wrong -> stop |
|
297 |
// copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
|
298 |
// // both front sensor detect a line |
|
299 |
if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK && |
|
300 |
(member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY)) { |
|
301 |
// straight |
|
302 |
copyRpmSpeed(global.rpmForward, rpmFuzzyCtrl); |
|
303 |
// Deviation to right |
|
304 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK |
|
305 |
&& member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == WHITE){ |
|
306 |
copyRpmSpeed(global.rpmSoftLeft, rpmFuzzyCtrl); |
|
307 |
// Deviation to left |
|
308 |
}else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK |
|
309 |
&& member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK){ |
|
310 |
copyRpmSpeed(global.rpmSoftRight, rpmFuzzyCtrl); |
|
311 |
// Hard deviatio to right |
|
312 |
}else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY |
|
313 |
&& member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == WHITE){ |
|
314 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
|
315 |
// Hard deviation to left |
|
316 |
}else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY |
|
317 |
&& member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK){ |
|
318 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
|
319 |
// stop if white |
|
320 |
}else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == WHITE |
|
321 |
&& member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == WHITE ){ |
|
322 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
|
323 |
} |
|
324 |
} |
|
325 |
|
|
326 |
// Line following by a fuzzy controler |
|
327 |
void lineFollowing(int (&proximity)[4], int (&rpmFuzzyCtrl)[2]) { |
|
328 |
// FUZZYFICATION |
|
329 |
// First we need to get the fuzzy value for our 3 values {BLACK, GREY, WHITE} |
|
330 |
float leftWheelFuzzyMemberValues[3], leftFrontFuzzyMemberValues[3], rightFrontFuzzyMemberValues[3], rightWheelFuzzyMemberValues[3]; |
|
331 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_WHEEL_LEFT], leftWheelFuzzyMemberValues); |
|
332 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_FRONT_LEFT], leftFrontFuzzyMemberValues); |
|
333 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT], rightFrontFuzzyMemberValues); |
|
334 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_WHEEL_RIGHT], rightWheelFuzzyMemberValues); |
|
335 |
|
|
336 |
// INFERENCE RULE DEFINITION |
|
337 |
// Get the member for each sensor |
|
338 |
colorMember member[4]; |
|
339 |
member[constants::DiWheelDrive::PROX_WHEEL_LEFT] = getMember(leftWheelFuzzyMemberValues); |
|
340 |
member[constants::DiWheelDrive::PROX_FRONT_LEFT] = getMember(leftFrontFuzzyMemberValues); |
|
341 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] = getMember(rightFrontFuzzyMemberValues); |
|
342 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] = getMember(rightWheelFuzzyMemberValues); |
|
343 |
|
|
344 |
// visualize sensors via LEDs |
|
345 |
global.robot.setLightColor(constants::LightRing::LED_WNW, memberToLed(member[constants::DiWheelDrive::PROX_WHEEL_LEFT])); |
|
346 |
global.robot.setLightColor(constants::LightRing::LED_NNW, memberToLed(member[constants::DiWheelDrive::PROX_FRONT_LEFT])); |
|
347 |
global.robot.setLightColor(constants::LightRing::LED_NNE, memberToLed(member[constants::DiWheelDrive::PROX_FRONT_RIGHT])); |
|
348 |
global.robot.setLightColor(constants::LightRing::LED_ENE, memberToLed(member[constants::DiWheelDrive::PROX_WHEEL_RIGHT])); |
|
349 |
|
|
350 |
// chprintf((BaseSequentialStream*) &SD1, "Left: BLACK: %f, GREY: %f, WHITE: %f\r\n", leftWheelFuzzyMemberValues[BLACK], leftWheelFuzzyMemberValues[GREY], leftWheelFuzzyMemberValues[WHITE]); |
|
351 |
// chprintf((BaseSequentialStream*) &SD1, "Right: BLACK: %f, GREY: %f, WHITE: %f\r\n", rightFuzzyMemberValues[BLACK], rightFuzzyMemberValues[GREY], rightFuzzyMemberValues[WHITE]); |
|
352 |
|
|
353 |
// DEFUZZYFICATION |
|
354 |
// defuzzyfication(member, rpmFuzzyCtrl); |
|
355 |
defuzz(member, rpmFuzzyCtrl); |
|
356 |
} |
|
357 |
|
|
358 |
|
|
359 |
|
|
360 | 114 |
|
361 | 115 |
// Set the speed by the array |
362 | 116 |
void setRpmSpeed(const int (&rpmSpeed)[2]) { |
... | ... | |
452 | 206 |
vcnl4020AmbientLight[i] = global.vcnl4020[i].getAmbientLight(); |
453 | 207 |
vcnl4020Proximity[i] = global.vcnl4020[i].getProximityScaledWoOffset(); |
454 | 208 |
} |
455 |
lf.stableFollow(vcnl4020Proximity, rpmFuzzyCtrl, &global); |
|
209 |
// lf.stableFollow(vcnl4020Proximity, rpmFuzzyCtrl, &global);
|
|
456 | 210 |
// chprintf((BaseSequentialStream*) &SD1, "0x%04X 0x%04X 0x%04X 0x%04X\n", |
457 | 211 |
// vcnl4020Proximity[constants::DiWheelDrive::PROX_WHEEL_LEFT], |
458 | 212 |
// vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_LEFT], |
Also available in: Unified diff