Statistics
| Branch: | Tag: | Revision:

amiro-os / devices / DiWheelDrive / linefollow2.cpp @ 1b3adcdd

History | View | Annotate | Download (12.353 KB)

1
#include "global.hpp"
2
#include "linefollow2.hpp" 
3
#include <cmath>
4

    
5

    
6

    
7
LineFollow::LineFollow(Global *global){
8
    this->global = global;
9
}
10
LineFollow::LineFollow(Global *global, LineFollowStrategy strategy){
11
    this->global = global;
12
    this-> strategy = strategy;
13
}
14

    
15
/**
16
 * Calculate the error from front proxi sensors and fixed threshold values for those sensors.
17
 */
18
int LineFollow::getError(){
19
    // Get actual sensor data of both front sensors
20
    int FL = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_LEFT].getProximityScaledWoOffset();
21
    int FR = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_RIGHT].getProximityScaledWoOffset();
22
    int targetL = global->threshProxyL;
23
    int targetR = global->threshProxyR;
24
    int error = 0;
25
    switch (this->strategy)
26
    {
27
    case LineFollowStrategy::EDGE_RIGHT:
28
        error = -(FL -targetL + FR - targetR);
29
        break;
30
    case LineFollowStrategy::EDGE_LEFT:
31
        error = (FL -targetL + FR - targetR);
32
        break;
33
    case LineFollowStrategy::MIDDLE:
34
        // Assume that the smallest value means driving in the middle
35
        targetL = targetR = !(targetL<targetR)?targetR:targetL;
36
        error = (FL -targetL + FR - targetR);
37
        break;
38
    
39
    default:
40
        break;
41
    }
42
    // Debugging stuff ------
43
    if (global->enableRecord){
44
        global->senseRec[global->sensSamples].error = error;
45
        global->senseRec[global->sensSamples].FL = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_LEFT].getProximityScaledWoOffset();
46
        global->senseRec[global->sensSamples].FR = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_RIGHT].getProximityScaledWoOffset();
47
        global->sensSamples++;
48
        }
49
    // ----------------------
50
    // Register white values
51
    if (FL+FR > global->threshWhite){
52
        whiteFlag = 1;
53
    }else{
54
        whiteFlag = 0;
55
    }
56
    return error;
57
}
58

    
59
int LineFollow::followLine(int (&rpmSpeed)[2]){
60

    
61
    switch (this->strategy)
62
    {
63
    case LineFollowStrategy::FUZZY:
64
        for (int i = 0; i < 4; i++) {
65
                vcnl4020AmbientLight[i] = global->vcnl4020[i].getAmbientLight();
66
                vcnl4020Proximity[i] = global->vcnl4020[i].getProximityScaledWoOffset();
67
            }
68

    
69
        lineFollowing(vcnl4020Proximity, rpmSpeed);
70
        break;
71
    
72
    default:
73
        int correctionSpeed = getPidCorrectionSpeed();
74
        // chprintf((BaseSequentialStream*) &SD1, "Correction: %d, thresh: %d\n",correctionSpeed,  global->threshWhite);
75

    
76
        rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] =   global->forwardSpeed + correctionSpeed;
77

    
78
        rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] = global->forwardSpeed - correctionSpeed;
79
        return whiteFlag;
80
        break;
81
    }
82
}
83

    
84

    
85
/**
86
 * Pid controller which returns a corrections speed.
87
 */
88
int LineFollow::getPidCorrectionSpeed(){
89
    int error = getError();
90
    int sloap = error - oldError;
91
    int correctionSpeed = (int) (Kp*error + Ki*accumHist + Kd*sloap);
92
    oldError = error;
93
    // accumHist += (int) (0.01 * error);
94
    if (abs(error) > global->maxDist.error){
95
        global->maxDist.error = error;
96
    }
97
    return correctionSpeed;
98
}
99

    
100

    
101
void LineFollow::setStrategy(LineFollowStrategy strategy){
102
    this->strategy = strategy;
103
}
104

    
105
LineFollowStrategy LineFollow::getStrategy(){
106
      return this->strategy;
107
}
108
void LineFollow::setGains(float Kp, float Ki, float Kd){
109
    this->Kp = Kp;
110
    this->Ki = Ki;
111
    this->Kd = Kd;
112
}
113

    
114

    
115

    
116

    
117

    
118
// Lagacy code, fuzzy following-----------------------------------------
119
// Line following by a fuzzy controler
120
void LineFollow::lineFollowing(int (&proximity)[4], int (&rpmFuzzyCtrl)[2]) {
121
  // FUZZYFICATION
122
  // First we need to get the fuzzy value for our 3 values {BLACK, GREY, WHITE}
123
  float leftWheelFuzzyMemberValues[3], leftFrontFuzzyMemberValues[3], rightFrontFuzzyMemberValues[3], rightWheelFuzzyMemberValues[3];
124
  fuzzyfication(proximity[constants::DiWheelDrive::PROX_WHEEL_LEFT], leftWheelFuzzyMemberValues);
125
  fuzzyfication(proximity[constants::DiWheelDrive::PROX_FRONT_LEFT], leftFrontFuzzyMemberValues);
126
  fuzzyfication(proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT], rightFrontFuzzyMemberValues);
127
  fuzzyfication(proximity[constants::DiWheelDrive::PROX_WHEEL_RIGHT], rightWheelFuzzyMemberValues);
128

