Revision 1b3adcdd
| devices/DiWheelDrive/global.hpp | ||
|---|---|---|
| 176 | 176 |
// Thresh FL: 5241, FR: 25528 |
| 177 | 177 |
int threshProxyL = 5241; |
| 178 | 178 |
int threshProxyR = 25528; |
| 179 |
int threshWhite = 78000;
|
|
| 179 |
int threshWhite = 51056;
|
|
| 180 | 180 |
|
| 181 | 181 |
// PID for line following: |
| 182 | 182 |
float K_p = 0.0f; |
| ... | ... | |
| 189 | 189 |
|
| 190 | 190 |
// Debugging stuff -------------- |
| 191 | 191 |
int forwardSpeed = 10; |
| 192 |
int enableRecord = 0;
|
|
| 192 |
int enableRecord = 1;
|
|
| 193 | 193 |
|
| 194 | 194 |
// Buffer for sensor values |
| 195 | 195 |
struct sensorRecord |
| devices/DiWheelDrive/linefollow2.cpp | ||
|---|---|---|
| 2 | 2 |
#include "linefollow2.hpp" |
| 3 | 3 |
#include <cmath> |
| 4 | 4 |
|
| 5 |
// Trash |
|
| 6 |
void LineFollow::printSensorData(){
|
|
| 7 |
chprintf((BaseSequentialStream*) &SD1, "Test!"); |
|
| 8 |
} |
|
| 9 | 5 |
|
| 10 | 6 |
|
| 11 | 7 |
LineFollow::LineFollow(Global *global){
|
| 12 | 8 |
this->global = global; |
| 13 | 9 |
} |
| 14 |
|
|
| 15 |
// trash |
|
| 16 |
int LineFollow::delta(){
|
|
| 17 |
int delta = 0; |
|
| 18 |
int FL = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_LEFT].getProximityScaledWoOffset(); |
|
| 19 |
int FR = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_RIGHT].getProximityScaledWoOffset(); |
|
| 20 |
|
|
| 21 |
delta = abs(abs(global->threshProxyL-global->threshProxyR) - abs(FL-FR)); |
|
| 22 |
|
|
| 23 |
if (FR > global->threshProxyR && FL > global->threshProxyL ){
|
|
| 24 |
return delta ; |
|
| 25 |
}else {
|
|
| 26 |
return delta* -1; |
|
| 27 |
} |
|
| 28 |
return delta; |
|
| 29 |
} |
|
| 30 |
|
|
| 31 |
// old and trash |
|
| 32 |
void LineFollow::stableFollow(int vcnl4020Proximity[4], int (&rpmFuzzyCtrl)[2], Global *global){
|
|
| 33 |
int targetSensor = 0x38; |
|
| 34 |
int actualSensorL = vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_LEFT] ; |
|
| 35 |
int actualSensorR = vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT] ; |
|
| 36 |
int targetSpeedL = global->rpmForward[constants::DiWheelDrive::LEFT_WHEEL]; |
|
| 37 |
int targetSpeedR = global->rpmForward[constants::DiWheelDrive::RIGHT_WHEEL]; |
|
| 38 |
|
|
| 39 |
|
|
| 40 |
int diff = actualSensorR - actualSensorL; |
|
| 41 |
int error = targetSensor - (actualSensorL + actualSensorR); |
|
| 42 |
|
|
| 43 |
accSum += error; |
|
| 44 |
int dTerm = error - oldError; |
|
| 45 |
|
|
| 46 |
if (diff > biggestDiff){
|
|
| 47 |
biggestDiff = diff; |
|
| 48 |
} |
|
| 49 |
int correctionSpeed = (int) (Kp * error + Ki * accSum + Kd * dTerm); |
|
| 50 |
chprintf((BaseSequentialStream*) &SD1, "Correction Speed: %d\n", correctionSpeed); |
|
| 51 |
rpmFuzzyCtrl[constants::DiWheelDrive::LEFT_WHEEL] = targetSpeedL + correctionSpeed; |
|
| 52 |
rpmFuzzyCtrl[constants::DiWheelDrive::RIGHT_WHEEL] = targetSpeedR - correctionSpeed; |
|
| 53 |
|
|
| 54 |
chprintf((BaseSequentialStream*) &SD1, "Diff: %d, Biggest: %d\n", correctionSpeed, biggestDiff); |
|
| 55 |
|
|
| 10 |
LineFollow::LineFollow(Global *global, LineFollowStrategy strategy){
|
|
| 11 |
this->global = global; |
|
| 12 |
this-> strategy = strategy; |
|
| 56 | 13 |
} |
| 57 | 14 |
|
| 58 | 15 |
/** |
| 59 | 16 |
* Calculate the error from front proxi sensors and fixed threshold values for those sensors. |
| 60 | 17 |
*/ |
| 61 | 18 |
int LineFollow::getError(){
|
| 62 |
|
|
| 19 |
// Get actual sensor data of both front sensors |
|
| 63 | 20 |
int FL = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_LEFT].getProximityScaledWoOffset(); |
| 64 | 21 |
int FR = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_RIGHT].getProximityScaledWoOffset(); |
| 65 | 22 |
int targetL = global->threshProxyL; |
| 66 | 23 |
int targetR = global->threshProxyR; |
| 67 |
int error = FL -targetL + FR - targetR; |
|
| 68 |
|
|
| 24 |
int error = 0; |
|
| 25 |
switch (this->strategy) |
|
| 26 |
{
|
|
| 27 |
case LineFollowStrategy::EDGE_RIGHT: |
|
| 28 |
error = -(FL -targetL + FR - targetR); |
|
| 29 |
break; |
|
| 30 |
case LineFollowStrategy::EDGE_LEFT: |
|
| 31 |
error = (FL -targetL + FR - targetR); |
|
| 32 |
break; |
|
| 33 |
case LineFollowStrategy::MIDDLE: |
|
| 34 |
// Assume that the smallest value means driving in the middle |
|
| 35 |
targetL = targetR = !(targetL<targetR)?targetR:targetL; |
|
| 36 |
error = (FL -targetL + FR - targetR); |
|
| 37 |
break; |
|
| 38 |
|
|
| 39 |
default: |
|
| 40 |
break; |
|
| 41 |
} |
|
| 42 |
// Debugging stuff ------ |
|
| 43 |
if (global->enableRecord){
|
|
| 44 |
global->senseRec[global->sensSamples].error = error; |
|
| 45 |
global->senseRec[global->sensSamples].FL = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_LEFT].getProximityScaledWoOffset(); |
|
| 46 |
global->senseRec[global->sensSamples].FR = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_RIGHT].getProximityScaledWoOffset(); |
|
| 47 |
global->sensSamples++; |
|
| 48 |
} |
|
| 49 |
// ---------------------- |
|
| 50 |
// Register white values |
|
| 69 | 51 |
if (FL+FR > global->threshWhite){
|
| 70 | 52 |
whiteFlag = 1; |
| 71 | 53 |
}else{
|
| ... | ... | |
| 74 | 56 |
return error; |
| 75 | 57 |
} |
| 76 | 58 |
|
| 77 |
/** |
|
| 78 |
* Follow strategy for left edge. |
|
| 79 |
*/ |
|
| 80 |
int LineFollow::followLeftEdge(int rpmSpeed[2]){
|
|
| 81 |
|
|
| 82 |
int correctionSpeed = getPidCorrectionSpeed(); |
|
| 83 |
chprintf((BaseSequentialStream*) &SD1, "Correction: %d, thresh: %d\n",correctionSpeed, global->threshWhite); |
|
| 59 |
int LineFollow::followLine(int (&rpmSpeed)[2]){
|
|
| 84 | 60 |
|
| 85 |
rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] = global->forwardSpeed + correctionSpeed; |
|
| 86 |
|
|
| 87 |
rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] = global->forwardSpeed - correctionSpeed; |
|
| 88 |
return whiteFlag; |
|
| 89 |
} |
|
| 90 |
|
|
| 91 |
/** |
|
| 92 |
* Follow strategy for right edge. |
|
| 93 |
*/ |
|
| 94 |
int LineFollow::followRightEdge(int rpmSpeed[2]){
|
|
| 61 |
switch (this->strategy) |
|
| 62 |
{
|
|
| 63 |
case LineFollowStrategy::FUZZY: |
|
| 64 |
for (int i = 0; i < 4; i++) {
|
|
| 65 |
vcnl4020AmbientLight[i] = global->vcnl4020[i].getAmbientLight(); |
|
| 66 |
