Revision 1b3adcdd devices/DiWheelDrive/linefollow2.cpp
devices/DiWheelDrive/linefollow2.cpp | ||
---|---|---|
2 | 2 |
#include "linefollow2.hpp" |
3 | 3 |
#include <cmath> |
4 | 4 |
|
5 |
// Trash |
|
6 |
void LineFollow::printSensorData(){ |
|
7 |
chprintf((BaseSequentialStream*) &SD1, "Test!"); |
|
8 |
} |
|
9 | 5 |
|
10 | 6 |
|
11 | 7 |
LineFollow::LineFollow(Global *global){ |
12 | 8 |
this->global = global; |
13 | 9 |
} |
14 |
|
|
15 |
// trash |
|
16 |
int LineFollow::delta(){ |
|
17 |
int delta = 0; |
|
18 |
int FL = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_LEFT].getProximityScaledWoOffset(); |
|
19 |
int FR = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_RIGHT].getProximityScaledWoOffset(); |
|
20 |
|
|
21 |
delta = abs(abs(global->threshProxyL-global->threshProxyR) - abs(FL-FR)); |
|
22 |
|
|
23 |
if (FR > global->threshProxyR && FL > global->threshProxyL ){ |
|
24 |
return delta ; |
|
25 |
}else { |
|
26 |
return delta* -1; |
|
27 |
} |
|
28 |
return delta; |
|
29 |
} |
|
30 |
|
|
31 |
// old and trash |
|
32 |
void LineFollow::stableFollow(int vcnl4020Proximity[4], int (&rpmFuzzyCtrl)[2], Global *global){ |
|
33 |
int targetSensor = 0x38; |
|
34 |
int actualSensorL = vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_LEFT] ; |
|
35 |
int actualSensorR = vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT] ; |
|
36 |
int targetSpeedL = global->rpmForward[constants::DiWheelDrive::LEFT_WHEEL]; |
|
37 |
int targetSpeedR = global->rpmForward[constants::DiWheelDrive::RIGHT_WHEEL]; |
|
38 |
|
|
39 |
|
|
40 |
int diff = actualSensorR - actualSensorL; |
|
41 |
int error = targetSensor - (actualSensorL + actualSensorR); |
|
42 |
|
|
43 |
accSum += error; |
|
44 |
int dTerm = error - oldError; |
|
45 |
|
|
46 |
if (diff > biggestDiff){ |
|
47 |
biggestDiff = diff; |
|
48 |
} |
|
49 |
int correctionSpeed = (int) (Kp * error + Ki * accSum + Kd * dTerm); |
|
50 |
chprintf((BaseSequentialStream*) &SD1, "Correction Speed: %d\n", correctionSpeed); |
|
51 |
rpmFuzzyCtrl[constants::DiWheelDrive::LEFT_WHEEL] = targetSpeedL + correctionSpeed; |
|
52 |
rpmFuzzyCtrl[constants::DiWheelDrive::RIGHT_WHEEL] = targetSpeedR - correctionSpeed; |
|
53 |
|
|
54 |
chprintf((BaseSequentialStream*) &SD1, "Diff: %d, Biggest: %d\n", correctionSpeed, biggestDiff); |
|
55 |
|
|
10 |
LineFollow::LineFollow(Global *global, LineFollowStrategy strategy){ |
|
11 |
this->global = global; |
|
12 |
this-> strategy = strategy; |
|
56 | 13 |
} |
57 | 14 |
|
58 | 15 |
/** |
59 | 16 |
* Calculate the error from front proxi sensors and fixed threshold values for those sensors. |
60 | 17 |
*/ |
61 | 18 |
int LineFollow::getError(){ |
62 |
|
|
19 |
// Get actual sensor data of both front sensors |
|
63 | 20 |
int FL = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_LEFT].getProximityScaledWoOffset(); |
64 | 21 |
int FR = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_RIGHT].getProximityScaledWoOffset(); |
65 | 22 |
int targetL = global->threshProxyL; |
66 | 23 |
int targetR = global->threshProxyR; |
67 |
int error = FL -targetL + FR - targetR; |
|
68 |
|
|
24 |
int error = 0; |
|
25 |
switch (this->strategy) |
|
26 |
{ |
|
27 |
case LineFollowStrategy::EDGE_RIGHT: |
|
28 |
error = -(FL -targetL + FR - targetR); |
|
29 |
break; |
|
30 |
case LineFollowStrategy::EDGE_LEFT: |
|
31 |
error = (FL -targetL + FR - targetR); |
|
32 |
break; |
|
33 |
case LineFollowStrategy::MIDDLE: |
|
34 |
// Assume that the smallest value means driving in the middle |
|
35 |
targetL = targetR = !(targetL<targetR)?targetR:targetL; |
|
36 |
error = (FL -targetL + FR - targetR); |
|
37 |
break; |
|
38 |
|
|
39 |
default: |
|
40 |
break; |
|
41 |
} |
|
42 |
// Debugging stuff ------ |
|
43 |
if (global->enableRecord){ |
|
44 |
global->senseRec[global->sensSamples].error = error; |
|
45 |
