amiro-os / components / Odometry.cpp @ 47364c68
History | View | Annotate | Download (8.194 KB)
| 1 |
#include <ch.hpp> |
|---|---|
| 2 |
#include <hal.h> |
| 3 |
|
| 4 |
#include <qei.h> |
| 5 |
|
| 6 |
#include <amiro/Odometry.h> |
| 7 |
|
| 8 |
#include <math.h> // cos(), sin() |
| 9 |
#include <Matrix.h> // Matrixoperations "Matrix::*" |
| 10 |
#include <amiro/Constants.h> // Constants "constants::*" |
| 11 |
#include <chprintf.h> |
| 12 |
#include <global.hpp> |
| 13 |
|
| 14 |
using namespace chibios_rt; |
| 15 |
using namespace amiro; |
| 16 |
using namespace constants::DiWheelDrive; |
| 17 |
|
| 18 |
extern Global global;
|
| 19 |
|
| 20 |
|
| 21 |
Odometry::Odometry(MotorIncrements* mi, L3G4200D* gyroscope) |
| 22 |
: BaseStaticThread<256>(),
|
| 23 |
motorIncrements(mi), |
| 24 |
gyro(gyroscope), |
| 25 |
eventSource(), |
| 26 |
period(50),
|
| 27 |
incrementsPerRevolution(incrementsPerRevolution), |
| 28 |
updatesPerMinute(constants::secondsPerMinute * constants::millisecondsPerSecond / this->period),
|
| 29 |
wheelCircumference(wheelCircumferenceSI), |
| 30 |
wheelBaseDistanceSI(wheelBaseDistanceSI) {
|
| 31 |
|
| 32 |
|
| 33 |
// this-> = constants::secondsPerMinute * constants::millisecondsPerSecond / this->period;
|
| 34 |
// this->wheelCircumference = constants::wheelCircumferenceSI;
|
| 35 |
// this->wheelBaseDistanceSI = constants::wheelBaseDistanceSI;
|
| 36 |
|
| 37 |
this->distance[LEFT_WHEEL] = 0.0f; |
| 38 |
this->distance[RIGHT_WHEEL] = 0.0f; |
| 39 |
this->increment[LEFT_WHEEL] = 0; |
| 40 |
this->increment[RIGHT_WHEEL] = 0; |
| 41 |
this->incrementDifference[LEFT_WHEEL] = 0.0f; |
| 42 |
this->incrementDifference[RIGHT_WHEEL] = 0.0f; |
| 43 |
this->distance[LEFT_WHEEL] = 0.0f; |
| 44 |
this->distance[RIGHT_WHEEL] = 0.0f; |
| 45 |
|
| 46 |
this->wheelError[LEFT_WHEEL] = wheelErrorSI[LEFT_WHEEL];
|
| 47 |
this->wheelError[RIGHT_WHEEL] = wheelErrorSI[RIGHT_WHEEL];
|
| 48 |
|
| 49 |
this->resetPosition(); // Init position |
| 50 |
|
| 51 |
this->resetError(); // Init error Cp |
| 52 |
|
| 53 |
} |
| 54 |
|
| 55 |
types::position Odometry::getPosition() {
|
| 56 |
types::position robotPosition; |
| 57 |
const int32_t piScaled = int32_t(2 * M_PI * 1e6); |
| 58 |
chSysLock(); |
| 59 |
// Conversion from standard unit to ยต unit
|
| 60 |
robotPosition.x = this->pX * 1e6; |
| 61 |
robotPosition.y = this->pY * 1e6; |
| 62 |
robotPosition.f_z = (int32_t(this->pPhi * 1e6) % piScaled) + ((this->pPhi < 0) ? piScaled : 0); // Get only the postitve angel f_z in [0 .. 2 * pi] |
| 63 |
chSysUnlock(); |
| 64 |