vcnl4020Proximity[i] = global->vcnl4020[i].getProximityScaledWoOffset(); |
|
| 67 |
} |
|
| 95 | 68 |
|
| 96 |
int correctionSpeed = getPidCorrectionSpeed(); |
|
| 97 |
chprintf((BaseSequentialStream*) &SD1, "Correction: %d, thresh: %d\n",correctionSpeed, global->threshWhite); |
|
| 69 |
lineFollowing(vcnl4020Proximity, rpmSpeed); |
|
| 70 |
break; |
|
| 71 |
|
|
| 72 |
default: |
|
| 73 |
int correctionSpeed = getPidCorrectionSpeed(); |
|
| 74 |
// chprintf((BaseSequentialStream*) &SD1, "Correction: %d, thresh: %d\n",correctionSpeed, global->threshWhite); |
|
| 98 | 75 |
|
| 99 |
rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] = global->forwardSpeed - correctionSpeed;
|
|
| 76 |
rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] = global->forwardSpeed + correctionSpeed;
|
|
| 100 | 77 |
|
| 101 |
rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] = global->forwardSpeed + correctionSpeed; |
|
| 102 |
return whiteFlag; |
|
| 78 |
rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] = global->forwardSpeed - correctionSpeed; |
|
| 79 |
return whiteFlag; |
|
| 80 |
break; |
|
| 81 |
} |
|
| 103 | 82 |
} |
| 104 | 83 |
|
| 84 |
|
|
| 105 | 85 |
/** |
| 106 | 86 |
* Pid controller which returns a corrections speed. |
| 107 | 87 |
*/ |
| 108 | 88 |
int LineFollow::getPidCorrectionSpeed(){
|
| 109 | 89 |
int error = getError(); |
| 110 |
int sloap = error - global->oldError;
|
|
| 111 |
int correctionSpeed = (int) (global->K_p*error + global->K_i*global->accumHist + global->K_d*sloap);
|
|
| 112 |
global->oldError = error;
|
|
| 113 |
global->accumHist += error;
|
|
| 90 |
int sloap = error - oldError; |
|
| 91 |
int correctionSpeed = (int) (Kp*error + Ki*accumHist + Kd*sloap);
|
|
| 92 |
oldError = error; |
|
| 93 |
// accumHist += (int) (0.01 * error);
|
|
| 114 | 94 |
if (abs(error) > global->maxDist.error){
|
| 115 | 95 |
global->maxDist.error = error; |
| 116 | 96 |
} |
| 117 | 97 |
return correctionSpeed; |
| 118 | 98 |
} |
| 119 | 99 |
|
| 120 |
// trash |
|
| 121 |
// void LineFollow::calibrateZiegler(float KCrit, int rpmSpeed[2]){
|
|
| 122 |
// int targetSpeedL = 5; |
|
| 123 |
// int targetSpeedR = 5; |
|
| 124 |
// int delta_ = error(); |
|
| 125 |
// int correctionSpeed = (int) (KCrit * delta_); |
|
| 126 |
// if (global->enableRecord){
|
|
| 127 |
// global->senseRec[global->sensSamples].error = delta_; |
|
| 128 |
// global->senseRec[global->sensSamples].FL = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_LEFT].getProximityScaledWoOffset(); |
|
| 129 |
// global->senseRec[global->sensSamples].FR = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_RIGHT].getProximityScaledWoOffset(); |
|
| 130 |
// global->sensSamples++; |
|
| 131 |
// } |
|
| 132 |
// if (abs(delta_) > global->maxDist.error){
|
|
| 133 |
// global->maxDist.error = delta_; |
|
| 134 |
// } |
|
| 135 |
|
|
| 136 |
// rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] = global->forwardSpeed + -1*correctionSpeed; |
|
| 137 |
// rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] = global->forwardSpeed + correctionSpeed; |
|
| 138 |
// chprintf((BaseSequentialStream*) &SD1, "CS:%d,LW:%d,RW:%d\n", correctionSpeed, rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL], rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL]); |
|
| 139 |
// } |
|
| 100 |
|
|
| 101 |
void LineFollow::setStrategy(LineFollowStrategy strategy){
|
|
| 102 |
this->strategy = strategy; |
|
| 103 |
} |
|
| 104 |
|
|
| 105 |
LineFollowStrategy LineFollow::getStrategy(){
|
|
| 106 |
return this->strategy; |
|
| 107 |
} |
|
| 108 |
void LineFollow::setGains(float Kp, float Ki, float Kd){
|
|
| 109 |
this->Kp = Kp; |
|
| 110 |
this->Ki = Ki; |
|
| 111 |
this->Kd = Kd; |
|
| 112 |
} |
|
| 113 |
|
|
| 114 |
|
|
| 115 |
|
|
| 116 |
|
|
| 117 |
|
|
| 118 |
// Lagacy code, fuzzy following----------------------------------------- |
|
| 119 |
// Line following by a fuzzy controler |
|
| 120 |
void LineFollow::lineFollowing(int (&proximity)[4], int (&rpmFuzzyCtrl)[2]) {
|
|
| 121 |
// FUZZYFICATION |
|
| 122 |
// First we need to get the fuzzy value for our 3 values {BLACK, GREY, WHITE}
|
|
| 123 |
float leftWheelFuzzyMemberValues[3], leftFrontFuzzyMemberValues[3], rightFrontFuzzyMemberValues[3], rightWheelFuzzyMemberValues[3]; |
|
| 124 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_WHEEL_LEFT], leftWheelFuzzyMemberValues); |
|
| 125 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_FRONT_LEFT], leftFrontFuzzyMemberValues); |
|
| 126 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT], rightFrontFuzzyMemberValues); |
|
| 127 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_WHEEL_RIGHT], rightWheelFuzzyMemberValues); |
|
| 128 |
|
|
| 129 |
// INFERENCE RULE DEFINITION |
|
| 130 |
// Get the member for each sensor |
|
| 131 |
colorMember member[4]; |
|
| 132 |
member[constants::DiWheelDrive::PROX_WHEEL_LEFT] = getMember(leftWheelFuzzyMemberValues); |
|
| 133 |
member[constants::DiWheelDrive::PROX_FRONT_LEFT] = getMember(leftFrontFuzzyMemberValues); |
|
| 134 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] = getMember(rightFrontFuzzyMemberValues); |
|
| 135 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] = getMember(rightWheelFuzzyMemberValues); |
|
| 136 |
|
|
| 137 |
// visualize sensors via LEDs |
|
| 138 |
global->robot.setLightColor(constants::LightRing::LED_WNW, memberToLed(member[constants::DiWheelDrive::PROX_WHEEL_LEFT])); |
|
| 139 |
global->robot.setLightColor(constants::LightRing::LED_NNW, memberToLed(member[constants::DiWheelDrive::PROX_FRONT_LEFT])); |
|
| 140 |
global->robot.setLightColor(constants::LightRing::LED_NNE, memberToLed(member[constants::DiWheelDrive::PROX_FRONT_RIGHT])); |
|
| 141 |
global->robot.setLightColor(constants::LightRing::LED_ENE, memberToLed(member[constants::DiWheelDrive::PROX_WHEEL_RIGHT])); |
|
| 142 |
|
|
| 143 |
// chprintf((BaseSequentialStream*) &SD1, "Left: BLACK: %f, GREY: %f, WHITE: %f\r\n", leftWheelFuzzyMemberValues[BLACK], leftWheelFuzzyMemberValues[GREY], leftWheelFuzzyMemberValues[WHITE]); |
|
| 144 |
// chprintf((BaseSequentialStream*) &SD1, "Right: BLACK: %f, GREY: %f, WHITE: %f\r\n", rightFuzzyMemberValues[BLACK], rightFuzzyMemberValues[GREY], rightFuzzyMemberValues[WHITE]); |
