amiro-os / include / amiro / Constants.h @ 58fe0e0b
History | View | Annotate | Download (8.16 KB)
| 1 |
#ifndef AMIRO_CONSTANTS_H_
|
|---|---|
| 2 |
#define AMIRO_CONSTANTS_H_
|
| 3 |
|
| 4 |
/*! \brief Constants regarding the AMiRo platform
|
| 5 |
*
|
| 6 |
* This header contains constant variables
|
| 7 |
* regarding the AMiRo platform, which means that
|
| 8 |
* these values do not change during runtime.
|
| 9 |
* Constants are e.g. physical ones like seconds per minute
|
| 10 |
* or geometrical ones like the circumference of wheel.
|
| 11 |
* All physical constants (therefore all values with a
|
| 12 |
* physical unit) are implicitly in µ iff the variable
|
| 13 |
* is of type integer, unless it is explicitly named in
|
| 14 |
* the variable.
|
| 15 |
* All physical constants (therefore all values with a
|
| 16 |
* physical unit) are implicitly without prefix (e.g. µ)
|
| 17 |
* iff the variable is of type float, unless it is
|
| 18 |
* explicitly named in the variable. The SI prefix is
|
| 19 |
* used, iff the variable is of type float and therefor
|
| 20 |
* in SI units.
|
| 21 |
*/
|
| 22 |
|
| 23 |
#include <math.h> |
| 24 |
#include <stdint.h> |
| 25 |
|
| 26 |
/* CAN_* defines start */
|
| 27 |
|
| 28 |
/** \brief Controller Area Network specific defines
|
| 29 |
*
|
| 30 |
* These CAN_* defines are used in ControllerAreaNetworkRx.h
|
| 31 |
* and ControllerAreaNetworkTx.h
|
| 32 |
*/
|
| 33 |
|
| 34 |
/* CAN_* defines end */
|
| 35 |
|
| 36 |
namespace amiro {
|
| 37 |
|
| 38 |
namespace CAN {
|
| 39 |
|
| 40 |
const uint32_t UPDATE_PERIOD_MSEC = MS2ST(125); |
| 41 |
|
| 42 |
const uint32_t PERIODIC_TIMER_ID = 1; |
| 43 |
const uint32_t RECEIVED_ID = 2; |
| 44 |
|
| 45 |
const uint32_t BOARD_ID_SHIFT = 0x00u; |
| 46 |
const uint32_t BOARD_ID_MASK = 0x07u; |
| 47 |
const uint32_t DEVICE_ID_SHIFT = 0x03u; |
| 48 |
const uint32_t DEVICE_ID_MASK = 0xFFu; |
| 49 |
const uint32_t INDEX_ID_SHIFT = 0x03u; |
| 50 |
const uint32_t INDEX_ID_MASK = 0x07u; |
| 51 |
|
| 52 |
const uint32_t DI_WHEEL_DRIVE_ID = 1; |
| 53 |
const uint32_t POWER_MANAGEMENT_ID = 2; |
| 54 |
const uint32_t LIGHT_RING_ID = 3; |
| 55 |
const uint32_t COGNITION = 4; |
| 56 |
|
| 57 |
|
| 58 |
const uint32_t PROXIMITY_FLOOR_ID = 0x51; |
| 59 |
const uint32_t ODOMETRY_ID = 0x50; |
| 60 |
const uint32_t BRIGHTNESS_ID = 0x40; |
