amiro-os / periphery-lld / aos_periphAL.c @ 4b8243d7
History | View | Annotate | Download (14.676 KB)
1 |
/*
|
---|---|
2 |
AMiRo-OS is an operating system designed for the Autonomous Mini Robot (AMiRo) platform.
|
3 |
Copyright (C) 2016..2020 Thomas Schöpping et al.
|
4 |
|
5 |
This program is free software: you can redistribute it and/or modify
|
6 |
it under the terms of the GNU General Public License as published by
|
7 |
the Free Software Foundation, either version 3 of the License, or
|
8 |
(at your option) any later version.
|
9 |
|
10 |
This program is distributed in the hope that it will be useful,
|
11 |
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
13 |
GNU General Public License for more details.
|
14 |
|
15 |
You should have received a copy of the GNU General Public License
|
16 |
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
17 |
*/
|
18 |
|
19 |
#include <periphAL.h> |
20 |
|
21 |
/*============================================================================*/
|
22 |
/* DEBUG */
|
23 |
/*============================================================================*/
|
24 |
|
25 |
#if (AMIROOS_CFG_DBG == true) |
26 |
|
27 |
#include <amiroos.h> |
28 |
#include <chprintf.h> |
29 |
|
30 |
void apalDbgAssertMsg(const bool c, const char* fmt, ...) |
31 |
{ |
32 |
if (!c) {
|
33 |
va_list ap; |
34 |
|
35 |
va_start(ap, fmt); |
36 |
chvprintf((BaseSequentialStream*)&aos.iostream, fmt, ap); |
37 |
va_end(ap); |
38 |
chThdExit(MSG_RESET); |
39 |
} |
40 |
|
41 |
return;
|
42 |
} |
43 |
|
44 |
int apalDbgPrintf(const char* fmt, ...) |
45 |
{ |
46 |
va_list ap; |
47 |
|
48 |
va_start(ap, fmt); |
49 |
const int chars = chvprintf((BaseSequentialStream*)&aos.iostream, fmt, ap); |
50 |
va_end(ap); |
51 |
|
52 |
return chars;
|
53 |
} |
54 |
|
55 |
#endif /* (AMIROOS_CFG_DBG == true) */ |
56 |
|
57 |
/*============================================================================*/
|
58 |
/* TIMING */
|
59 |
/*============================================================================*/
|
60 |
|
61 |
#if (AMIROOS_CFG_DBG == true) |
62 |
|
63 |
void apalSleep(apalTime_t us)
|
64 |
{ |
65 |
// check if the specified time can be represented by the system
|
66 |
apalDbgAssert(us <= chTimeI2US(TIME_INFINITE)); |
67 |
|
68 |
const sysinterval_t interval = chTimeUS2I(us);
|
69 |
// TIME_IMMEDIATE makes no sense and would even cause system halt
|
70 |
if (interval != TIME_IMMEDIATE) {
|
71 |
chThdSleep(interval); |
72 |
} |
73 |
|
74 |
return;
|
75 |
} |
76 |
|
77 |
#endif /* (AMIROOS_CFG_DBG == true) */ |
78 |
|
79 |
/*============================================================================*/
|
80 |
/* GPIO */
|
81 |
/*============================================================================*/
|
82 |
|
83 |
#if (HAL_USE_PAL == TRUE)
|
84 |
|
85 |
apalExitStatus_t apalGpioRead(apalGpio_t* gpio, apalGpioState_t* const val)
|
86 |
{ |
87 |
apalDbgAssert(gpio != NULL);
|
88 |
apalDbgAssert(val != NULL);
|
89 |
|
90 |
*val = (palReadLine(gpio->line) == PAL_HIGH) ? APAL_GPIO_HIGH : APAL_GPIO_LOW; |
91 |
|
92 |
return APAL_STATUS_OK;
|
93 |
} |
94 |
|
95 |
apalExitStatus_t apalGpioWrite(apalGpio_t* gpio, const apalGpioState_t val)
|
96 |
{ |
97 |
apalDbgAssert(gpio != NULL);
|
98 |
|
99 |
// palWriteLine() is not guaranteed to be atomic, thus the scheduler is locked.