|
| 145 |
|
|
| 146 |
// DEFUZZYFICATION |
|
| 147 |
defuzzyfication(member, rpmFuzzyCtrl); |
|
| 148 |
// defuzz(member, rpmFuzzyCtrl); |
|
| 149 |
} |
|
| 150 |
|
|
| 151 |
|
|
| 152 |
Color LineFollow::memberToLed(colorMember member) {
|
|
| 153 |
switch (member) {
|
|
| 154 |
case BLACK: |
|
| 155 |
return Color(Color::GREEN); |
|
| 156 |
case GREY: |
|
| 157 |
return Color(Color::YELLOW); |
|
| 158 |
case WHITE: |
|
| 159 |
return Color(Color::RED); |
|
| 160 |
default: |
|
| 161 |
return Color(Color::WHITE); |
|
| 162 |
} |
|
| 163 |
} |
|
| 164 |
|
|
| 165 |
void LineFollow::defuzzyfication(colorMember (&member)[4], int (&rpmFuzzyCtrl)[2]) {
|
|
| 166 |
whiteFlag = 0; |
|
| 167 |
// all sensors are equal |
|
| 168 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_LEFT] && |
|
| 169 |
member[constants::DiWheelDrive::PROX_FRONT_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_RIGHT] && |
|
| 170 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == member[constants::DiWheelDrive::PROX_WHEEL_RIGHT]) {
|
|
| 171 |
// something is wrong -> stop |
|
| 172 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
|
| 173 |
// both front sensor detect a line |
|
| 174 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK && |
|
| 175 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK) {
|
|
| 176 |
// straight |
|
| 177 |
copyRpmSpeed(global->rpmForward, rpmFuzzyCtrl); |
|
| 178 |
// exact one front sensor detects a line |
|
| 179 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK || |
|
| 180 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK) {
|
|
| 181 |
// soft correction |
|
| 182 |
if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY) {
|
|
| 183 |
// soft right |
|
| 184 |
copyRpmSpeed(global->rpmSoftRight, rpmFuzzyCtrl); |
|
| 185 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == WHITE) {
|
|
| 186 |
// hard right |
|
| 187 |
copyRpmSpeed(global->rpmHardRight, rpmFuzzyCtrl); |
|
| 188 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) {
|
|
| 189 |
// soft left |
|
| 190 |
copyRpmSpeed(global->rpmSoftLeft, rpmFuzzyCtrl); |
|
| 191 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == WHITE) {
|
|
| 192 |
// hard left |
|
| 193 |
copyRpmSpeed(global->rpmHardLeft, rpmFuzzyCtrl); |
|
| 194 |
} |
|
| 195 |
// both wheel sensors detect a line |
|
| 196 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK && |
|
| 197 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) {
|
|
| 198 |
// something is wrong -> stop |
|
| 199 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
|
| 200 |
// exactly one wheel sensor detects a line |
|
| 201 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK || |
|
| 202 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) {
|
|
| 203 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK) {
|
|
| 204 |
// turn left |
|
| 205 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
|
| 206 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) {
|
|
| 207 |
// turn right |
|
| 208 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
|
| 209 |
} |
|
| 210 |
// both front sensors may detect a line |
|
| 211 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY && |
|
| 212 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) {
|
|
| 213 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY) {
|
|
| 214 |
// turn left |
|
| 215 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
|
| 216 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) {
|
|
| 217 |
// turn right |
|
| 218 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
|
| 219 |
} |
|
| 220 |
// exactly one front sensor may detect a line |
|
| 221 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY || |
|
| 222 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) {
|
|
| 223 |
if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY) {
|
|
| 224 |
// turn left |
|
| 225 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
|
| 226 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) {
|
|
| 227 |
// turn right |
|
| 228 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
|
| 229 |
} |
|
| 230 |
// both wheel sensors may detect a line |
|
| 231 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY && |
|
| 232 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) {
|
|
| 233 |
// something is wrong -> stop |
|
| 234 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
|
| 235 |
// exactly one wheel sensor may detect a line |
|
| 236 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY || |
|
| 237 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) {
|
|
| 238 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY) {
|
|
| 239 |
// turn left |
|
| 240 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
|
| 241 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) {
|
|
| 242 |
// turn right |
|
| 243 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
|
| 244 |
} |
|
| 245 |
// no sensor detects anything |
|
| 246 |
} else {
|
|
| 247 |
// line is lost -> stop |
|
| 248 |
whiteFlag = 1; |
|
| 249 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
|
| 250 |
} |
|
| 251 |
chprintf((BaseSequentialStream*) &SD1, "Fuzzy Speed: Left: %d, Right: %d\n", rpmFuzzyCtrl[0], rpmFuzzyCtrl[1]); |
|
| 252 |
return; |
|
| 253 |
} |
|
| 254 |
|
|
| 255 |
colorMember LineFollow::getMember(float (&fuzzyValue)[3]) {
|
|
| 256 |
colorMember member; |
|
| 257 |
|
|
| 258 |
if (fuzzyValue[BLACK] > fuzzyValue[GREY]) |
|
| 259 |
if (fuzzyValue[BLACK] > fuzzyValue[WHITE]) |
|
| 260 |
member = BLACK; |
|
| 261 |
else |
|
| 262 |
member = WHITE; |
|
| 263 |
else |
|
| 264 |
if (fuzzyValue[GREY] > fuzzyValue[WHITE]) |
|
| 265 |
member = GREY; |
|
| 266 |
else |
|
| 267 |
member = WHITE; |
|
| 268 |
|
|
| 269 |
return member; |
|
| 270 |
} |
|
| 271 |
|
|
| 272 |
// Fuzzyfication of the sensor values |
|
| 273 |
void LineFollow::fuzzyfication(int sensorValue, float (&fuzziedValue)[3]) {
|
|
| 274 |
if (sensorValue < blackStartFalling ) {
|
|
| 275 |
// Only black value |
|
| 276 |
fuzziedValue[BLACK] = 1.0f; |
|
| 277 |
fuzziedValue[GREY] = 0.0f; |
|
| 278 |
fuzziedValue[WHITE] = 0.0f; |
|
| 279 |
} else if (sensorValue > whiteOn ) {
|
|
| 280 |