| 61 |
inline constexpr uint32_t COLOR_ID(uint32_t index) {return 0x38 | ((index) & 0x7);} |
| 62 |
inline constexpr uint32_t PROXIMITY_RING_ID(uint32_t index) {return 0x30 | ((index) & 0x7);} |
| 63 |
const uint32_t SET_KINEMATIC_CONST_ID = 0x22; |
| 64 |
const uint32_t TARGET_POSITION_ID = 0x21; |
| 65 |
const uint32_t ACTUAL_SPEED_ID = 0x20; |
| 66 |
const uint32_t SET_ODOMETRY_ID = 0x12; |
| 67 |
const uint32_t TARGET_RPM_ID = 0x11; |
| 68 |
const uint32_t TARGET_SPEED_ID = 0x10; |
| 69 |
const uint32_t POWER_STATUS_ID = 0x60; |
| 70 |
const uint32_t ROBOT_ID = 0x48; |
| 71 |
inline constexpr uint32_t SHELL_QUERY_ID(uint8_t index) {return 0x70 | ((index) & 0x7);} |
| 72 |
inline constexpr uint32_t SHELL_REPLY_ID(uint8_t index) {return 0x78 | ((index) & 0x7);} |
| 73 |
const uint32_t BROADCAST_SHUTDOWN = 0x80u; |
| 74 |
|
| 75 |
const uint32_t CALIBRATE_PROXIMITY_FLOOR = 0x81u; |
| 76 |
const uint32_t CALIBRATE_PROXIMITY_RING = 0x82u; |
| 77 |
|
| 78 |
const uint32_t SHUTDOWN_MAGIC = 0xAA55u; |
| 79 |
} |
| 80 |
|
| 81 |
namespace constants {
|
| 82 |
|
| 83 |
/** \brief Amount of seconds per minute */
|
| 84 |
const int32_t secondsPerMinute = 60; |
| 85 |
|
| 86 |
/** \brief Amount of minutes per hour */
|
| 87 |
const int32_t minutesPerHour = 60; |
| 88 |
|
| 89 |
/** \brief Amount of milliseconds per second */
|
| 90 |
const int32_t millisecondsPerSecond = 1000; |
| 91 |
|
| 92 |
/* Several definitions of PI */
|
| 93 |
constexpr float PI = float(M_PI); /**< PI approximated with single precision floating point */ |
| 94 |
constexpr uint32_t PIe9 = (M_PI * 1000000000) + 0.5f; /**< PI approximated with 32-bit integer and multiplied by factor 1e9 */ |
| 95 |
constexpr uint32_t PIe6 = (M_PI * 1000000) + 0.5f; /**< PI approximated with 32-bit integer and multiplied by factor 1e6 */ |
| 96 |
constexpr uint16_t PIe3 = (M_PI * 1000) + 0.5f; /**< PI approximated with 16-bit integer and multiplied by factor 1e3 */ |
| 97 |
constexpr uint16_t PIe2 = (M_PI * 100) + 0.5f; /**< PI approximated with 16-bit integer and multiplied by factor 1e2 */ |
| 98 |
constexpr uint8_t PIe1 = (M_PI * 10) + 0.5f; /**< PI approximated with 8-bit integer and multiplied by factor 1e1 */ |
| 99 |
constexpr uint8_t PIe0 = (M_PI * 1) + 0.5f; /**< PI approximated with 8-bit integer and multiplied by factor 1e0 */ |
| 100 |
|
| 101 |