|
100 |
syssts_t sysstatus = chSysGetStatusAndLockX(); |
101 |
palWriteLine(gpio->line, (val == APAL_GPIO_HIGH) ? PAL_HIGH : PAL_LOW); |
102 |
chSysRestoreStatusX(sysstatus); |
103 |
|
104 |
return APAL_STATUS_OK;
|
105 |
} |
106 |
|
107 |
apalExitStatus_t apalGpioToggle(apalGpio_t* gpio) |
108 |
{ |
109 |
apalDbgAssert(gpio != NULL);
|
110 |
|
111 |
// palWriteLine() is not guaranteed to be atomic, thus the scheduler is locked.
|
112 |
syssts_t sysstatus = chSysGetStatusAndLockX(); |
113 |
palWriteLine(gpio->line, (palReadLine(gpio->line) == PAL_HIGH) ? PAL_LOW : PAL_HIGH); |
114 |
chSysRestoreStatusX(sysstatus); |
115 |
|
116 |
return APAL_STATUS_OK;
|
117 |
} |
118 |
|
119 |
apalExitStatus_t apalGpioIsInterruptEnabled(apalGpio_t* gpio, bool* const enabled) |
120 |
{ |
121 |
apalDbgAssert(gpio != NULL);
|
122 |
apalDbgAssert(enabled != NULL);
|
123 |
|
124 |
*enabled = palIsLineEventEnabledX(gpio->line); |
125 |
|
126 |
return APAL_STATUS_OK;
|
127 |
} |
128 |
|
129 |
apalExitStatus_t apalControlGpioGet(const apalControlGpio_t* const cgpio, apalControlGpioState_t* const val) |
130 |
{ |
131 |
apalDbgAssert(cgpio != NULL);
|
132 |
apalDbgAssert(cgpio->gpio != NULL);
|
133 |
apalDbgAssert(val != NULL);
|
134 |
|
135 |
*val = ((palReadLine(cgpio->gpio->line) == PAL_HIGH) ^ (cgpio->meta.active == APAL_GPIO_ACTIVE_HIGH)) ? APAL_GPIO_OFF : APAL_GPIO_ON; |
136 |
|
137 |
return APAL_STATUS_OK;
|
138 |
} |
139 |
|
140 |
apalExitStatus_t apalControlGpioSet(const apalControlGpio_t* const cgpio, const apalControlGpioState_t val) |
141 |
{ |
142 |
apalDbgAssert(cgpio != NULL);
|
143 |
apalDbgAssert(cgpio->gpio != NULL);
|
144 |
apalDbgAssert(cgpio->meta.direction == APAL_GPIO_DIRECTION_OUTPUT || cgpio->meta.direction == APAL_GPIO_DIRECTION_BIDIRECTIONAL); |
145 |
|
146 |
// palWriteLine() is not guaranteed to be atomic, thus the scheduler is locked.
|
147 |
syssts_t sysstatus = chSysGetStatusAndLockX(); |
148 |
palWriteLine(cgpio->gpio->line, ((cgpio->meta.active == APAL_GPIO_ACTIVE_HIGH) ^ (val == APAL_GPIO_ON)) ? PAL_LOW : PAL_HIGH); |
149 |
chSysRestoreStatusX(sysstatus); |
150 |
|
151 |
return APAL_STATUS_OK;
|
152 |
} |
153 |
|
154 |
apalExitStatus_t apalControlGpioSetInterrupt(const apalControlGpio_t* const cgpio, const bool enable) |
155 |
{ |
156 |
apalDbgAssert(cgpio != NULL);
|
157 |
apalDbgAssert(cgpio->gpio != NULL);
|
158 |
|
159 |
if (enable) {
|
160 |
apalDbgAssert(pal_lld_get_line_event(cgpio->gpio->line) != NULL);
|
161 |
palEnableLineEvent(cgpio->gpio->line, APAL2CH_EDGE(cgpio->meta.edge)); |
162 |
} else {
|
163 |
palDisableLineEvent(cgpio->gpio->line); |
164 |
} |
165 |
|
166 |
return APAL_STATUS_OK;
|
167 |
} |
168 |
|
169 |
#endif /* (HAL_USE_PAL == TRUE) */ |
170 |
|
171 |
/*============================================================================*/
|
172 |
/* PWM */
|
173 |
/*============================================================================*/
|
174 |
|
175 |
#if (HAL_USE_PWM == TRUE)
|
176 |
|
177 |
apalExitStatus_t apalPWMSet(apalPWMDriver_t* pwm, const apalPWMchannel_t channel, const apalPWMwidth_t width) |
178 |
{ |
179 |
apalDbgAssert(pwm != NULL);
|
180 |