// chprintf((BaseSequentialStream*) &global.sercanmux1, "X:%d Y:%d Phi:%d", robotPosition.x,robotPosition.y, robotPosition.f_z);
|
| 65 |
// chprintf((BaseSequentialStream*) &global.sercanmux1, "\r\n");
|
| 66 |
// chprintf((BaseSequentialStream*) &global.sercanmux1, "X:%f Y:%f Phi:%f", this->pX,this->pY, this->pPhi);
|
| 67 |
// chprintf((BaseSequentialStream*) &global.sercanmux1, "\r\n");
|
| 68 |
return robotPosition;
|
| 69 |
} |
| 70 |
|
| 71 |
void Odometry::setPosition(float pX, float pY, float pPhi) { |
| 72 |
chSysLock(); |
| 73 |
this->pX = pX;
|
| 74 |
this->pY = pY;
|
| 75 |
this->pPhi = pPhi;
|
| 76 |
chSysUnlock(); |
| 77 |
} |
| 78 |
|
| 79 |
void Odometry::resetPosition() {
|
| 80 |
this->setPosition(0.0f,0.0f,0.0f); |
| 81 |
} |
| 82 |
|
| 83 |
void Odometry::setError(float* Cp3x3) { |
| 84 |
chSysLock(); |
| 85 |
Matrix::copy<float>(Cp3x3,3,3, &(this->Cp3x3[0]),3,3); |
| 86 |
chSysUnlock(); |
| 87 |
} |
| 88 |
|
| 89 |
void Odometry::resetError() {
|
| 90 |
Matrix::init<float>(&(this->Cp3x3[0]),3,3,0.0f); |
| 91 |
} |
| 92 |
|
| 93 |
EvtSource* Odometry::getEventSource() {
|
| 94 |
return &this->eventSource; |
| 95 |
} |
| 96 |
|
| 97 |
msg_t Odometry::main(void) {
|
| 98 |
systime_t time = System::getTime(); |
| 99 |
this->setName("Odometry"); |
| 100 |
|
| 101 |
while (!this->shouldTerminate()) { |
| 102 |
time += MS2ST(this->period);
|
| 103 |
|
| 104 |
// Update the base distance, because it may have changed after a calibration
|
| 105 |
this->updateWheelBaseDistance();
|
| 106 |
|
| 107 |
// Get the actual speed
|
| 108 |
this->updateDistance();
|
| 109 |
|
| 110 |
// Calculate the odometry
|
| 111 |
this->updateOdometry();
|
| 112 |
|
| 113 |
|
| 114 |
// chprintf((BaseSequentialStream*) &global.sercanmux1, "X:%f Y:%f Phi:%f", this->pX,this->pY, this->pPhi);
|
| 115 |
// chprintf((BaseSequentialStream*) &global.sercanmux1, "\r\n");
|
| 116 |
// chprintf((BaseSequentialStream*) &global.sercanmux1, "distance_left:%f distance_right:%f", this->distance[0],this->distance[1]);
|
| 117 |
// chprintf((BaseSequentialStream*) &global.sercanmux1, "\r\n");
|
| 118 |
|
| 119 |
if (time >= System::getTime()) {
|
| 120 |
chThdSleepUntil(time); |
| 121 |
} else {
|
| 122 |
chprintf((BaseSequentialStream*) &global.sercanmux1, "WARNING Odometry: Unable to keep track\r\n");
|
| 123 |
} |
| 124 |
} |
| 125 |
|
| 126 |
return true; |
| 127 |
} |
| 128 |
|
| 129 |
void Odometry::updateOdometry() {
|
| 130 |
|
| 131 |
// Get the temporary position and error
|
| 132 |
float Cp3x3[9]; |
| 133 |
int32_t angular_ud; |
| 134 |
int32_t angularRate_udps; |