global->senseRec[global->sensSamples].FL = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_LEFT].getProximityScaledWoOffset(); |
|
46 |
global->senseRec[global->sensSamples].FR = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_RIGHT].getProximityScaledWoOffset(); |
|
47 |
global->sensSamples++; |
|
48 |
} |
|
49 |
// ---------------------- |
|
50 |
// Register white values |
|
69 | 51 |
if (FL+FR > global->threshWhite){ |
70 | 52 |
whiteFlag = 1; |
71 | 53 |
}else{ |
... | ... | |
74 | 56 |
return error; |
75 | 57 |
} |
76 | 58 |
|
77 |
/** |
|
78 |
* Follow strategy for left edge. |
|
79 |
*/ |
|
80 |
int LineFollow::followLeftEdge(int rpmSpeed[2]){ |
|
81 |
|
|
82 |
int correctionSpeed = getPidCorrectionSpeed(); |
|
83 |
chprintf((BaseSequentialStream*) &SD1, "Correction: %d, thresh: %d\n",correctionSpeed, global->threshWhite); |
|
59 |
int LineFollow::followLine(int (&rpmSpeed)[2]){ |
|
84 | 60 |
|
85 |
rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] = global->forwardSpeed + correctionSpeed; |
|
86 |
|
|
87 |
rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] = global->forwardSpeed - correctionSpeed; |
|
88 |
return whiteFlag; |
|
89 |
} |
|
90 |
|
|
91 |
/** |
|
92 |
* Follow strategy for right edge. |
|
93 |
*/ |
|
94 |
int LineFollow::followRightEdge(int rpmSpeed[2]){ |
|
61 |
switch (this->strategy) |
|
62 |
{ |
|
63 |
case LineFollowStrategy::FUZZY: |
|
64 |
for (int i = 0; i < 4; i++) { |
|
65 |
vcnl4020AmbientLight[i] = global->vcnl4020[i].getAmbientLight(); |
|
66 |
vcnl4020Proximity[i] = global->vcnl4020[i].getProximityScaledWoOffset(); |
|
67 |
} |
|
95 | 68 |
|
96 |
int correctionSpeed = getPidCorrectionSpeed(); |
|
97 |
chprintf((BaseSequentialStream*) &SD1, "Correction: %d, thresh: %d\n",correctionSpeed, global->threshWhite); |
|
69 |
lineFollowing(vcnl4020Proximity, rpmSpeed); |
|
70 |
break; |
|
71 |
|
|
72 |
default: |
|
73 |
int correctionSpeed = getPidCorrectionSpeed(); |
|
74 |
// chprintf((BaseSequentialStream*) &SD1, "Correction: %d, thresh: %d\n",correctionSpeed, global->threshWhite); |
|
98 | 75 |
|
99 |
rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] = global->forwardSpeed - correctionSpeed;
|
|
76 |
rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] = global->forwardSpeed + correctionSpeed;
|
|
100 | 77 |
|
101 |
rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] = global->forwardSpeed + correctionSpeed; |
|
102 |
return whiteFlag; |
|
78 |
rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] = global->forwardSpeed - correctionSpeed; |
|
79 |
return whiteFlag; |
|
80 |
break; |
|
81 |
} |
|
103 | 82 |
} |
104 | 83 |
|
84 |
|
|
105 | 85 |
/** |
106 | 86 |
* Pid controller which returns a corrections speed. |
107 | 87 |
*/ |
108 | 88 |
int LineFollow::getPidCorrectionSpeed(){ |
109 | 89 |
int error = getError(); |
110 |
int sloap = error - global->oldError;
|
|
111 |
int correctionSpeed = (int) (global->K_p*error + global->K_i*global->accumHist + global->K_d*sloap);
|
|
112 |
global->oldError = error;
|
|
113 |
global->accumHist += error;
|
|
90 |
int sloap = error - oldError; |
|
91 |
int correctionSpeed = (int) (Kp*error + Ki*accumHist + Kd*sloap);
|
|
92 |
oldError = error; |
|
93 |
// accumHist += (int) (0.01 * error);
|
|
114 | 94 |
if (abs(error) > global->maxDist.error){ |
115 | 95 |
global->maxDist.error = error; |
116 | 96 |
} |
117 | 97 |
return correctionSpeed; |
118 | 98 |
} |
119 | 99 |
|
120 |
// trash |
|
121 |
// void LineFollow::calibrateZiegler(float KCrit, int rpmSpeed[2]){ |
|
122 |
// int targetSpeedL = 5; |
|
123 |
// int targetSpeedR = 5; |
|
124 |
// int delta_ = error(); |
|
125 |
// int correctionSpeed = (int) (KCrit * delta_); |
|
126 |
// if (global->enableRecord){ |
|
127 |
// global->senseRec[global->sensSamples].error = delta_; |
|
128 |
// global->senseRec[global->sensSamples].FL = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_LEFT].getProximityScaledWoOffset(); |
