amiro-os / components / Odometry.cpp @ 3aee55de
History | View | Annotate | Download (8.309 KB)
1 |
#include <ch.hpp> |
---|---|
2 |
#include <hal.h> |
3 |
|
4 |
#include <qei.h> |
5 |
|
6 |
#include <amiro/Odometry.h> |
7 |
|
8 |
#include <math.h> // cos(), sin() |
9 |
#include <Matrix.h> // Matrixoperations "Matrix::*" |
10 |
#include <amiro/Constants.h> // Constants "constants::*" |
11 |
#include <chprintf.h> |
12 |
#include <global.hpp> |
13 |
|
14 |
using namespace chibios_rt; |
15 |
using namespace amiro; |
16 |
using namespace constants::DiWheelDrive; |
17 |
|
18 |
extern Global global;
|
19 |
|
20 |
|
21 |
Odometry::Odometry(MotorIncrements* mi, L3G4200D* gyroscope) |
22 |
: BaseStaticThread<512>(),
|
23 |
motorIncrements(mi), |
24 |
gyro(gyroscope), |
25 |
eventSource(), |
26 |
period(50),
|
27 |
incrementsPerRevolution(incrementsPerRevolution), |
28 |
updatesPerMinute(constants::secondsPerMinute * constants::millisecondsPerSecond / this->period),
|
29 |
wheelCircumference(wheelCircumferenceSI), |
30 |
wheelBaseDistanceSI(wheelBaseDistanceSI) { |
31 |
|
32 |
|
33 |
// this-> = constants::secondsPerMinute * constants::millisecondsPerSecond / this->period;
|
34 |
// this->wheelCircumference = constants::wheelCircumferenceSI;
|
35 |
// this->wheelBaseDistanceSI = constants::wheelBaseDistanceSI;
|
36 |
|
37 |
this->distance[LEFT_WHEEL] = 0.0f; |
38 |
this->distance[RIGHT_WHEEL] = 0.0f; |
39 |
this->increment[LEFT_WHEEL] = 0; |
40 |
this->increment[RIGHT_WHEEL] = 0; |
41 |
this->incrementDifference[LEFT_WHEEL] = 0.0f; |
42 |
this->incrementDifference[RIGHT_WHEEL] = 0.0f; |
43 |
this->distance[LEFT_WHEEL] = 0.0f; |
44 |
this->distance[RIGHT_WHEEL] = 0.0f; |
45 |
|
46 |
this->wheelError[LEFT_WHEEL] = wheelErrorSI[LEFT_WHEEL];
|
47 |
this->wheelError[RIGHT_WHEEL] = wheelErrorSI[RIGHT_WHEEL];
|
48 |
|
49 |
this->resetPosition(); // Init position |
50 |
|
51 |
this->resetError(); // Init error Cp |
52 |
|
53 |
} |
54 |
|
55 |
types::position Odometry::getPosition() { |
56 |
types::position robotPosition; |
57 |
const int32_t piScaled = int32_t(2 * M_PI * 1e6); |
58 |
chSysLock(); |
59 |
// Conversion from standard unit to ยต unit
|
60 |
robotPosition.x = this->pX * 1e6; |
61 |
robotPosition.y = this->pY * 1e6; |
62 |
robotPosition.f_z = (int32_t(this->pPhi * 1e6) % piScaled) + ((this->pPhi < 0) ? piScaled : 0); // Get only the postitve angel f_z in [0 .. 2 * pi] |
63 |
chSysUnlock(); |
64 |
// chprintf((BaseSequentialStream*) &global.sercanmux1, "X:%d Y:%d Phi:%d", robotPosition.x,robotPosition.y, robotPosition.f_z);
|
65 |
// chprintf((BaseSequentialStream*) &global.sercanmux1, "\r\n");
|
66 |
// chprintf((BaseSequentialStream*) &global.sercanmux1, "X:%f Y:%f Phi:%f", this->pX,this->pY, this->pPhi);
|
67 |
// chprintf((BaseSequentialStream*) &global.sercanmux1, "\r\n");
|
68 |
return robotPosition;
|
69 |
} |
70 |
|
71 |
void Odometry::setPosition(float pX, float pY, float pPhi) { |
72 |
chSysLock(); |
73 |
this->pX = pX;
|
74 |
this->pY = pY;
|
75 |
this->pPhi = pPhi;
|
76 |
chSysUnlock(); |
77 |
} |
78 |
|
79 |
void Odometry::setPositionXY(float pX, float pY) { |
80 |
chSysLock(); |
81 |
this->pX = pX;
|
82 |
this->pY = pY;
|
83 |
chSysUnlock(); |
84 |
} |
85 |
|
86 |
void Odometry::resetPosition() {
|
87 |
this->setPosition(0.0f,0.0f,0.0f); |
88 |
} |
89 |
