amiro-os / devices / DiWheelDrive / linefollow2.cpp @ 5d138bca
History | View | Annotate | Download (12.626 KB)
1 | c76baf23 | Georg Alberding | #include "global.hpp" |
---|---|---|---|
2 | #include "linefollow2.hpp" |
||
3 | 2330e415 | Georg Alberding | #include <cmath> |
4 | c76baf23 | Georg Alberding | |
5 | |||
6 | 22b85da1 | galberding | |
7 | 12463563 | galberding | LineFollow::LineFollow(Global *global){ |
8 | this->global = global;
|
||
9 | } |
||
10 | 1b3adcdd | galberding | LineFollow::LineFollow(Global *global, LineFollowStrategy strategy){ |
11 | this->global = global;
|
||
12 | this-> strategy = strategy;
|
||
13 | c76baf23 | Georg Alberding | } |
14 | 25388c2f | Georg Alberding | |
15 | 22b85da1 | galberding | /**
|
16 | * Calculate the error from front proxi sensors and fixed threshold values for those sensors.
|
||
17 | */
|
||
18 | int LineFollow::getError(){
|
||
19 | 1b3adcdd | galberding | // Get actual sensor data of both front sensors
|
20 | 88afb834 | galberding | int FL = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_LEFT].getProximityScaledWoOffset();
|
21 | int FR = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_RIGHT].getProximityScaledWoOffset();
|
||
22 | int targetL = global->threshProxyL;
|
||
23 | int targetR = global->threshProxyR;
|
||
24 | 1b3adcdd | galberding | int error = 0; |
25 | switch (this->strategy) |
||
26 | { |
||
27 | bfffb0bd | galberding | case LineFollowStrategy::EDGE_RIGHT: case LineFollowStrategy::DOCKING: |
28 | 1b3adcdd | galberding | error = -(FL -targetL + FR - targetR); |
29 | break;
|
||
30 | case LineFollowStrategy::EDGE_LEFT:
|
||
31 | error = (FL -targetL + FR - targetR); |
||
32 | break;
|
||
33 | case LineFollowStrategy::MIDDLE:
|
||
34 | // Assume that the smallest value means driving in the middle
|
||
35 | targetL = targetR = !(targetL<targetR)?targetR:targetL; |
||
36 | error = (FL -targetL + FR - targetR); |
||
37 | break;
|
||
38 | |||
39 | default:
|
||
40 | break;
|
||
41 | } |
||
42 | // Debugging stuff ------
|
||
43 | if (global->enableRecord){
|
||
44 | global->senseRec[global->sensSamples].error = error; |
||
45 | global->senseRec[global->sensSamples].FL = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_LEFT].getProximityScaledWoOffset(); |
||
46 | global->senseRec[global->sensSamples].FR = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_RIGHT].getProximityScaledWoOffset(); |
||
47 | global->sensSamples++; |
||
48 | } |
||
49 | // ----------------------
|
||
50 | // Register white values
|
||
51 | 22b85da1 | galberding | if (FL+FR > global->threshWhite){
|
52 | whiteFlag = 1;
|
||
53 | }else{
|
||
54 | whiteFlag = 0;
|
||
55 | } |
||
56 | return error;
|
||
57 | } |
||
58 | |||
59 | 1b3adcdd | galberding | int LineFollow::followLine(int (&rpmSpeed)[2]){ |
60 | bfffb0bd | galberding | int correctionSpeed = 0; |
61 | 1b3adcdd | galberding | switch (this->strategy) |
62 | { |
||
63 | case LineFollowStrategy::FUZZY:
|
||
64 | bfffb0bd | galberding | for (int i = 0; i < 4; i++) { |
65 | vcnl4020AmbientLight[i] = global->vcnl4020[i].getAmbientLight(); |
||
66 | vcnl4020Proximity[i] = global->vcnl4020[i].getProximityScaledWoOffset(); |
||
67 | } |
||
68 | lineFollowing(vcnl4020Proximity, rpmSpeed); |
||
69 | break;
|
||
70 | |||
71 | case LineFollowStrategy::DOCKING:
|
||
72 | correctionSpeed = -getPidCorrectionSpeed(); |
||
73 | rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] = -global->forwardSpeed; |
||
74 | |||
75 | rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] = -global->forwardSpeed; |
||
76 | |||
77 | break;
|
||
78 | 22b85da1 | galberding | |
79 | 1b3adcdd | galberding | default:
|
80 | bfffb0bd | galberding | correctionSpeed = getPidCorrectionSpeed(); |
81 | // chprintf((BaseSequentialStream*) &SD1, "Correction: %d, thresh: %d\n",correctionSpeed, global->threshWhite);
|
||
82 | 22b85da1 | galberding | |
83 | bfffb0bd | galberding | rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] = global->forwardSpeed + correctionSpeed; |
84 | 22b85da1 | galberding | |
85 | bfffb0bd | galberding | rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] = global->forwardSpeed - correctionSpeed; |
86 | break;
|
||
87 | 1b3adcdd | galberding | } |
88 | bfffb0bd | galberding | return whiteFlag;
|
89 | 22b85da1 | galberding | } |
90 | |||
91 | 1b3adcdd | galberding | |
92 | 22b85da1 | galberding | /**
|
93 | * Pid controller which returns a corrections speed.