// Only white value |
|
| 281 |
fuzziedValue[BLACK] = 0.0f; |
|
| 282 |
fuzziedValue[GREY] = 0.0f; |
|
| 283 |
fuzziedValue[WHITE] = 1.0f; |
|
| 284 |
} else if ( sensorValue < greyMax) {
|
|
| 285 |
// Some greyisch value between black and grey |
|
| 286 |
|
|
| 287 |
// Black is going down |
|
| 288 |
if ( sensorValue > blackOff) {
|
|
| 289 |
fuzziedValue[BLACK] = 0.0f; |
|
| 290 |
} else {
|
|
| 291 |
fuzziedValue[BLACK] = static_cast<float>(sensorValue-blackOff) / (blackStartFalling-blackOff); |
|
| 292 |
} |
|
| 293 |
|
|
| 294 |
// Grey is going up |
|
| 295 |
if ( sensorValue < greyStartRising) {
|
|
| 296 |
fuzziedValue[GREY] = 0.0f; |
|
| 297 |
} else {
|
|
| 298 |
fuzziedValue[GREY] = static_cast<float>(sensorValue-greyStartRising) / (greyMax-greyStartRising); |
|
| 299 |
} |
|
| 300 |
|
|
| 301 |
// White is absent |
|
| 302 |
fuzziedValue[WHITE] = 0.0f; |
|
| 303 |
|
|
| 304 |
} else if ( sensorValue >= greyMax) {
|
|
| 305 |
// Some greyisch value between grey white |
|
| 306 |
|
|
| 307 |
// Black is absent |
|
| 308 |
fuzziedValue[BLACK] = 0.0f; |
|
| 309 |
|
|
| 310 |
// Grey is going down |
|
| 311 |
if ( sensorValue < greyOff) {
|
|
| 312 |
fuzziedValue[GREY] = static_cast<float>(sensorValue-greyOff) / (greyMax-greyOff); |
|
| 313 |
} else {
|
|
| 314 |
fuzziedValue[GREY] = 0.0f; |
|
| 315 |
} |
|
| 316 |
|
|
| 317 |
// White is going up |
|
| 318 |
if ( sensorValue < whiteStartRising) {
|
|
| 319 |
fuzziedValue[WHITE] = 0.0f; |
|
| 320 |
} else {
|
|
| 321 |
fuzziedValue[WHITE] = static_cast<float>(sensorValue-whiteStartRising) / (whiteOn-whiteStartRising); |
|
| 322 |
} |
|
| 323 |
} |
|
| 324 |
} |
|
| 325 |
|
|
| 326 |
void LineFollow::copyRpmSpeed(const int (&source)[2], int (&target)[2]) {
|
|
| 327 |
target[constants::DiWheelDrive::LEFT_WHEEL] = source[constants::DiWheelDrive::LEFT_WHEEL]; |
|
| 328 |
target[constants::DiWheelDrive::RIGHT_WHEEL] = source[constants::DiWheelDrive::RIGHT_WHEEL]; |
|
| 329 |
// chprintf((BaseSequentialStream*) &SD1, "Speed left: %d, Speed right: %d\r\n", target[0], target[1]); |
|
| 330 |
} |
|
| devices/DiWheelDrive/linefollow2.hpp | ||
|---|---|---|
| 6 | 6 |
#include <amiroosconf.h> |
| 7 | 7 |
|
| 8 | 8 |
namespace amiro {
|
| 9 |
enum class LineFollowStrategy{
|
|
| 10 |
EDGE_LEFT, |
|
| 11 |
EDGE_RIGHT, |
|
| 12 |
MIDDLE, |
|
| 13 |
FUZZY |
|
| 14 |
}; |
|
| 15 |
|
|
| 16 |
enum colorMember : uint8_t {
|
|
| 17 |
BLACK=0, |
|
| 18 |
GREY=1, |
|
| 19 |
WHITE=2 |
|
| 20 |
}; |
|
| 9 | 21 |
|
| 10 | 22 |
class LineFollow |
| 11 | 23 |
{
|
| 12 | 24 |
public: |
| 13 |
void printSensorData(); |
|
| 14 |
void stableFollow(int vcnl4020Proximity[4], int (&rpmFuzzyCtrl)[2], Global *global); |
|
| 15 |
float SetPoint = 0x4000; // (0x1800+0x2800) >> 8 |
|
| 16 |
float Kp = 0.001; |
|
| 17 |
float Ki = 0.00001; |
|
| 18 |
float Kd = 0.5; |
|
| 19 |
int accSum = 0; |
|
| 20 |
float oldError = 0; |
|
| 25 |
|
|
| 26 |
|
|
| 21 | 27 |
int biggestDiff = 0; |
| 22 | 28 |
Global *global; |
| 23 | 29 |
LineFollow(Global *global); |
| 30 |
LineFollow(Global *global, LineFollowStrategy strategy); |
|
| 24 | 31 |
// void calibrateZiegler(float KCrit, int rpmSpeed[2]); |
| 25 |
int followLeftEdge(int rpmSpeed[2]); |
|
| 26 |
int followRightEdge(int rpmSpeed[2]); |
|
| 32 |
int followLine(int (&rpmSpeed)[2]); |
|
| 33 |
// int followLeftEdge(int rpmSpeed[2]); |
|
| 34 |
// int followRightEdge(int rpmSpeed[2]); |
|
| 35 |
// int followMiddle(int rpmSpeed[2]); |
|
| 36 |
void setStrategy(LineFollowStrategy strategy); |
|
| 37 |
LineFollowStrategy getStrategy(); |
|
| 38 |
void setGains(float Kp, float Ki, float Kd); |
|
| 39 |
|
|
| 40 |
|
|
| 41 |
const int rpmTurnLeft[2] = {-10, 10};
|
|
| 42 |
const int rpmTurnRight[2] = {rpmTurnLeft[1],rpmTurnLeft[0]};
|
|
| 43 |
const int rpmHalt[2] = {0, 0};
|
|
| 44 |
// Definition of the fuzzyfication function |
|
| 45 |
// | Membership |
|
| 46 |
// 1|_B__ G __W__ |
|
| 47 |
// | \ /\ / |
|
| 48 |
// | \/ \/ |
|
| 49 |
// |_____/\__/\______ Sensor values |
|
| 50 |
// SEE MATLAB SCRIPT "fuzzyRule.m" for adjusting the values |
|
| 51 |
// All values are "raw sensor values" |
|
| 52 |
/* Use these values for white ground surface (e.g. paper) */ |
|
| 53 |
|
|
| 54 |
const int blackStartFalling = 0x1000; // Where the black curve starts falling |
|
| 55 |
const int blackOff = 0x1800; // Where no more black is detected |
|
| 56 |
const int whiteStartRising = 0x2800; // Where the white curve starts rising |
|
| 57 |
const int whiteOn = 0x6000; // Where the white curve has reached the maximum value |
|
| 58 |
const int greyMax = (whiteOn + blackStartFalling) / 2; // Where grey has its maximum |
|
| 59 |
const int greyStartRising = blackStartFalling; // Where grey starts rising |
|
| 60 |
const int greyOff = whiteOn; // Where grey is completely off again |
|
| 27 | 61 |
|
| 28 | 62 |
private: |
| 29 | 63 |
int delta(); |
| 30 | 64 |
int getError(); |
| 31 | 65 |
int getPidCorrectionSpeed(); |
| 66 |
void lineFollowing(int (&proximity)[4], int (&rpmFuzzyCtrl)[2]); |
|
| 67 |
// void defuzz(colorMember (&member)[4], int (&rpmFuzzyCtrl)[2]); |
|
| 68 |
Color memberToLed(colorMember member); |
|
| 69 |
void defuzzyfication(colorMember (&member)[4], int (&rpmFuzzyCtrl)[2]); |
|
| 70 |
colorMember getMember(float (&fuzzyValue)[3]); |
|
| 71 |
void fuzzyfication(int sensorValue, float (&fuzziedValue)[3]); |
|
| 72 |
void copyRpmSpeed(const int (&source)[2], int (&target)[2]); |
|
| 32 | 73 |
|
| 33 | 74 |
char whiteFlag = 0; |
| 34 |
|
|
| 35 |
|
|
| 75 |
LineFollowStrategy strategy = LineFollowStrategy::EDGE_RIGHT; |
|
| 76 |
float Kp = 0.003; |
|
| 77 |
float Ki = 0; |
|
| 78 |
float Kd = 0; |
|
| 79 |
int accumHist = 0; |
|
| 80 |
float oldError = 0; |
|
| 81 |
int vcnl4020AmbientLight[4] = {0};
|
|
| 82 |
int vcnl4020Proximity[4] = {0};
|
|
| 36 | 83 |
}; |
| 37 | 84 |
|
| 85 |
|
|
| 86 |
|
|
| 38 | 87 |
} // end of namespace amiro |
| 39 | 88 |
|
| 40 | 89 |
#endif // AMIRO_LINEFOLLOWING_H |
| devices/DiWheelDrive/main.cpp | ||
|---|---|---|
| 702 | 702 |
* |
| 703 | 703 |
* */ |
| 704 | 704 |
void calibrateLineSensores(BaseSequentialStream *chp, int argc, char *argv[]) {
|
| 705 |
int vcnl4020AmbientLight[4]; |
|
| 705 |