|
90 |
void Odometry::setError(float* Cp3x3) { |
91 |
chSysLock(); |
92 |
Matrix::copy<float>(Cp3x3,3,3, &(this->Cp3x3[0]),3,3); |
93 |
chSysUnlock(); |
94 |
} |
95 |
|
96 |
void Odometry::resetError() {
|
97 |
Matrix::init<float>(&(this->Cp3x3[0]),3,3,0.0f); |
98 |
} |
99 |
|
100 |
EvtSource* Odometry::getEventSource() { |
101 |
return &this->eventSource; |
102 |
} |
103 |
|
104 |
msg_t Odometry::main(void) {
|
105 |
systime_t time = System::getTime(); |
106 |
this->setName("Odometry"); |
107 |
|
108 |
while (!this->shouldTerminate()) { |
109 |
time += MS2ST(this->period);
|
110 |
|
111 |
// Update the base distance, because it may have changed after a calibration
|
112 |
this->updateWheelBaseDistance();
|
113 |
|
114 |
// Get the actual speed
|
115 |
this->updateDistance();
|
116 |
|
117 |
// Calculate the odometry
|
118 |
this->updateOdometry();
|
119 |
|
120 |
|
121 |
// chprintf((BaseSequentialStream*) &global.sercanmux1, "X:%f Y:%f Phi:%f", this->pX,this->pY, this->pPhi);
|
122 |
// chprintf((BaseSequentialStream*) &global.sercanmux1, "\r\n");
|
123 |
// chprintf((BaseSequentialStream*) &global.sercanmux1, "distance_left:%f distance_right:%f", this->distance[0],this->distance[1]);
|
124 |
// chprintf((BaseSequentialStream*) &global.sercanmux1, "\r\n");
|
125 |
|
126 |
if (time >= System::getTime()) {
|
127 |
chThdSleepUntil(time); |
128 |
} else {
|
129 |
chprintf((BaseSequentialStream*) &global.sercanmux1, "WARNING Odometry: Unable to keep track\r\n");
|
130 |
} |
131 |
} |
132 |
|
133 |
return true; |
134 |
} |
135 |
|
136 |
void Odometry::updateOdometry() {
|
137 |
|
138 |
// Get the temporary position and error
|
139 |
float Cp3x3[9]; |
140 |
int32_t angular_ud; |
141 |
int32_t angularRate_udps; |
142 |
chSysLock(); |
143 |
float pX = this->pX; |
144 |
float pY = this->pY; |
145 |
float pPhi = this->pPhi; |
146 |
Matrix::copy<float>(this->Cp3x3,3,3,Cp3x3,3,3); |
147 |
// TODO Get the gyro (or gyro rate) information and do something with it
|
148 |
// angular_ud = gyro->getAngular_ud(L3G4200D::AXIS_Z);
|
149 |
// angularRate_udps = gyro->getAngularRate_udps(L3G4200D::AXIS_Z);
|
150 |
chSysUnlock(); |
151 |
|
152 |
////////////////
|
153 |
// Temporary calculations
|
154 |
////////////////
|
155 |
|
156 |
// TMP: Rotated angular
|
157 |
float dPhi = (this->distance[RIGHT_WHEEL] - this->distance[LEFT_WHEEL]) / this->wheelBaseDistanceSI; |
158 |
// TODO Calculate the differential angel dPhi from either the angular (1. line) or angular rate (2.+3. line)
|
159 |
// float dPhi = ((float(angular_ud * 1e-3) * M_PI ) * 1e-3) / 180.0f;
|
160 |
// const float angular_md = float((angularRate_udps * this->period / constants::millisecondsPerSecond) * 1e-3);
|
161 |
// float dPhi = ((angular_md * M_PI) * 1e-3) / 180.0f;
|
162 |
|
163 |
// TMP: Moved distance
|
164 |
float dDistance = (this->distance[RIGHT_WHEEL] + this->distance[LEFT_WHEEL]) / 2.0f; |
165 |
|
166 |
// TMP: Argument for the trigonometric functions
|
167 |
float trigArg = pPhi + dPhi / 2.0f; |
168 |
|
169 |
// TMP: Trigonometric functions
|
170 |
float cosArg = cos(trigArg);
|
171 |
float sinArg = sin(trigArg);
|
172 |
|
173 |
// TMP: Delta distance
|
174 |
float dPX = dDistance * cosArg;
|
175 |
float dPY = dDistance * sinArg;
|
176 |
|
177 |
////////////////
|
178 |
// Position Update
|
179 |