    
129
  // INFERENCE RULE DEFINITION
130
  // Get the member for each sensor
131
  colorMember member[4];
132
  member[constants::DiWheelDrive::PROX_WHEEL_LEFT] = getMember(leftWheelFuzzyMemberValues);
133
  member[constants::DiWheelDrive::PROX_FRONT_LEFT] = getMember(leftFrontFuzzyMemberValues);
134
  member[constants::DiWheelDrive::PROX_FRONT_RIGHT] = getMember(rightFrontFuzzyMemberValues);
135
  member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] = getMember(rightWheelFuzzyMemberValues);
136

    
137
  // visualize sensors via LEDs
138
  global->robot.setLightColor(constants::LightRing::LED_WNW, memberToLed(member[constants::DiWheelDrive::PROX_WHEEL_LEFT]));
139
  global->robot.setLightColor(constants::LightRing::LED_NNW, memberToLed(member[constants::DiWheelDrive::PROX_FRONT_LEFT]));
140
  global->robot.setLightColor(constants::LightRing::LED_NNE, memberToLed(member[constants::DiWheelDrive::PROX_FRONT_RIGHT]));
141
  global->robot.setLightColor(constants::LightRing::LED_ENE, memberToLed(member[constants::DiWheelDrive::PROX_WHEEL_RIGHT]));
142

    
143
  // chprintf((BaseSequentialStream*) &SD1, "Left: BLACK: %f, GREY: %f, WHITE: %f\r\n", leftWheelFuzzyMemberValues[BLACK], leftWheelFuzzyMemberValues[GREY], leftWheelFuzzyMemberValues[WHITE]);
144
  // chprintf((BaseSequentialStream*) &SD1, "Right: BLACK: %f, GREY: %f, WHITE: %f\r\n", rightFuzzyMemberValues[BLACK], rightFuzzyMemberValues[GREY], rightFuzzyMemberValues[WHITE]);
145

    
146
  // DEFUZZYFICATION
147
  defuzzyfication(member, rpmFuzzyCtrl);
148
  // defuzz(member, rpmFuzzyCtrl);
149
}
150

    
151

    
152
Color LineFollow::memberToLed(colorMember member) {
153
  switch (member) {
154
    case BLACK:
155
      return Color(Color::GREEN);
156
    case GREY:
157
      return Color(Color::YELLOW);
158
    case WHITE:
159
      return Color(Color::RED);
160
    default:
161
      return Color(Color::WHITE);
162
  }
163
}
164

    
165
void LineFollow::defuzzyfication(colorMember (&member)[4], int (&rpmFuzzyCtrl)[2]) {
166
    whiteFlag = 0;
167
  // all sensors are equal
168
  if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_LEFT] &&
169
      member[constants::DiWheelDrive::PROX_FRONT_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_RIGHT] &&
170
      member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == member[constants::DiWheelDrive::PROX_WHEEL_RIGHT]) {
171
    // something is wrong -> stop
172
    copyRpmSpeed(rpmHalt, rpmFuzzyCtrl);
173
  // both front sensor detect a line
174
  } else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK &&
175
      member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK) {
176
    // straight
177
    copyRpmSpeed(global->rpmForward, rpmFuzzyCtrl);
178
  // exact one front sensor detects a line
179
  } else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK ||
180
             member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK) {
181
    // soft correction
182
    if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY) {
183
      // soft right
184
      copyRpmSpeed(global->rpmSoftRight, rpmFuzzyCtrl);
185
    } else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == WHITE) {
186
      // hard right
187
      copyRpmSpeed(global->rpmHardRight, rpmFuzzyCtrl);
188
    } else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) {
189
      // soft left
190
      copyRpmSpeed(global->rpmSoftLeft, rpmFuzzyCtrl);
191
    } else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == WHITE) {
192
      // hard left
193
      copyRpmSpeed(global->rpmHardLeft, rpmFuzzyCtrl);
194
    }
195
  // both wheel sensors detect a line
196
  } else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK &&
197
             member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) {
198
    // something is wrong -> stop
199
    copyRpmSpeed(rpmHalt, rpmFuzzyCtrl);
200
  // exactly one wheel sensor detects a line
201
  } else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK ||
202
             member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) {
203
    if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK) {
204
      // turn left
205
      copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl);
206
    } else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) {
207
      // turn right
208
      copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl);
209
    }
210
  // both front sensors may detect a line
211
  } else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY &&
212
             member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) {
213
    if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY) {
214
      // turn left
215
      copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl);
216
    } else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) {
217
      // turn right
218
      copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl);
219
    }
220
  // exactly one front sensor may detect a line
221
  } else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY ||
222
             member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) {
223
    if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY) {
224
      // turn left
225
      copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl);
226
    } else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) {
227
      // turn right
228
      copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl);
229
    }
230
  // both wheel sensors may detect a line
231
  } else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY &&
232
             member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) {
233
    // something is wrong -> stop
234
    copyRpmSpeed(rpmHalt, rpmFuzzyCtrl);
235
  // exactly one wheel sensor may detect a line
236
  } else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY ||
237
             member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) {
238
    if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY) {
239
      // turn left
240
      copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl);
241
    } else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) {
242
      // turn right
243
      copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl);
244
    }
245
  // no sensor detects anything 
246
  } else {
247
    // line is lost -> stop
248
    whiteFlag = 1;
249
    copyRpmSpeed(rpmHalt, rpmFuzzyCtrl);
250
  }
251
    chprintf((BaseSequentialStream*) &SD1, "Fuzzy Speed: Left: %d, Right: %d\n", rpmFuzzyCtrl[0], rpmFuzzyCtrl[1]);
252
  return;
253
}
254