// int vcnl4020AmbientLight[4];
|
|
| 706 | 706 |
int vcnl4020Proximity[4]; |
| 707 | 707 |
int rounds = 1; |
| 708 | 708 |
int proxyL = 0; |
| ... | ... | |
| 725 | 725 |
|
| 726 | 726 |
for (int j = 0; j < rounds; j++) {
|
| 727 | 727 |
for (int i = 0; i < 4; i++) {
|
| 728 |
vcnl4020AmbientLight[i] = global.vcnl4020[i].getAmbientLight(); |
|
| 728 |
// vcnl4020AmbientLight[i] = global.vcnl4020[i].getAmbientLight();
|
|
| 729 | 729 |
vcnl4020Proximity[i] = global.vcnl4020[i].getProximityScaledWoOffset(); |
| 730 | 730 |
} |
| 731 | 731 |
global.robot.setLightColor(j % 8, Color(Color::BLACK)); |
| ... | ... | |
| 769 | 769 |
|
| 770 | 770 |
|
| 771 | 771 |
void proxySensorData(BaseSequentialStream *chp, int argc, char *argv[]) {
|
| 772 |
uint16_t vcnl4020AmbientLight[4]; |
|
| 772 |
// uint16_t vcnl4020AmbientLight[4];
|
|
| 773 | 773 |
uint16_t vcnl4020Proximity[4]; |
| 774 | 774 |
uint16_t rounds = 1; |
| 775 |
uint16_t proxyL = global.threshProxyL; |
|
| 776 |
uint16_t proxyR = global.threshProxyR; |
|
| 777 |
uint16_t maxDelta = 0; |
|
| 775 |
// uint16_t proxyL = global.threshProxyL;
|
|
| 776 |
// uint16_t proxyR = global.threshProxyR;
|
|
| 777 |
// uint16_t maxDelta = 0;
|
|
| 778 | 778 |
|
| 779 |
int sensorL = 0; |
|
| 780 |
int sensorR = 0; |
|
| 779 |
// int sensorL = 0;
|
|
| 780 |
// int sensorR = 0;
|
|
| 781 | 781 |
if (argc == 1){
|
| 782 | 782 |
chprintf(chp, "Test %i rounds \n", atoi(argv[0])); |
| 783 | 783 |
rounds = atoi(argv[0]); |
| ... | ... | |
| 787 | 787 |
|
| 788 | 788 |
for (int j = 0; j < rounds; j++) {
|
| 789 | 789 |
for (int i = 0; i < 4; i++) {
|
| 790 |
vcnl4020AmbientLight[i] = global.vcnl4020[i].getAmbientLight(); |
|
| 790 |
// vcnl4020AmbientLight[i] = global.vcnl4020[i].getAmbientLight();
|
|
| 791 | 791 |
vcnl4020Proximity[i] = global.vcnl4020[i].getProximityScaledWoOffset(); |
| 792 | 792 |
} |
| 793 | 793 |
|
| ... | ... | |
| 827 | 827 |
|
| 828 | 828 |
|
| 829 | 829 |
void zieglerMeth2(BaseSequentialStream *chp, int argc, char *argv[]) {
|
| 830 |
int vcnl4020AmbientLight[4]; |
|
| 831 |
int vcnl4020Proximity[4]; |
|
| 830 |
// int vcnl4020AmbientLight[4];
|
|
| 831 |
// int vcnl4020Proximity[4];
|
|
| 832 | 832 |
int rpmSpeed[2] = {0};
|
| 833 | 833 |
int steps = 0; |
| 834 |
int proxyL = global.threshProxyL; |
|
| 835 |
int proxyR = global.threshProxyR; |
|
| 834 |
// int proxyL = global.threshProxyL;
|
|
| 835 |
// int proxyR = global.threshProxyR;
|
|
| 836 | 836 |
int maxDelta = 0; |
| 837 | 837 |
float KCrit = 0.0f; |
| 838 | 838 |
global.sensSamples = 0; |
| ... | ... | |
| 865 | 865 |
// global.motorcontrol.setTargetRPM(rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] * 1000000, rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] * 1000000); |
| 866 | 866 |
int checkWhite = 0; |
| 867 | 867 |
int it_switch = steps / 2; |
| 868 |
// lf.setStrategie(LineFollowStrategie::MIDDLE); |
|
| 868 | 869 |
for(int s=0; s < steps; s++){
|
| 870 |
|
|
| 871 |
checkWhite = lf.followLine(rpmSpeed); |
|
| 869 | 872 |
// chprintf(chp,"S:%d,",s); |
| 870 |
if(global.threshWhite) |
|
| 871 |
if(s < it_switch){
|
|
| 872 |
|
|
| 873 |
checkWhite = lf.followRightEdge(rpmSpeed); |
|
| 874 |
}else{
|
|
| 875 |
checkWhite = lf.followLeftEdge(rpmSpeed); |
|
| 876 |
} |
|
| 873 |
// if(global.threshWhite) |
|
| 874 |
// if(s < it_switch){
|
|
| 875 |
// lf.setStrategie(LineFollowStrategie::EDGE_LEFT); |
|
| 876 |
// checkWhite = lf.followLine(rpmSpeed); |
|
| 877 |
// }else{
|
|
| 878 |
// lf.setStrategie(LineFollowStrategie::EDGE_RIGHT); |
|
| 879 |
// checkWhite = lf.followLine(rpmSpeed); |
|
| 880 |
// } |
|
| 877 | 881 |
if(checkWhite){
|
| 882 |
global.motorcontrol.setTargetRPM(0,0); |
|
| 878 | 883 |
for(led=0; led<8; led++){
|
| 879 | 884 |
global.robot.setLightColor(led, Color(Color::RED)); |
| 880 | 885 |
} |
| 881 |
global.motorcontrol.setTargetRPM(0,0); |
|
| 882 | 886 |
}else{
|
| 883 | 887 |
global.motorcontrol.setTargetRPM(rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] * 1000000, rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] * 1000000); |
| 884 | 888 |
} |
| ... | ... | |
| 891 | 895 |
} |
| 892 | 896 |
|
| 893 | 897 |
|
| 894 |
|
|
| 895 |
void recordMove(BaseSequentialStream *chp, int argc, char *argv[]){
|
|
| 896 |
// int vcnl4020AmbientLight[4]; |
|
| 897 |
int vcnl4020Proximity[4]; |
|
| 898 |
int rpmSpeed[2] = {0};
|
|
| 899 |
int steps = 0; |
|
| 898 |
void followLine(BaseSequentialStream *chp, int argc, char *argv[]){
|
|
| 899 |
int steps = 1000; |
|
| 900 | 900 |
int speed = 0; |
| 901 |
int strategy = 0; |
|
| 902 |
int led = 0; |
|
| 903 |
int checkWhite = 0; |
|
| 904 |
int rpmSpeed[2] = {0};
|
|
| 905 |
LineFollow lf(&global); |
|
| 901 | 906 |
if (argc == 1){
|
| 902 | 907 |
chprintf(chp, "%i steps \n", atoi(argv[0])); |
| 903 | 908 |
steps = atoi(argv[0]); |
| 904 |
speed = 30; |
|
| 905 |
}else if (argc == 2){
|
|
| 906 |
steps = atoi(argv[0]); |
|
| 907 |
speed = atoi(argv[1]); |
|
| 908 |
}else{
|
|
| 909 |
chprintf(chp, "No steps given!\n"); |
|
| 910 |
return; |
|
| 911 |
} |
|
| 912 |
global.sensSamples = steps; |
|
| 913 |
chprintf((BaseSequentialStream*)&global.sercanmux1, "Recodring starts in five seconds...\n"); |
|
| 914 |
BaseThread::sleep(MS2ST(5000)); |
|
| 915 |
// int sensSamples = 0; |
|
| 916 |
// sensorRecord senseRec[1000]; |
|
| 917 |
|
|
| 918 |
for (int j = 0; j < steps; j++) {
|
|
| 919 |
for (int i = 0; i < 4; i++) {
|
|
| 920 |
// vcnl4020AmbientLight[i] = global.vcnl4020[i].getAmbientLight(); |
|
| 921 |
vcnl4020Proximity[i] = global.vcnl4020[i].getProximityScaledWoOffset(); |
|
| 909 |
}else if (argc == 2){
|
|
| 910 |
steps = atoi(argv[0]); |
|
| 911 |
speed = atoi(argv[1]); |
|
| 912 |
}else if (argc == 3){
|
|
| 913 |
steps = atoi(argv[0]); |
|
| 914 |
speed = atoi(argv[1]); |
|
| 915 |
strategy = atoi(argv[2]); |
|
| 916 |
}else{
|
|
| 917 |
chprintf(chp, "Use: followLine <steps> <speed> <strategy>\n"); |
|
| 918 |
return; |
|
| 919 |
} |
|
| 920 |
global.forwardSpeed = speed; |
|
| 921 |
switch (strategy) |
|
| 922 |
{
|
|
| 923 |
case 0: |
|
| 924 |
lf.setStrategy(amiro::LineFollowStrategy::EDGE_RIGHT); |
|
| 925 |
break; |
|
| 926 |
case 1: |
|
| 927 |
lf.setStrategy(amiro::LineFollowStrategy::EDGE_LEFT); |