| 135 |
chSysLock(); |
| 136 |
float pX = this->pX; |
| 137 |
float pY = this->pY; |
| 138 |
float pPhi = this->pPhi; |
| 139 |
Matrix::copy<float>(this->Cp3x3,3,3,Cp3x3,3,3); |
| 140 |
// TODO Get the gyro (or gyro rate) information and do something with it
|
| 141 |
// angular_ud = gyro->getAngular_ud(L3G4200D::AXIS_Z);
|
| 142 |
// angularRate_udps = gyro->getAngularRate_udps(L3G4200D::AXIS_Z);
|
| 143 |
chSysUnlock(); |
| 144 |
|
| 145 |
////////////////
|
| 146 |
// Temporary calculations
|
| 147 |
////////////////
|
| 148 |
|
| 149 |
// TMP: Rotated angular
|
| 150 |
// float dPhi = (this->distance[RIGHT_WHEEL] - this->distance[LEFT_WHEEL]) / this->wheelBaseDistanceSI;
|
| 151 |
// TODO Calculate the differential angel dPhi from either the angular (1. line) or angular rate (2.+3. line)
|
| 152 |
// float dPhi = ((float(angular_ud * 1e-3) * M_PI ) * 1e-3) / 180.0f;
|
| 153 |
// const float angular_md = float((angularRate_udps * this->period / constants::millisecondsPerSecond) * 1e-3);
|
| 154 |
// float dPhi = ((angular_md * M_PI) * 1e-3) / 180.0f;
|
| 155 |
|
| 156 |
// TMP: Moved distance
|
| 157 |
float dDistance = (this->distance[RIGHT_WHEEL] + this->distance[LEFT_WHEEL]) / 2.0f; |
| 158 |
|
| 159 |
// TMP: Argument for the trigonometric functions
|
| 160 |
float trigArg = pPhi + dPhi / 2.0f; |
| 161 |
|
| 162 |
// TMP: Trigonometric functions
|
| 163 |
float cosArg = cos(trigArg);
|
| 164 |
float sinArg = sin(trigArg);
|
| 165 |
|
| 166 |
// TMP: Delta distance
|
| 167 |
float dPX = dDistance * cosArg;
|
| 168 |
float dPY = dDistance * sinArg;
|
| 169 |
|
| 170 |
////////////////
|
| 171 |
// Position Update
|
| 172 |
////////////////
|
| 173 |
|
| 174 |
// Update distance
|
| 175 |
pX += dPX; |
| 176 |
pY += dPY; |
| 177 |
pPhi += dPhi; |
| 178 |
|
| 179 |
////////////////
|
| 180 |
// Temporary error calculations
|
| 181 |
////////////////
|
| 182 |
|
| 183 |
// position propagation error (3x3 matrix)
|
| 184 |
float Fp3x3[9] = {1.0f, 0.0f, -dPY, |
| 185 |
0.0f, 1.0f, dPX, |
| 186 |
0.0f, 0.0f, 1.0f}; |
| 187 |
// steering error (2x2 matrix)
|
| 188 |
float Cs2x2[4] = {abs(this->distance[RIGHT_WHEEL])*wheelError[RIGHT_WHEEL],0.0f, |
| 189 |
0.0f, abs(this->distance[LEFT_WHEEL])*wheelError[LEFT_WHEEL]}; |
| 190 |
// steering propagation error (3x2 matrix)
|
| 191 |
float Fs3x2[6] = {(cosArg+dDistance*sinArg/this->wheelBaseDistanceSI)/2.0f, (sinArg+dDistance*cosArg/this->wheelBaseDistanceSI)/2.0f, |
| 192 |
(sinArg-dDistance*cosArg/this->wheelBaseDistanceSI)/2.0f, (cosArg-dDistance*sinArg/this->wheelBaseDistanceSI)/2.0f, |