namespace LightRing {
|
| 102 |
|
| 103 |
/** \brief Index of the top LEDs
|
| 104 |
*
|
| 105 |
* Top view of the AMiRo top LEDs and their indices:
|
| 106 |
* _______
|
| 107 |
* / 7 F 0 \
|
| 108 |
* |6 1|
|
| 109 |
* |5 2|
|
| 110 |
* \_4_B_3_/
|
| 111 |
*/
|
| 112 |
enum ledIndex : uint8_t {
|
| 113 |
LED_BL = 4, LED_BACK_LEFT = 4, LED_SSW = 4, LED_SOUTH_SOUTHWEST = 4, |
| 114 |
LED_LB = 5, LED_LEFT_BACK = 5, LED_WSW = 5, LED_WEST_SOUTHWEST = 5, |
| 115 |
LED_LF = 6, LED_LEFT_FRONT = 6, LED_WNW = 6, LED_WEST_NORTHWEST = 6, |
| 116 |
LED_FL = 7, LED_FRONT_LEFT = 7, LED_NNW = 7, LED_NORTH_NORTHWEST = 7, |
| 117 |
LED_FR = 0, LED_FRONT_RIGHT = 0, LED_NNE = 0, LED_NORTH_NORTHEAST = 0, |
| 118 |
LED_RF = 1, LED_RIGHT_FRONT = 1, LED_ENE = 1, LED_EAST_NORTHEAST = 1, |
| 119 |
LED_RB = 2, LED_RIGHT_BACK = 2, LED_ESE = 2, LED_EAST_SOUTHEAST = 2, |
| 120 |
LED_BR = 3, LED_BACK_RIGHT = 3, LED_SSE = 3, LED_SOUTH_SOUTHEAST = 3 |
| 121 |
}; |
| 122 |
} |
| 123 |
|
| 124 |
namespace DiWheelDrive {
|
| 125 |
|
| 126 |
/** \brief Distance between wheels in meter */
|
| 127 |
const float wheelBaseDistanceSI = 0.069f; |
| 128 |
|
| 129 |
/** \brief Distance between wheels in micrometer */
|
| 130 |
const int32_t wheelBaseDistance = wheelBaseDistanceSI * 1e6; |
| 131 |
|
| 132 |
/** \brief Wheel diameter in meter */
|
| 133 |
const float wheelDiameterSI = 0.05571f; |
| 134 |
|
| 135 |
/** \brief Wheel diameter */
|
| 136 |
const int32_t wheelDiameter = wheelDiameterSI * 1e6; |
| 137 |
|
| 138 |
/** \brief Wheel circumference in meter */
|
| 139 |
const float wheelCircumferenceSI = M_PI * wheelDiameterSI; |
| 140 |
|
| 141 |
/** \brief Wheel circumference in micrometer */
|
| 142 |
const int32_t wheelCircumference = wheelCircumferenceSI * 1e6; |
| 143 |
|
| 144 |
/** \brief Wheel error in meter (topview left:0, right:1) */
|
| 145 |
const float wheelErrorSI[2] = {0.1, 0.1}; |
| 146 |
|
| 147 |
/** \brief Wheel error in meter (topview left:0, right:1) */
|
| 148 |
const int32_t wheelError[2] = {(int32_t) (wheelErrorSI[0] * 1e6), (int32_t) (wheelErrorSI[1] * 1e6)}; |
| 149 |
|
| 150 |
/** \brief Motor increments per revolution
|
| 151 |
*
|
| 152 |
* The increments are produced by 2 channels á 16
|
| 153 |
* pulses per revolution with respect to the rising
|
| 154 |
* and falling signal => 2*2*16 pulses/revolution.