|
181 |
pwmEnableChannel(pwm, (pwmchannel_t)channel, pwm->period * ((float)width / (float)APAL_PWM_WIDTH_MAX) + 0.5f); |
182 |
|
183 |
return APAL_STATUS_OK;
|
184 |
} |
185 |
|
186 |
apalExitStatus_t apalPWMGetFrequency(apalPWMDriver_t* pwm, apalPWMfrequency_t* const frequency)
|
187 |
{ |
188 |
apalDbgAssert(pwm != NULL);
|
189 |
apalDbgAssert(frequency != NULL);
|
190 |
|
191 |
*frequency = pwm->config->frequency; |
192 |
|
193 |
return APAL_STATUS_OK;
|
194 |
} |
195 |
|
196 |
apalExitStatus_t apalPWMGetPeriod(apalPWMDriver_t* pwm, apalPWMperiod_t* const period)
|
197 |
{ |
198 |
apalDbgAssert(pwm != NULL);
|
199 |
apalDbgAssert(period != NULL);
|
200 |
|
201 |
*period = pwm->period; |
202 |
|
203 |
return APAL_STATUS_OK;
|
204 |
} |
205 |
|
206 |
#endif /* (HAL_USE_PWM == TRUE) */ |
207 |
|
208 |
/*============================================================================*/
|
209 |
/* QEI */
|
210 |
/*============================================================================*/
|
211 |
|
212 |
#if (HAL_USE_QEI == TRUE)
|
213 |
|
214 |
apalExitStatus_t apalQEIGetDirection(apalQEIDriver_t* qei, apalQEIDirection_t* const direction)
|
215 |
{ |
216 |
apalDbgAssert(qei != NULL);
|
217 |
apalDbgAssert(direction != NULL);
|
218 |
|
219 |
*direction = (qei_lld_get_direction(qei)) ? APAL_QEI_DIRECTION_DOWN : APAL_QEI_DIRECTION_UP; |
220 |
|
221 |
return APAL_STATUS_OK;
|
222 |
} |
223 |
|
224 |
apalExitStatus_t apalQEIGetPosition(apalQEIDriver_t* qei, apalQEICount_t* const position)
|
225 |
{ |
226 |
apalDbgAssert(qei != NULL);
|
227 |
apalDbgAssert(position != NULL);
|
228 |
|
229 |
*position = qei_lld_get_position(qei); |
230 |
|
231 |
return APAL_STATUS_OK;
|
232 |
} |
233 |
|
234 |
apalExitStatus_t apalQEIGetRange(apalQEIDriver_t* qei, apalQEICount_t* const range)
|
235 |
{ |
236 |
apalDbgAssert(qei != NULL);
|
237 |
apalDbgAssert(range != NULL);
|
238 |
|
239 |
*range = qei_lld_get_range(qei); |
240 |
|
241 |
return APAL_STATUS_OK;
|
242 |
} |
243 |
|
244 |
#endif /* (HAL_USE_QEI == TRUE) */ |
245 |
|
246 |
/*============================================================================*/
|
247 |
/* I2C */
|
248 |
/*============================================================================*/
|
249 |
|
250 |
#if (HAL_USE_I2C == TRUE) || defined(__DOXYGEN__)
|
251 |
|
252 |
apalExitStatus_t apalI2CMasterTransmit(apalI2CDriver_t* i2cd, const apalI2Caddr_t addr, const uint8_t* const txbuf, const size_t txbytes, uint8_t* const rxbuf, const size_t rxbytes, const apalTime_t timeout) |
253 |
{ |
254 |
apalDbgAssert(i2cd != NULL);
|
255 |
|
256 |
#if (I2C_USE_MUTUAL_EXCLUSION == TRUE)
|
257 |
// check whether the I2C driver was locked externally
|
258 |
const bool i2cd_locked_external = i2cd->mutex.owner == currp; |
259 |
if (!i2cd_locked_external) {
|
260 |
i2cAcquireBus(i2cd); |
261 |
} |
262 |
#endif /* (I2C_USE_MUTUAL_EXCLUSION == TRUE) */ |
263 |
|
264 |
#pragma GCC diagnostic push
|
265 |
#pragma GCC diagnostic ignored "-Wtype-limits" |
266 |
#if defined(STM32F1XX_I2C)
|
267 |
// Due to a hardware limitation, for STM32F1 platform the minimum number of bytes that can be received is two.