|
129 |
// global->senseRec[global->sensSamples].FR = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_RIGHT].getProximityScaledWoOffset(); |
|
130 |
// global->sensSamples++; |
|
131 |
// } |
|
132 |
// if (abs(delta_) > global->maxDist.error){ |
|
133 |
// global->maxDist.error = delta_; |
|
134 |
// } |
|
135 |
|
|
136 |
// rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] = global->forwardSpeed + -1*correctionSpeed; |
|
137 |
// rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] = global->forwardSpeed + correctionSpeed; |
|
138 |
// chprintf((BaseSequentialStream*) &SD1, "CS:%d,LW:%d,RW:%d\n", correctionSpeed, rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL], rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL]); |
|
139 |
// } |
|
100 |
|
|
101 |
void LineFollow::setStrategy(LineFollowStrategy strategy){ |
|
102 |
this->strategy = strategy; |
|
103 |
} |
|
104 |
|
|
105 |
LineFollowStrategy LineFollow::getStrategy(){ |
|
106 |
return this->strategy; |
|
107 |
} |
|
108 |
void LineFollow::setGains(float Kp, float Ki, float Kd){ |
|
109 |
this->Kp = Kp; |
|
110 |
this->Ki = Ki; |
|
111 |
this->Kd = Kd; |
|
112 |
} |
|
113 |
|
|
114 |
|
|
115 |
|
|
116 |
|
|
117 |
|
|
118 |
// Lagacy code, fuzzy following----------------------------------------- |
|
119 |
// Line following by a fuzzy controler |
|
120 |
void LineFollow::lineFollowing(int (&proximity)[4], int (&rpmFuzzyCtrl)[2]) { |
|
121 |
// FUZZYFICATION |
|
122 |
// First we need to get the fuzzy value for our 3 values {BLACK, GREY, WHITE} |
|
123 |
float leftWheelFuzzyMemberValues[3], leftFrontFuzzyMemberValues[3], rightFrontFuzzyMemberValues[3], rightWheelFuzzyMemberValues[3]; |
|
124 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_WHEEL_LEFT], leftWheelFuzzyMemberValues); |
|
125 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_FRONT_LEFT], leftFrontFuzzyMemberValues); |
|
126 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT], rightFrontFuzzyMemberValues); |
|
127 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_WHEEL_RIGHT], rightWheelFuzzyMemberValues); |
|
128 |
|
|
129 |
// INFERENCE RULE DEFINITION |
|
130 |
// Get the member for each sensor |
|
131 |
colorMember member[4]; |
|
132 |
member[constants::DiWheelDrive::PROX_WHEEL_LEFT] = getMember(leftWheelFuzzyMemberValues); |
|
133 |
member[constants::DiWheelDrive::PROX_FRONT_LEFT] = getMember(leftFrontFuzzyMemberValues); |
|
134 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] = getMember(rightFrontFuzzyMemberValues); |
|
135 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] = getMember(rightWheelFuzzyMemberValues); |
|
136 |
|
|
137 |
// visualize sensors via LEDs |
|
138 |
global->robot.setLightColor(constants::LightRing::LED_WNW, memberToLed(member[constants::DiWheelDrive::PROX_WHEEL_LEFT])); |
|
139 |
global->robot.setLightColor(constants::LightRing::LED_NNW, memberToLed(member[constants::DiWheelDrive::PROX_FRONT_LEFT])); |
|
140 |
global->robot.setLightColor(constants::LightRing::LED_NNE, memberToLed(member[constants::DiWheelDrive::PROX_FRONT_RIGHT])); |
|
141 |
global->robot.setLightColor(constants::LightRing::LED_ENE, memberToLed(member[constants::DiWheelDrive::PROX_WHEEL_RIGHT])); |
|
142 |
|
|
143 |
// chprintf((BaseSequentialStream*) &SD1, "Left: BLACK: %f, GREY: %f, WHITE: %f\r\n", leftWheelFuzzyMemberValues[BLACK], leftWheelFuzzyMemberValues[GREY], leftWheelFuzzyMemberValues[WHITE]); |
|
144 |
// chprintf((BaseSequentialStream*) &SD1, "Right: BLACK: %f, GREY: %f, WHITE: %f\r\n", rightFuzzyMemberValues[BLACK], rightFuzzyMemberValues[GREY], rightFuzzyMemberValues[WHITE]); |
|
145 |
|
|
146 |
// DEFUZZYFICATION |
|
147 |
defuzzyfication(member, rpmFuzzyCtrl); |
|
148 |
// defuzz(member, rpmFuzzyCtrl); |
|
149 |
} |
|
150 |
|
|
151 |
|
|
152 |
Color LineFollow::memberToLed(colorMember member) { |