|
| 155 |
* The gearbox is 22:1 => 2*2*16*22 pulses/revolution
|
| 156 |
*/
|
| 157 |
const int32_t incrementsPerRevolution = 2 * 2 * 16 * 22; |
| 158 |
|
| 159 |
/** \brief Index of the proximity sensors
|
| 160 |
*
|
| 161 |
* Bottom view of the AMiRo sensors and their indices (F:Front, B:Back):
|
| 162 |
* _____
|
| 163 |
* / 0F3 \
|
| 164 |
* |1 2|
|
| 165 |
* \__B__/
|
| 166 |
*/
|
| 167 |
enum proximitySensorIdx : uint8_t {
|
| 168 |
PROX_WL = 2, PROX_LW = 2, PROX_WHEEL_LEFT = 2, PROX_LEFT_WHEEL = 2, |
| 169 |
PROX_FL = 3, PROX_LF = 3, PROX_FRONT_LEFT = 3, PROX_LEFT_FRONT = 3, |
| 170 |
PROX_FR = 0, PROX_RF = 0, PROX_FRONT_RIGHT = 0, PROX_RIGHT_FRONT = 0, |
| 171 |
PROX_WR = 1, PROX_RW = 1, PROX_WHEEL_RIGHT = 1, PROX_RIGHT_WHEEL = 1, |
| 172 |
}; |
| 173 |
|
| 174 |
/** \brief Index of the wheels
|
| 175 |
*
|
| 176 |
* Top view of the AMiRo wheels and their indices (F:Front, B:Back):
|
| 177 |
* ____
|
| 178 |
* /| F |\
|
| 179 |
* |0 1|
|
| 180 |
* \|_B_|/
|
| 181 |
*/
|
| 182 |
enum wheelIdx : uint8_t {
|
| 183 |
WHEEL_L = 0, WHEEL_LEFT = 0, LEFT_WHEEL = 0, |
| 184 |
WHEEL_R = 1, WHEEL_RIGHT = 1, RIGHT_WHEEL = 1, |
| 185 |
}; |
| 186 |
} |
| 187 |
|
| 188 |
namespace PowerManagement {
|
| 189 |
|
| 190 |
/** \brief Index of the proximity sensors
|
| 191 |
*
|
| 192 |
* Top view of the AMiRo sensors and their indices:
|
| 193 |
* _______
|
| 194 |
* / 3 F 4 \
|
| 195 |
* |2 5|
|
| 196 |
* |1 6|
|
| 197 |
* \_0_B_7_/
|
| 198 |
*/
|
| 199 |
enum proximitySensorIdx : uint8_t {
|
| 200 |
PROX_BL = 0, PROX_BACK_LEFT = 0, PROX_SSW = 0, PROX_SOUTH_SOUTHWEST = 0, |
| 201 |
PROX_LB = 1, PROX_LEFT_BACK = 1, PROX_WSW = 1, PROX_WEST_SOUTHWEST = 1, |
| 202 |
PROX_LF = 2, PROX_LEFT_FRONT = 2, PROX_WNW = 2, PROX_WEST_NORTHWEST = 2, |
| 203 |
PROX_FL = 3, PROX_FRONT_LEFT = 3, PROX_NNW = 3, PROX_NORTH_NORTHWEST = 3, |
| 204 |
PROX_FR = 4, PROX_FRONT_RIGHT = 4, PROX_NNE = 4, PROX_NORTH_NORTHEAST = 4, |
| 205 |
PROX_RF = 5, PROX_RIGHT_FRONT = 5, PROX_ENE = 5, PROX_EAST_NORTHEAST = 5, |
| 206 |
PROX_RB = 6, PROX_RIGHT_BACK = 6, PROX_ESE = 6, PROX_EAST_SOUTHEAST = 6, |
| 207 |
PROX_BR = 7, PROX_BACK_RIGHT = 7, PROX_SSE = 7, PROX_SOUTH_SOUTHEAST = 7 |
| 208 |
}; |
| 209 |
|
| 210 |
/** \brief Index of the batteries.
|
| 211 |
*
|
| 212 |
* The port names are printed on the PCB.
|
| 213 |
*/
|
| 214 |
enum batteryPortIdx : uint8_t {
|
| 215 |
BAT_P7 = 0, BAT_A = 0, |
| 216 |
BAT_P8 = 1, BAT_B = 1 |
| 217 |
}; |
| 218 |
|
| 219 |
/** \brief Index of the power monitors.
|
| 220 |
*/
|
| 221 |
enum powerMonitorIdx : uint8_t {
|
| 222 |
INA_VDD = 0,
|
| 223 |
INA_VIO18 = 1,
|
| 224 |
INA_VIO33 = 2,
|
| 225 |
INA_VIO42 = 3,
|
| 226 |
INA_VIO50 = 4
|
| 227 |
}; |
| 228 |
} |
| 229 |
|
| 230 |
} |
| 231 |
|
| 232 |
} |
| 233 |
|
| 234 |
#endif /* AMIRO_CONSTANTS_H_ */ |