|
268 |
msg_t status = MSG_OK; |
269 |
if (rxbytes == 1) { |
270 |
uint8_t buffer[2];
|
271 |
status = i2cMasterTransmitTimeout(i2cd, addr, txbuf, txbytes, buffer, 2, ((timeout >= TIME_INFINITE) ? TIME_INFINITE : TIME_US2I(timeout)) );
|
272 |
rxbuf[0] = buffer[0]; |
273 |
} else {
|
274 |
status = i2cMasterTransmitTimeout(i2cd, addr, txbuf, txbytes, rxbuf, rxbytes, ((timeout >= TIME_INFINITE) ? TIME_INFINITE : TIME_US2I(timeout)) ); |
275 |
} |
276 |
#else /* defined(STM32F1XX_I2C) */ |
277 |
const msg_t status = i2cMasterTransmitTimeout(i2cd, addr, txbuf, txbytes, rxbuf, rxbytes, ((timeout >= TIME_INFINITE) ? TIME_INFINITE : TIME_US2I(timeout)) );
|
278 |
#endif /* defined(STM32F1XX_I2C) */ |
279 |
#pragma GCC diagnostic pop
|
280 |
|
281 |
#if (I2C_USE_MUTUAL_EXCLUSION == TRUE)
|
282 |
if (!i2cd_locked_external) {
|
283 |
i2cReleaseBus(i2cd); |
284 |
} |
285 |
#endif /* (I2C_USE_MUTUAL_EXCLUSION == TRUE) */ |
286 |
|
287 |
switch (status)
|
288 |
{ |
289 |
case MSG_OK:
|
290 |
#if defined(STM32F1XX_I2C)
|
291 |
return (rxbytes != 1) ? APAL_STATUS_OK : APAL_STATUS_WARNING; |
292 |
#else /* defined(STM32F1XX_I2C) */ |
293 |
return APAL_STATUS_OK;
|
294 |
#endif /* defined(STM32F1XX_I2C) */ |
295 |
case MSG_TIMEOUT:
|
296 |
return APAL_STATUS_TIMEOUT;
|
297 |
case MSG_RESET:
|
298 |
default:
|
299 |
return APAL_STATUS_ERROR;
|
300 |
} |
301 |
} |
302 |
|
303 |
apalExitStatus_t apalI2CMasterReceive(apalI2CDriver_t* i2cd, const apalI2Caddr_t addr, uint8_t* const rxbuf, const size_t rxbytes, const apalTime_t timeout) |
304 |
{ |
305 |
apalDbgAssert(i2cd != NULL);
|
306 |
|
307 |
#if (I2C_USE_MUTUAL_EXCLUSION == TRUE)
|
308 |
// check whether the I2C driver was locked externally
|
309 |
const bool i2cd_locked_external = i2cd->mutex.owner == currp; |
310 |
if (!i2cd_locked_external) {
|
311 |
i2cAcquireBus(i2cd); |
312 |
} |
313 |
#endif /* (I2C_USE_MUTUAL_EXCLUSION == TRUE) */ |
314 |
|
315 |
#pragma GCC diagnostic push
|
316 |
#pragma GCC diagnostic ignored "-Wtype-limits" |
317 |
#if defined(STM32F1XX_I2C)
|
318 |
// Due to a hardware limitation, for STM32F1 platform the minimum number of bytes that can be received is two.