|
153 |
switch (member) { |
|
154 |
case BLACK: |
|
155 |
return Color(Color::GREEN); |
|
156 |
case GREY: |
|
157 |
return Color(Color::YELLOW); |
|
158 |
case WHITE: |
|
159 |
return Color(Color::RED); |
|
160 |
default: |
|
161 |
return Color(Color::WHITE); |
|
162 |
} |
|
163 |
} |
|
164 |
|
|
165 |
void LineFollow::defuzzyfication(colorMember (&member)[4], int (&rpmFuzzyCtrl)[2]) { |
|
166 |
whiteFlag = 0; |
|
167 |
// all sensors are equal |
|
168 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_LEFT] && |
|
169 |
member[constants::DiWheelDrive::PROX_FRONT_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_RIGHT] && |
|
170 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == member[constants::DiWheelDrive::PROX_WHEEL_RIGHT]) { |
|
171 |
// something is wrong -> stop |
|
172 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
|
173 |
// both front sensor detect a line |
|
174 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK && |
|
175 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK) { |
|
176 |
// straight |
|
177 |
copyRpmSpeed(global->rpmForward, rpmFuzzyCtrl); |
|
178 |
// exact one front sensor detects a line |
|
179 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK || |
|
180 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK) { |
|
181 |
// soft correction |
|
182 |
if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY) { |
|
183 |
// soft right |
|
184 |
copyRpmSpeed(global->rpmSoftRight, rpmFuzzyCtrl); |
|
185 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == WHITE) { |
|
186 |
// hard right |
|
187 |
copyRpmSpeed(global->rpmHardRight, rpmFuzzyCtrl); |
|
188 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) { |
|
189 |
// soft left |
|
190 |
copyRpmSpeed(global->rpmSoftLeft, rpmFuzzyCtrl); |
|
191 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == WHITE) { |
|
192 |
// hard left |
|
193 |
copyRpmSpeed(global->rpmHardLeft, rpmFuzzyCtrl); |
|
194 |
} |
|
195 |
// both wheel sensors detect a line |
|
196 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK && |
|
197 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) { |
|
198 |
// something is wrong -> stop |
|
199 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
|
200 |
// exactly one wheel sensor detects a line |
|
201 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK || |
|
202 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) { |
|
203 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK) { |
|
204 |
// turn left |
|
205 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
|
206 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) { |
|
207 |
// turn right |
|
208 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
|
209 |
} |
|
210 |
// both front sensors may detect a line |
|
211 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY && |
|
212 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) { |
|
213 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY) { |
|
214 |
// turn left |
|
215 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
|
216 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) { |
|
217 |
// turn right |
|
218 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
|
219 |
} |
|
220 |
// exactly one front sensor may detect a line |
|
221 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY || |
|
222 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) { |
|
223 |
if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY) { |
|
224 |
// turn left |
|
225 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
|
226 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) { |
|
227 |
// turn right |
|
228 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
|
229 |
} |
|
230 |
// both wheel sensors may detect a line |
|
231 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY && |
|