| 193 |
-1.0f/this->wheelBaseDistanceSI , 1.0f/this->wheelBaseDistanceSI}; |
| 194 |
|
| 195 |
////////////////
|
| 196 |
// Error calculations tmpCp = Fp*Cp*~Fp
|
| 197 |
////////////////
|
| 198 |
// New position error
|
| 199 |
float tmpCp3x3[9] = {0.0f}; |
| 200 |
float tmpFpCp3x3[9] = {0.0f}; |
| 201 |
// tmpFpCp = Fp*Cp
|
| 202 |
Matrix::XdotY<float>(&(Fp3x3[0]),3,3,&(Cp3x3[0]),3,3,&(tmpFpCp3x3[0]),3,3); |
| 203 |
// tmpCp = tmpFpCp*~Fp
|
| 204 |
Matrix::XdotYtrans<float>(&(tmpFpCp3x3[0]),3,3,&(Fp3x3[0]),3,3,&(tmpCp3x3[0]),3,3); |
| 205 |
|
| 206 |
////////////////
|
| 207 |
// Error calculations tmpCs = Fs*Cs*~Fs
|
| 208 |
////////////////
|
| 209 |
// New steering error
|
| 210 |
float tmpCs3x3[9] = {0.0f}; |
| 211 |
float tmpFsCs3x2[6] = {0.0f}; |
| 212 |
// tmpFsCs = Fs*Cs
|
| 213 |
Matrix::XdotY<float>(&(Fs3x2[0]),3,2,&(Cs2x2[0]),2,2,&(tmpFsCs3x2[0]),3,2); |
| 214 |
// tmpCs = tmpFsCs*~Fs
|
| 215 |
Matrix::XdotYtrans<float>(&(tmpFsCs3x2[0]),3,2,&(Fs3x2[0]),3,2,&(tmpCs3x3[0]),3,3); |
| 216 |
|
| 217 |
////////////////
|
| 218 |
// Error calculations Cp = Fp*Cp*~Fp + Fs*Cs*~Fs
|
| 219 |
////////////////
|
| 220 |
Matrix::XplusY<float>(tmpCp3x3,3,3,tmpCs3x3,3,3,Cp3x3,3,3); |
| 221 |
|
| 222 |
////////////////
|
| 223 |
// Write back
|
| 224 |
////////////////
|
| 225 |
|
| 226 |
// Write back
|
| 227 |
this->setPosition(pX,pY,pPhi);
|
| 228 |
chSysLock(); |
| 229 |
Matrix::copy<float>(Cp3x3,3,3,this->Cp3x3,3,3); |
| 230 |
chSysUnlock(); |
| 231 |
|
| 232 |
} |
| 233 |
|
| 234 |
void Odometry::updateWheelBaseDistance() {
|
| 235 |
this->wheelBaseDistanceSI = MotorControl::actualWheelBaseDistanceSI;
|
| 236 |
} |
| 237 |
|
| 238 |
void Odometry::updateDistance() {
|
| 239 |
|
| 240 |
// Get the current increments of the QEI
|
| 241 |
MotorControl::updateIncrements(this->motorIncrements, this->increment, this->incrementDifference); |
| 242 |
//
|
| 243 |
// chprintf((BaseSequentialStream*) &global.sercanmux1, "\ni_right = %d \t i_left = %d", this->increment[RIGHT_WHEEL], this->increment[LEFT_WHEEL]);
|
| 244 |
// chprintf((BaseSequentialStream*) &global.sercanmux1, "\niDiff_right = %d \t iDiff_left = %d", this->incrementDifference[RIGHT_WHEEL], this->incrementDifference[LEFT_WHEEL]);
|
| 245 |
|
| 246 |
// Get the driven distance for each wheel
|
| 247 |
MotorControl::updateDistance(this->incrementDifference, this->distance); |
| 248 |
|
| 249 |
// chprintf((BaseSequentialStream*) &global.sercanmux1, "\nx_right = %f \t x_left = %f", this->distance[RIGHT_WHEEL], this->distance[LEFT_WHEEL]);
|
| 250 |
} |