|
319 |
msg_t status = MSG_OK; |
320 |
if (rxbytes == 1) { |
321 |
uint8_t buffer[2];
|
322 |
status = i2cMasterReceiveTimeout(i2cd, addr, buffer, 2, ((timeout >= TIME_INFINITE) ? TIME_INFINITE : TIME_US2I(timeout)) );
|
323 |
rxbuf[0] = buffer[0]; |
324 |
} else {
|
325 |
status = i2cMasterReceiveTimeout(i2cd, addr, rxbuf, rxbytes, ((timeout >= TIME_INFINITE) ? TIME_INFINITE : TIME_US2I(timeout)) ); |
326 |
} |
327 |
#else /* defined(STM32F1XX_I2C) */ |
328 |
const msg_t status = i2cMasterReceiveTimeout(i2cd, addr, rxbuf, rxbytes, ((timeout >= TIME_INFINITE) ? TIME_INFINITE : TIME_US2I(timeout)) );
|
329 |
#endif /* defined(STM32F1XX_I2C) */ |
330 |
#pragma GCC diagnostic pop
|
331 |
|
332 |
#if (I2C_USE_MUTUAL_EXCLUSION == TRUE)
|
333 |
if (!i2cd_locked_external) {
|
334 |
i2cReleaseBus(i2cd); |
335 |
} |
336 |
#endif /* (I2C_USE_MUTUAL_EXCLUSION == TRUE) */ |
337 |
|
338 |
switch (status)
|
339 |
{ |
340 |
case MSG_OK:
|
341 |
#if defined(STM32F1XX_I2C)
|
342 |
return (rxbytes != 1) ? APAL_STATUS_OK : APAL_STATUS_WARNING; |
343 |
#else /* defined(STM32F1XX_I2C) */ |
344 |
return APAL_STATUS_OK;
|
345 |
#endif /* defined(STM32F1XX_I2C) */ |
346 |
case MSG_TIMEOUT:
|
347 |
return APAL_STATUS_TIMEOUT;
|
348 |
case MSG_RESET:
|
349 |
default:
|
350 |
return APAL_STATUS_ERROR;
|
351 |
} |
352 |
} |
353 |
|
354 |
#endif /* (HAL_USE_I2C == TRUE) */ |
355 |
|
356 |
/*============================================================================*/
|
357 |
/* SPI */
|
358 |
/*============================================================================*/
|
359 |
|
360 |
#if (HAL_USE_SPI == TRUE) || defined(__DOXYGEN__)
|
361 |
|
362 |
apalExitStatus_t apalSPITransmit(apalSPIDriver_t* spid, const uint8_t* const data, const size_t length) |
363 |
{ |
364 |
apalDbgAssert(spid != NULL);
|
365 |
|
366 |
#if (SPI_USE_MUTUAL_EXCLUSION == TRUE)
|
367 |
// check whether the SPI driver was locked externally
|
368 |
const bool spid_locked_external = spid->mutex.owner == currp; |
369 |
if (!spid_locked_external) {
|
370 |
spiAcquireBus(spid); |
371 |
} |
372 |
#endif /* (SPI_USE_MUTUAL_EXCLUSION == TRUE) */ |
373 |
|
374 |
spiSelect(spid); |
375 |
spiSend(spid, length, data); |
376 |
spiUnselect(spid); |
377 |
|
378 |
#if (SPI_USE_MUTUAL_EXCLUSION == TRUE)
|
379 |
if (!spid_locked_external) {
|
380 |
spiReleaseBus(spid); |
381 |
} |
382 |
#endif /* (SPI_USE_MUTUAL_EXCLUSION == TRUE) */ |
383 |
|
384 |
return APAL_STATUS_OK;
|
385 |
} |
386 |
|
387 |
apalExitStatus_t apalSPIReceive(apalSPIDriver_t* spid, uint8_t* const data, const size_t length) |
388 |
{ |
389 |
apalDbgAssert(spid != NULL);
|
390 |
|
391 |
#if (SPI_USE_MUTUAL_EXCLUSION == TRUE)
|
392 |
// check whether the SPI driver was locked externally
|
393 |
const bool spid_locked_external = spid->mutex.owner == currp; |
394 |
if (!spid_locked_external) {
|
395 |
spiAcquireBus(spid); |
396 |
} |
397 |
#endif /* (SPI_USE_MUTUAL_EXCLUSION == TRUE) */ |
398 |
|
399 |