    
255
colorMember LineFollow::getMember(float (&fuzzyValue)[3]) {
256
  colorMember member;
257

    
258
  if (fuzzyValue[BLACK] > fuzzyValue[GREY])
259
    if (fuzzyValue[BLACK] > fuzzyValue[WHITE])
260
      member = BLACK;
261
    else
262
      member = WHITE;
263
  else
264
    if (fuzzyValue[GREY] > fuzzyValue[WHITE])
265
      member = GREY;
266
    else
267
      member = WHITE;
268

    
269
  return member;
270
}
271

    
272
// Fuzzyfication of the sensor values
273
void LineFollow::fuzzyfication(int sensorValue, float (&fuzziedValue)[3]) {
274
  if (sensorValue < blackStartFalling ) {
275
    // Only black value
276
    fuzziedValue[BLACK] = 1.0f;
277
    fuzziedValue[GREY] = 0.0f;
278
    fuzziedValue[WHITE] = 0.0f;
279
  } else if (sensorValue > whiteOn ) {
280
    // Only white value
281
    fuzziedValue[BLACK] = 0.0f;
282
    fuzziedValue[GREY] = 0.0f;
283
    fuzziedValue[WHITE] = 1.0f;
284
  } else if ( sensorValue < greyMax) {
285
    // Some greyisch value between black and grey
286

    
287
    // Black is going down
288
    if ( sensorValue > blackOff) {
289
      fuzziedValue[BLACK] = 0.0f;
290
    } else {
291
      fuzziedValue[BLACK] = static_cast<float>(sensorValue-blackOff) / (blackStartFalling-blackOff);
292
    }
293

    
294
    // Grey is going up
295
    if ( sensorValue < greyStartRising) {
296
      fuzziedValue[GREY] = 0.0f;
297
    } else {
298
      fuzziedValue[GREY] = static_cast<float>(sensorValue-greyStartRising) / (greyMax-greyStartRising);
299
    }
300

    
301
    // White is absent
302
    fuzziedValue[WHITE] = 0.0f;
303

    
304
  } else if ( sensorValue >= greyMax) {
305
    // Some greyisch value between grey white
306

    
307
    // Black is absent
308
    fuzziedValue[BLACK] = 0.0f;
309

    
310
    // Grey is going down
311
    if ( sensorValue < greyOff) {
312
      fuzziedValue[GREY] = static_cast<float>(sensorValue-greyOff) / (greyMax-greyOff);
313
    } else {
314
      fuzziedValue[GREY] = 0.0f;
315
    }
316

    
317
    // White is going up
318
    if ( sensorValue < whiteStartRising) {
319
      fuzziedValue[WHITE] = 0.0f;
320
    } else {
321
      fuzziedValue[WHITE] = static_cast<float>(sensorValue-whiteStartRising) / (whiteOn-whiteStartRising);
322
    }
323
  }
324
}
325

    
326
void LineFollow::copyRpmSpeed(const int (&source)[2], int (&target)[2]) {
327
  target[constants::DiWheelDrive::LEFT_WHEEL] = source[constants::DiWheelDrive::LEFT_WHEEL];
328
  target[constants::DiWheelDrive::RIGHT_WHEEL] = source[constants::DiWheelDrive::RIGHT_WHEEL];
329
  // chprintf((BaseSequentialStream*) &SD1, "Speed left: %d, Speed right: %d\r\n", target[0], target[1]);
330
}