|
| 928 |
break; |
|
| 929 |
case 2: |
|
| 930 |
lf.setStrategy(amiro::LineFollowStrategy::FUZZY); |
|
| 931 |
break; |
|
| 932 |
default: |
|
| 933 |
break; |
|
| 922 | 934 |
} |
| 923 | 935 |
|
| 924 |
int FL = global.vcnl4020[constants::DiWheelDrive::PROX_FRONT_LEFT].getProximityScaledWoOffset(); |
|
| 925 |
int FR = global.vcnl4020[constants::DiWheelDrive::PROX_FRONT_RIGHT].getProximityScaledWoOffset(); |
|
| 926 |
|
|
| 927 | 936 |
|
| 928 |
global.senseRec[j].FL = FL; |
|
| 929 |
global.senseRec[j].FR = FR; |
|
| 930 |
// chprintf(chp,"FL: 0x%x, FR: 0x%x, Delta: %d, ProxyL: %x, ProxyR: %x, MaxDelta: %d\n", |
|
| 931 |
// vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_LEFT], |
|
| 932 |
// vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT], |
|
| 933 |
// vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_LEFT] - vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT]); |
|
| 934 |
global.motorcontrol.setTargetRPM(speed * 1000000, -speed * 1000000); |
|
| 935 |
BaseThread::sleep(CAN::UPDATE_PERIOD); |
|
| 937 |
for(int s=0; s < steps; s++){
|
|
| 938 |
|
|
| 939 |
checkWhite = lf.followLine(rpmSpeed); |
|
| 940 |
if(checkWhite){
|
|
| 941 |
global.motorcontrol.setTargetRPM(0,0); |
|
| 942 |
for(led=0; led<8; led++){
|
|
| 943 |
global.robot.setLightColor(led, Color(Color::RED)); |
|
| 944 |
} |
|
| 945 |
}else{
|
|
| 946 |
global.motorcontrol.setTargetRPM(rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] * 1000000, rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] * 1000000); |
|
| 947 |
} |
|
| 948 |
|
|
| 949 |
BaseThread::sleep(CAN::UPDATE_PERIOD); |
|
| 936 | 950 |
} |
| 951 |
|
|
| 937 | 952 |
global.motorcontrol.setTargetRPM(0,0); |
| 938 |
for(int k=0; k<8;k++){
|
|
| 939 |
global.robot.setLightColor(k, Color(Color::WHITE)); |
|
| 940 |
} |
|
| 941 |
BaseThread::sleep(MS2ST(1000)); |
|
| 942 |
for(int k=0; k<8;k++){
|
|
| 943 |
global.robot.setLightColor(k, Color(Color::BLACK)); |
|
| 944 |
} |
|
| 945 | 953 |
} |
| 946 | 954 |
|
| 955 |
|
|
| 947 | 956 |
void printMove(BaseSequentialStream *chp, int argc, char *argv[]){
|
| 948 | 957 |
|
| 949 | 958 |
for (int j=0; j<global.sensSamples;j++){
|
| ... | ... | |
| 985 | 994 |
{"dev_ziegler2", zieglerMeth2},
|
| 986 | 995 |
// TODO: Stop user process from execution to finish/force calibration before anything starts |
| 987 | 996 |
{"calibrate_line", calibrateLineSensores},
|
| 988 |
{"record_move_l", recordMove},
|
|
| 997 |
// {"record_move", recordMove},
|
|
| 989 | 998 |
{"print_record", printMove},
|
| 990 | 999 |
{"setRecord", setRecord},
|
| 1000 |
{"followLine", followLine},
|
|
| 991 | 1001 |
{NULL, NULL}
|
| 992 | 1002 |
}; |
| 993 | 1003 |
|
| devices/DiWheelDrive/userthread.cpp | ||
|---|---|---|
| 42 | 42 |
// BLACK is the line itselfe |
| 43 | 43 |
// GREY is the boarder between the line and the surface |
| 44 | 44 |
// WHITE is the common surface |
| 45 |
enum colorMember : uint8_t {
|
|
| 46 |
BLACK=0, |
|
| 47 |
GREY=1, |
|
| 48 |
WHITE=2 |
|
| 49 |
}; |
|
| 45 |
// enum colorMember : uint8_t {
|
|
| 46 |
// BLACK=0,
|
|
| 47 |
// GREY=1,
|
|
| 48 |
// WHITE=2
|
|
| 49 |
// };
|
|
| 50 | 50 |
|
| 51 | 51 |
// a buffer for the z-value of the accelerometer |
| 52 | 52 |
int16_t accel_z; |
| ... | ... | |
| 57 | 57 |
int policyCounter = 0; // Do not change this, it points to the beginning of the policy |
| 58 | 58 |
|
| 59 | 59 |
// Different speed settings (all values in "rounds per minute") |
| 60 |
const int rpmTurnLeft[2] = {-10, 10};
|
|
| 61 |
const int rpmTurnRight[2] = {rpmTurnLeft[1],rpmTurnLeft[0]};
|
|
| 62 |
const int rpmHalt[2] = {0, 0};
|
|
| 60 |
// const int rpmTurnLeft[2] = {-10, 10};
|
|
| 61 |
// const int rpmTurnRight[2] = {rpmTurnLeft[1],rpmTurnLeft[0]};
|
|
| 62 |
// const int rpmHalt[2] = {0, 0};
|
|
| 63 | 63 |
|
| 64 | 64 |
// Definition of the fuzzyfication function |
| 65 | 65 |
// | Membership |
| ... | ... | |
| 71 | 71 |
// All values are "raw sensor values" |
| 72 | 72 |
/* Use these values for white ground surface (e.g. paper) */ |
| 73 | 73 |
|
| 74 |
const int blackStartFalling = 0x1000; // Where the black curve starts falling |
|
| 75 |
const int blackOff = 0x1800; // Where no more black is detected |
|
| 76 |
const int whiteStartRising = 0x2800; // Where the white curve starts rising |
|
| 77 |
const int whiteOn = 0x6000; // Where the white curve has reached the maximum value |
|
| 78 |
const int greyMax = (whiteOn + blackStartFalling) / 2; // Where grey has its maximum |
|
| 79 |
const int greyStartRising = blackStartFalling; // Where grey starts rising |
|
| 80 |
const int greyOff = whiteOn; // Where grey is completely off again |
|
| 74 |
// const int blackStartFalling = 0x1000; // Where the black curve starts falling
|
|
| 75 |
// const int blackOff = 0x1800; // Where no more black is detected
|
|
| 76 |
// const int whiteStartRising = 0x2800; // Where the white curve starts rising
|
|
| 77 |
// const int whiteOn = 0x6000; // Where the white curve has reached the maximum value
|
|
| 78 |
// const int greyMax = (whiteOn + blackStartFalling) / 2; // Where grey has its maximum
|
|
| 79 |
// const int greyStartRising = blackStartFalling; // Where grey starts rising
|
|
| 80 |
// const int greyOff = whiteOn; // Where grey is completely off again
|
|
| 81 | 81 |
|
| 82 | 82 |
/* Use these values for gray ground surfaces */ |
| 83 | 83 |
/* |
| ... | ... | |
| 111 | 111 |
// chprintf((BaseSequentialStream*) &SD1, "Speed left: %d, Speed right: %d\r\n", target[0], target[1]); |
| 112 | 112 |
} |
| 113 | 113 |
|
| 114 |
// Fuzzyfication of the sensor values |
|
| 115 |
void fuzzyfication(int sensorValue, float (&fuzziedValue)[3]) {
|
|
| 116 |
if (sensorValue < blackStartFalling ) {
|
|
| 117 |
// Only black value |
|
| 118 |
fuzziedValue[BLACK] = 1.0f; |
|
| 119 |
fuzziedValue[GREY] = 0.0f; |
|
| 120 |
fuzziedValue[WHITE] = 0.0f; |
|
| 121 |
} else if (sensorValue > whiteOn ) {
|
|
| 122 |
// Only white value |
|
| 123 |
fuzziedValue[BLACK] = 0.0f; |
|
| 124 |
fuzziedValue[GREY] = 0.0f; |
|
| 125 |
fuzziedValue[WHITE] = 1.0f; |
|
| 126 |
} else if ( sensorValue < greyMax) {
|
|
| 127 |
// Some greyisch value between black and grey |
|
| 128 |
|
|