spiSelect(spid); |
400 |
spiReceive(spid, length, data); |
401 |
spiUnselect(spid); |
402 |
|
403 |
#if (SPI_USE_MUTUAL_EXCLUSION == TRUE)
|
404 |
if (!spid_locked_external) {
|
405 |
spiReleaseBus(spid); |
406 |
} |
407 |
#endif /* (SPI_USE_MUTUAL_EXCLUSION == TRUE) */ |
408 |
|
409 |
return APAL_STATUS_OK;
|
410 |
} |
411 |
|
412 |
apalExitStatus_t apalSPITransmitAndReceive(apalSPIDriver_t* spid, const uint8_t* const txData , uint8_t* const rxData, const size_t txLength, const size_t rxLength) |
413 |
{ |
414 |
apalDbgAssert(spid != NULL);
|
415 |
|
416 |
#if (SPI_USE_MUTUAL_EXCLUSION == TRUE)
|
417 |
// check whether the SPI driver was locked externally
|
418 |
const bool spid_locked_external = spid->mutex.owner == currp; |
419 |
if (!spid_locked_external) {
|
420 |
spiAcquireBus(spid); |
421 |
} |
422 |
#endif /* (SPI_USE_MUTUAL_EXCLUSION == TRUE) */ |
423 |
|
424 |
spiSelect(spid); |
425 |
spiSend(spid, txLength, txData); |
426 |
spiReceive(spid, rxLength, rxData); |
427 |
spiUnselect(spid); |
428 |
|
429 |
#if (SPI_USE_MUTUAL_EXCLUSION == TRUE)
|
430 |
if (!spid_locked_external) {
|
431 |
spiReleaseBus(spid); |
432 |
} |
433 |
#endif /* (SPI_USE_MUTUAL_EXCLUSION == TRUE) */ |
434 |
|
435 |
return APAL_STATUS_OK;
|
436 |
} |
437 |
|
438 |
apalExitStatus_t apalSPIExchange(apalSPIDriver_t* spid, const uint8_t* const txData , uint8_t* const rxData, const size_t length) |
439 |
{ |
440 |
apalDbgAssert(spid != NULL);
|
441 |
|
442 |
#if (SPI_USE_MUTUAL_EXCLUSION == TRUE)
|
443 |
// check whether the SPI driver was locked externally
|
444 |
const bool spid_locked_external = spid->mutex.owner == currp; |
445 |
if (!spid_locked_external) {
|
446 |
spiAcquireBus(spid); |
447 |
} |
448 |
#endif /* (SPI_USE_MUTUAL_EXCLUSION == TRUE) */ |
449 |
|
450 |
spiSelect(spid); |
451 |
spiExchange(spid, length, txData, rxData); |
452 |
spiUnselect(spid); |
453 |
|
454 |
#if (SPI_USE_MUTUAL_EXCLUSION == TRUE)
|
455 |
if (!spid_locked_external) {
|
456 |
spiReleaseBus(spid); |
457 |
} |
458 |
#endif /* (SPI_USE_MUTUAL_EXCLUSION == TRUE) */ |
459 |
|
460 |
return APAL_STATUS_OK;
|
461 |
} |
462 |
|
463 |
apalExitStatus_t apalSPIReconfigure(apalSPIDriver_t* spid, const apalSPIConfig_t* config)
|
464 |
{ |
465 |
apalDbgAssert(spid != NULL);
|
466 |
apalDbgAssert(config != NULL);
|
467 |
|
468 |
#if (SPI_USE_MUTUAL_EXCLUSION == TRUE)
|
469 |
// check whether the SPI driver was locked externally
|
470 |
const bool spid_locked_external = spid->mutex.owner == currp; |
471 |
if (!spid_locked_external) {
|
472 |
spiAcquireBus(spid); |
473 |
} |
474 |
#endif /* (SPI_USE_MUTUAL_EXCLUSION == TRUE) */ |
475 |
|
476 |
spiStop(spid); |
477 |
spiStart(spid, config); |
478 |
|
479 |
#if (SPI_USE_MUTUAL_EXCLUSION == TRUE)
|
480 |
if (!spid_locked_external) {
|
481 |
spiReleaseBus(spid); |
482 |
} |
483 |
#endif /* (SPI_USE_MUTUAL_EXCLUSION == TRUE) */ |
484 |
|
485 |
return APAL_STATUS_OK;
|
486 |
} |
487 |
|
488 |
#endif /* (HAL_USE_SPI == TRUE) */ |