232 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) { |
|
233 |
// something is wrong -> stop |
|
234 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
|
235 |
// exactly one wheel sensor may detect a line |
|
236 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY || |
|
237 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) { |
|
238 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY) { |
|
239 |
// turn left |
|
240 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
|
241 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) { |
|
242 |
// turn right |
|
243 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
|
244 |
} |
|
245 |
// no sensor detects anything |
|
246 |
} else { |
|
247 |
// line is lost -> stop |
|
248 |
whiteFlag = 1; |
|
249 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
|
250 |
} |
|
251 |
chprintf((BaseSequentialStream*) &SD1, "Fuzzy Speed: Left: %d, Right: %d\n", rpmFuzzyCtrl[0], rpmFuzzyCtrl[1]); |
|
252 |
return; |
|
253 |
} |
|
254 |
|
|
255 |
colorMember LineFollow::getMember(float (&fuzzyValue)[3]) { |
|
256 |
colorMember member; |
|
257 |
|
|
258 |
if (fuzzyValue[BLACK] > fuzzyValue[GREY]) |
|
259 |
if (fuzzyValue[BLACK] > fuzzyValue[WHITE]) |
|
260 |
member = BLACK; |
|
261 |
else |
|
262 |
member = WHITE; |
|
263 |
else |
|
264 |
if (fuzzyValue[GREY] > fuzzyValue[WHITE]) |
|
265 |
member = GREY; |
|
266 |
else |
|
267 |
member = WHITE; |
|
268 |
|
|
269 |
return member; |
|
270 |
} |
|
271 |
|
|
272 |
// Fuzzyfication of the sensor values |
|
273 |
void LineFollow::fuzzyfication(int sensorValue, float (&fuzziedValue)[3]) { |
|
274 |
if (sensorValue < blackStartFalling ) { |
|
275 |
// Only black value |
|
276 |
fuzziedValue[BLACK] = 1.0f; |
|
277 |
fuzziedValue[GREY] = 0.0f; |
|
278 |
fuzziedValue[WHITE] = 0.0f; |
|
279 |
} else if (sensorValue > whiteOn ) { |
|
280 |
// Only white value |
|
281 |
fuzziedValue[BLACK] = 0.0f; |
|
282 |
fuzziedValue[GREY] = 0.0f; |
|
283 |
fuzziedValue[WHITE] = 1.0f; |
|
284 |
} else if ( sensorValue < greyMax) { |
|
285 |
// Some greyisch value between black and grey |
|
286 |
|
|
287 |
// Black is going down |
|
288 |
if ( sensorValue > blackOff) { |
|
289 |
fuzziedValue[BLACK] = 0.0f; |
|
290 |
} else { |
|
291 |
fuzziedValue[BLACK] = static_cast<float>(sensorValue-blackOff) / (blackStartFalling-blackOff); |
|
292 |
} |
|
293 |
|
|
294 |
// Grey is going up |
|
295 |
if ( sensorValue < greyStartRising) { |
|
296 |
fuzziedValue[GREY] = 0.0f; |
|
297 |
} else { |
|
298 |
fuzziedValue[GREY] = static_cast<float>(sensorValue-greyStartRising) / (greyMax-greyStartRising); |
|
299 |
} |
|
300 |
|
|
301 |
// White is absent |
|
302 |
fuzziedValue[WHITE] = 0.0f; |
|
303 |
|
|
304 |
} else if ( sensorValue >= greyMax) { |
|
305 |
// Some greyisch value between grey white |
|
306 |
|
|
307 |
// Black is absent |
|
308 |
fuzziedValue[BLACK] = 0.0f; |
|
309 |
|
|
310 |
// Grey is going down |
|
311 |
if ( sensorValue < greyOff) { |
|
312 |
fuzziedValue[GREY] = static_cast<float>(sensorValue-greyOff) / (greyMax-greyOff); |
|
313 |
} else { |
|
314 |
fuzziedValue[GREY] = 0.0f; |
|
315 |
} |
|
316 |
|
|
317 |
// White is going up |
|
318 |
if ( sensorValue < whiteStartRising) { |
|
319 |
fuzziedValue[WHITE] = 0.0f; |
|
320 |
} else { |
|
321 |
fuzziedValue[WHITE] = static_cast<float>(sensorValue-whiteStartRising) / (whiteOn-whiteStartRising); |
|
322 |
} |
|
323 |
} |
|
324 |
} |
|
325 |
|
|
326 |
void LineFollow::copyRpmSpeed(const int (&source)[2], int (&target)[2]) { |
|
327 |
target[constants::DiWheelDrive::LEFT_WHEEL] = source[constants::DiWheelDrive::LEFT_WHEEL]; |
|
328 |
target[constants::DiWheelDrive::RIGHT_WHEEL] = source[constants::DiWheelDrive::RIGHT_WHEEL]; |
|
329 |
// chprintf((BaseSequentialStream*) &SD1, "Speed left: %d, Speed right: %d\r\n", target[0], target[1]); |
|
330 |
} |
Also available in: Unified diff