| 129 |
// Black is going down |
|
| 130 |
if ( sensorValue > blackOff) {
|
|
| 131 |
fuzziedValue[BLACK] = 0.0f; |
|
| 132 |
} else {
|
|
| 133 |
fuzziedValue[BLACK] = static_cast<float>(sensorValue-blackOff) / (blackStartFalling-blackOff); |
|
| 134 |
} |
|
| 135 |
|
|
| 136 |
// Grey is going up |
|
| 137 |
if ( sensorValue < greyStartRising) {
|
|
| 138 |
fuzziedValue[GREY] = 0.0f; |
|
| 139 |
} else {
|
|
| 140 |
fuzziedValue[GREY] = static_cast<float>(sensorValue-greyStartRising) / (greyMax-greyStartRising); |
|
| 141 |
} |
|
| 142 |
|
|
| 143 |
// White is absent |
|
| 144 |
fuzziedValue[WHITE] = 0.0f; |
|
| 145 |
|
|
| 146 |
} else if ( sensorValue >= greyMax) {
|
|
| 147 |
// Some greyisch value between grey white |
|
| 148 |
|
|
| 149 |
// Black is absent |
|
| 150 |
fuzziedValue[BLACK] = 0.0f; |
|
| 151 |
|
|
| 152 |
// Grey is going down |
|
| 153 |
if ( sensorValue < greyOff) {
|
|
| 154 |
fuzziedValue[GREY] = static_cast<float>(sensorValue-greyOff) / (greyMax-greyOff); |
|
| 155 |
} else {
|
|
| 156 |
fuzziedValue[GREY] = 0.0f; |
|
| 157 |
} |
|
| 158 |
|
|
| 159 |
// White is going up |
|
| 160 |
if ( sensorValue < whiteStartRising) {
|
|
| 161 |
fuzziedValue[WHITE] = 0.0f; |
|
| 162 |
} else {
|
|
| 163 |
fuzziedValue[WHITE] = static_cast<float>(sensorValue-whiteStartRising) / (whiteOn-whiteStartRising); |
|
| 164 |
} |
|
| 165 |
} |
|
| 166 |
} |
|
| 167 |
|
|
| 168 |
// Return the color, which has the highest fuzzy value |
|
| 169 |
colorMember getMember(float (&fuzzyValue)[3]) {
|
|
| 170 |
colorMember member; |
|
| 171 |
|
|
| 172 |
if (fuzzyValue[BLACK] > fuzzyValue[GREY]) |
|
| 173 |
if (fuzzyValue[BLACK] > fuzzyValue[WHITE]) |
|
| 174 |
member = BLACK; |
|
| 175 |
else |
|
| 176 |
member = WHITE; |
|
| 177 |
else |
|
| 178 |
if (fuzzyValue[GREY] > fuzzyValue[WHITE]) |
|
| 179 |
member = GREY; |
|
| 180 |
else |
|
| 181 |
member = WHITE; |
|
| 182 |
|
|
| 183 |
return member; |
|
| 184 |
} |
|
| 185 |
|
|
| 186 |
// Get a crisp output for the steering commands |
|
| 187 |
void defuzzyfication(colorMember (&member)[4], int (&rpmFuzzyCtrl)[2]) {
|
|
| 188 |
|
|
| 189 |
// all sensors are equal |
|
| 190 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_LEFT] && |
|
| 191 |
member[constants::DiWheelDrive::PROX_FRONT_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_RIGHT] && |
|
| 192 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == member[constants::DiWheelDrive::PROX_WHEEL_RIGHT]) {
|
|
| 193 |
// something is wrong -> stop |
|
| 194 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
|
| 195 |
// both front sensor detect a line |
|
| 196 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK && |
|
| 197 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK) {
|
|
| 198 |
// straight |
|
| 199 |
copyRpmSpeed(global.rpmForward, rpmFuzzyCtrl); |
|
| 200 |
// exact one front sensor detects a line |
|
| 201 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK || |
|
| 202 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK) {
|
|
| 203 |
// soft correction |
|
| 204 |
if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY) {
|
|
| 205 |
// soft right |
|
| 206 |
copyRpmSpeed(global.rpmSoftRight, rpmFuzzyCtrl); |
|
| 207 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == WHITE) {
|
|
| 208 |
// hard right |
|
| 209 |
copyRpmSpeed(global.rpmHardRight, rpmFuzzyCtrl); |
|
| 210 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) {
|
|
| 211 |
// soft left |
|
| 212 |
copyRpmSpeed(global.rpmSoftLeft, rpmFuzzyCtrl); |
|
| 213 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == WHITE) {
|
|
| 214 |
// hard left |
|
| 215 |
copyRpmSpeed(global.rpmHardLeft, rpmFuzzyCtrl); |
|
| 216 |
} |
|
| 217 |
// both wheel sensors detect a line |
|
| 218 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK && |
|
| 219 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) {
|
|
| 220 |
// something is wrong -> stop |
|
| 221 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
|
| 222 |
// exactly one wheel sensor detects a line |
|
| 223 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK || |
|
| 224 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) {
|
|
| 225 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK) {
|
|
| 226 |
// turn left |
|
| 227 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
|
| 228 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) {
|
|
| 229 |
// turn right |
|
| 230 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
|
| 231 |
} |
|
| 232 |
// both front sensors may detect a line |
|
| 233 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY && |
|
| 234 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) {
|
|
| 235 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY) {
|
|
| 236 |
// turn left |
|
| 237 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
|
| 238 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) {
|
|
| 239 |
// turn right |
|
| 240 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
|
| 241 |
} |
|
| 242 |
// exactly one front sensor may detect a line |
|
| 243 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY || |
|
| 244 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) {
|
|
| 245 |
if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY) {
|
|
| 246 |
// turn left |
|
| 247 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
|
| 248 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) {
|
|
| 249 |
// turn right |
|
| 250 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
|
| 251 |
} |
|
| 252 |
// both wheel sensors may detect a line |
|
| 253 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY && |
|
| 254 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) {
|
|
| 255 |
// something is wrong -> stop |
|
| 256 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
|
| 257 |
// exactly one wheel sensor may detect a line |
|
| 258 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY || |
|
| 259 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) {
|
|
| 260 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY) {
|
|
| 261 |
// turn left |
|
| 262 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
|
| 263 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) {