////////////////
|
180 |
|
181 |
// Update distance
|
182 |
pX += dPX; |
183 |
pY += dPY; |
184 |
pPhi += dPhi; |
185 |
|
186 |
////////////////
|
187 |
// Temporary error calculations
|
188 |
////////////////
|
189 |
|
190 |
// position propagation error (3x3 matrix)
|
191 |
float Fp3x3[9] = {1.0f, 0.0f, -dPY, |
192 |
0.0f, 1.0f, dPX, |
193 |
0.0f, 0.0f, 1.0f}; |
194 |
// steering error (2x2 matrix)
|
195 |
float Cs2x2[4] = {abs(this->distance[RIGHT_WHEEL])*wheelError[RIGHT_WHEEL],0.0f, |
196 |
0.0f, abs(this->distance[LEFT_WHEEL])*wheelError[LEFT_WHEEL]}; |
197 |
// steering propagation error (3x2 matrix)
|
198 |
float Fs3x2[6] = {(cosArg+dDistance*sinArg/this->wheelBaseDistanceSI)/2.0f, (sinArg+dDistance*cosArg/this->wheelBaseDistanceSI)/2.0f, |
199 |
(sinArg-dDistance*cosArg/this->wheelBaseDistanceSI)/2.0f, (cosArg-dDistance*sinArg/this->wheelBaseDistanceSI)/2.0f, |
200 |
-1.0f/this->wheelBaseDistanceSI , 1.0f/this->wheelBaseDistanceSI}; |
201 |
|
202 |
////////////////
|
203 |
// Error calculations tmpCp = Fp*Cp*~Fp
|
204 |
////////////////
|
205 |
// New position error
|
206 |
float tmpCp3x3[9] = {0.0f}; |
207 |
float tmpFpCp3x3[9] = {0.0f}; |
208 |
// tmpFpCp = Fp*Cp
|
209 |
Matrix::XdotY<float>(&(Fp3x3[0]),3,3,&(Cp3x3[0]),3,3,&(tmpFpCp3x3[0]),3,3); |
210 |
// tmpCp = tmpFpCp*~Fp
|
211 |
Matrix::XdotYtrans<float>(&(tmpFpCp3x3[0]),3,3,&(Fp3x3[0]),3,3,&(tmpCp3x3[0]),3,3); |
212 |
|
213 |
////////////////
|
214 |
// Error calculations tmpCs = Fs*Cs*~Fs
|
215 |
////////////////
|
216 |
// New steering error
|
217 |
float tmpCs3x3[9] = {0.0f}; |
218 |
float tmpFsCs3x2[6] = {0.0f}; |
219 |
// tmpFsCs = Fs*Cs
|
220 |
Matrix::XdotY<float>(&(Fs3x2[0]),3,2,&(Cs2x2[0]),2,2,&(tmpFsCs3x2[0]),3,2); |
221 |
// tmpCs = tmpFsCs*~Fs
|
222 |
Matrix::XdotYtrans<float>(&(tmpFsCs3x2[0]),3,2,&(Fs3x2[0]),3,2,&(tmpCs3x3[0]),3,3); |
223 |
|
224 |
////////////////
|
225 |
// Error calculations Cp = Fp*Cp*~Fp + Fs*Cs*~Fs
|
226 |
////////////////
|
227 |
Matrix::XplusY<float>(tmpCp3x3,3,3,tmpCs3x3,3,3,Cp3x3,3,3); |
228 |
|
229 |
////////////////
|
230 |
// Write back
|
231 |
////////////////
|
232 |
|
233 |
// Write back
|
234 |
this->setPosition(pX,pY,pPhi);
|
235 |
chSysLock(); |
236 |
Matrix::copy<float>(Cp3x3,3,3,this->Cp3x3,3,3); |
237 |
chSysUnlock(); |
238 |
|
239 |
} |
240 |
|
241 |
void Odometry::updateWheelBaseDistance() {
|
242 |
this->wheelBaseDistanceSI = MotorControl::actualWheelBaseDistanceSI;
|
243 |
} |
244 |
|
245 |
void Odometry::updateDistance() {
|
246 |
|
247 |
// Get the current increments of the QEI
|
248 |
MotorControl::updateIncrements(this->motorIncrements, this->increment, this->incrementDifference); |
249 |
//
|
250 |
// chprintf((BaseSequentialStream*) &global.sercanmux1, "\ni_right = %d \t i_left = %d", this->increment[RIGHT_WHEEL], this->increment[LEFT_WHEEL]);
|
251 |
// chprintf((BaseSequentialStream*) &global.sercanmux1, "\niDiff_right = %d \t iDiff_left = %d", this->incrementDifference[RIGHT_WHEEL], this->incrementDifference[LEFT_WHEEL]);
|
252 |
|
253 |
// Get the driven distance for each wheel
|
254 |
MotorControl::updateDistance(this->incrementDifference, this->distance); |
255 |
|
256 |
// chprintf((BaseSequentialStream*) &global.sercanmux1, "\nx_right = %f \t x_left = %f", this->distance[RIGHT_WHEEL], this->distance[LEFT_WHEEL]);
|
257 |
} |