|
|
| 264 |
// turn right |
|
| 265 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
|
| 266 |
} |
|
| 267 |
// no sensor detects anything |
|
| 268 |
} else {
|
|
| 269 |
// line is lost -> stop |
|
| 270 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
|
| 271 |
} |
|
| 272 |
|
|
| 273 |
return; |
|
| 274 |
} |
|
| 275 |
|
|
| 276 |
Color memberToLed(colorMember member) {
|
|
| 277 |
switch (member) {
|
|
| 278 |
case BLACK: |
|
| 279 |
return Color(Color::GREEN); |
|
| 280 |
case GREY: |
|
| 281 |
return Color(Color::YELLOW); |
|
| 282 |
case WHITE: |
|
| 283 |
return Color(Color::RED); |
|
| 284 |
default: |
|
| 285 |
return Color(Color::WHITE); |
|
| 286 |
} |
|
| 287 |
} |
|
| 288 |
|
|
| 289 |
//void lineFollowing_new(xyz) {}
|
|
| 290 |
|
|
| 291 |
void defuzz(colorMember (&member)[4], int (&rpmFuzzyCtrl)[2]){
|
|
| 292 |
// all sensors are equal |
|
| 293 |
// if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_LEFT] && |
|
| 294 |
// member[constants::DiWheelDrive::PROX_FRONT_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_RIGHT] && |
|
| 295 |
// member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == member[constants::DiWheelDrive::PROX_WHEEL_RIGHT]) {
|
|
| 296 |
// // something is wrong -> stop |
|
| 297 |
// copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
|
| 298 |
// // both front sensor detect a line |
|
| 299 |
if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK && |
|
| 300 |
(member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY)) {
|
|
| 301 |
// straight |
|
| 302 |
copyRpmSpeed(global.rpmForward, rpmFuzzyCtrl); |
|
| 303 |
// Deviation to right |
|
| 304 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK |
|
| 305 |
&& member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == WHITE){
|
|
| 306 |
copyRpmSpeed(global.rpmSoftLeft, rpmFuzzyCtrl); |
|
| 307 |
// Deviation to left |
|
| 308 |
}else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK |
|
| 309 |
&& member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK){
|
|
| 310 |
copyRpmSpeed(global.rpmSoftRight, rpmFuzzyCtrl); |
|
| 311 |
// Hard deviatio to right |
|
| 312 |
}else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY |
|
| 313 |
&& member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == WHITE){
|
|
| 314 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
|
| 315 |
// Hard deviation to left |
|
| 316 |
}else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY |
|
| 317 |
&& member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK){
|
|
| 318 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
|
| 319 |
// stop if white |
|
| 320 |
}else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == WHITE |
|
| 321 |
&& member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == WHITE ){
|
|
| 322 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
|
| 323 |
} |
|
| 324 |
} |
|
| 325 |
|
|
| 326 |
// Line following by a fuzzy controler |
|
| 327 |
void lineFollowing(int (&proximity)[4], int (&rpmFuzzyCtrl)[2]) {
|
|
| 328 |
// FUZZYFICATION |
|
| 329 |
// First we need to get the fuzzy value for our 3 values {BLACK, GREY, WHITE}
|
|
| 330 |
float leftWheelFuzzyMemberValues[3], leftFrontFuzzyMemberValues[3], rightFrontFuzzyMemberValues[3], rightWheelFuzzyMemberValues[3]; |
|
| 331 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_WHEEL_LEFT], leftWheelFuzzyMemberValues); |
|
| 332 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_FRONT_LEFT], leftFrontFuzzyMemberValues); |
|
| 333 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT], rightFrontFuzzyMemberValues); |
|
| 334 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_WHEEL_RIGHT], rightWheelFuzzyMemberValues); |
|
| 335 |
|
|
| 336 |
// INFERENCE RULE DEFINITION |
|
| 337 |
// Get the member for each sensor |
|
| 338 |
colorMember member[4]; |
|
| 339 |
member[constants::DiWheelDrive::PROX_WHEEL_LEFT] = getMember(leftWheelFuzzyMemberValues); |
|
| 340 |
member[constants::DiWheelDrive::PROX_FRONT_LEFT] = getMember(leftFrontFuzzyMemberValues); |
|
| 341 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] = getMember(rightFrontFuzzyMemberValues); |
|
| 342 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] = getMember(rightWheelFuzzyMemberValues); |
|
| 343 |
|
|
| 344 |
// visualize sensors via LEDs |
|
| 345 |
global.robot.setLightColor(constants::LightRing::LED_WNW, memberToLed(member[constants::DiWheelDrive::PROX_WHEEL_LEFT])); |
|
| 346 |
global.robot.setLightColor(constants::LightRing::LED_NNW, memberToLed(member[constants::DiWheelDrive::PROX_FRONT_LEFT])); |
|
| 347 |
global.robot.setLightColor(constants::LightRing::LED_NNE, memberToLed(member[constants::DiWheelDrive::PROX_FRONT_RIGHT])); |
|
| 348 |
global.robot.setLightColor(constants::LightRing::LED_ENE, memberToLed(member[constants::DiWheelDrive::PROX_WHEEL_RIGHT])); |
|
| 349 |
|
|
| 350 |
// chprintf((BaseSequentialStream*) &SD1, "Left: BLACK: %f, GREY: %f, WHITE: %f\r\n", leftWheelFuzzyMemberValues[BLACK], leftWheelFuzzyMemberValues[GREY], leftWheelFuzzyMemberValues[WHITE]); |
|
| 351 |
// chprintf((BaseSequentialStream*) &SD1, "Right: BLACK: %f, GREY: %f, WHITE: %f\r\n", rightFuzzyMemberValues[BLACK], rightFuzzyMemberValues[GREY], rightFuzzyMemberValues[WHITE]); |
|
| 352 |
|
|
| 353 |
// DEFUZZYFICATION |
|
| 354 |
// defuzzyfication(member, rpmFuzzyCtrl); |
|
| 355 |
defuzz(member, rpmFuzzyCtrl); |
|
| 356 |
} |
|
| 357 |
|
|
| 358 |
|
|
| 359 |
|
|
| 360 | 114 |
|
| 361 | 115 |
// Set the speed by the array |
| 362 | 116 |
void setRpmSpeed(const int (&rpmSpeed)[2]) {
|
| ... | ... | |
| 452 | 206 |
vcnl4020AmbientLight[i] = global.vcnl4020[i].getAmbientLight(); |
| 453 | 207 |
vcnl4020Proximity[i] = global.vcnl4020[i].getProximityScaledWoOffset(); |
| 454 | 208 |
} |
| 455 |
lf.stableFollow(vcnl4020Proximity, rpmFuzzyCtrl, &global); |
|
| 209 |
// lf.stableFollow(vcnl4020Proximity, rpmFuzzyCtrl, &global);
|
|
| 456 | 210 |
// chprintf((BaseSequentialStream*) &SD1, "0x%04X 0x%04X 0x%04X 0x%04X\n", |
| 457 | 211 |
// vcnl4020Proximity[constants::DiWheelDrive::PROX_WHEEL_LEFT], |
| 458 | 212 |
// vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_LEFT], |
Also available in: Unified diff