|
||
94 | */
|
||
95 | int LineFollow::getPidCorrectionSpeed(){
|
||
96 | int error = getError();
|
||
97 | 1b3adcdd | galberding | int sloap = error - oldError;
|
98 | int correctionSpeed = (int) (Kp*error + Ki*accumHist + Kd*sloap); |
||
99 | oldError = error; |
||
100 | // accumHist += (int) (0.01 * error);
|
||
101 | 22b85da1 | galberding | if (abs(error) > global->maxDist.error){
|
102 | global->maxDist.error = error; |
||
103 | } |
||
104 | return correctionSpeed;
|
||
105 | 88afb834 | galberding | } |
106 | 12463563 | galberding | |
107 | 1b3adcdd | galberding | |
108 | void LineFollow::setStrategy(LineFollowStrategy strategy){
|
||
109 | this->strategy = strategy;
|
||
110 | } |
||
111 | |||
112 | LineFollowStrategy LineFollow::getStrategy(){ |
||
113 | return this->strategy; |
||
114 | } |
||
115 | void LineFollow::setGains(float Kp, float Ki, float Kd){ |
||
116 | this->Kp = Kp;
|
||
117 | this->Ki = Ki;
|
||
118 | this->Kd = Kd;
|
||
119 | } |
||
120 | |||
121 | |||
122 | |||
123 | |||
124 | |||
125 | // Lagacy code, fuzzy following-----------------------------------------
|
||
126 | // Line following by a fuzzy controler
|
||
127 | void LineFollow::lineFollowing(int (&proximity)[4], int (&rpmFuzzyCtrl)[2]) { |
||
128 | // FUZZYFICATION
|
||
129 | // First we need to get the fuzzy value for our 3 values {BLACK, GREY, WHITE}
|
||
130 | float leftWheelFuzzyMemberValues[3], leftFrontFuzzyMemberValues[3], rightFrontFuzzyMemberValues[3], rightWheelFuzzyMemberValues[3]; |
||
131 | fuzzyfication(proximity[constants::DiWheelDrive::PROX_WHEEL_LEFT], leftWheelFuzzyMemberValues); |
||
132 | fuzzyfication(proximity[constants::DiWheelDrive::PROX_FRONT_LEFT], leftFrontFuzzyMemberValues); |
||
133 | fuzzyfication(proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT], rightFrontFuzzyMemberValues); |
||
134 | fuzzyfication(proximity[constants::DiWheelDrive::PROX_WHEEL_RIGHT], rightWheelFuzzyMemberValues); |
||
135 | |||
136 | // INFERENCE RULE DEFINITION
|
||
137 | // Get the member for each sensor
|
||
138 | colorMember member[4];
|
||
139 | member[constants::DiWheelDrive::PROX_WHEEL_LEFT] = getMember(leftWheelFuzzyMemberValues); |
||
140 | member[constants::DiWheelDrive::PROX_FRONT_LEFT] = getMember(leftFrontFuzzyMemberValues); |
||
141 | member[constants::DiWheelDrive::PROX_FRONT_RIGHT] = getMember(rightFrontFuzzyMemberValues); |
||
142 | member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] = getMember(rightWheelFuzzyMemberValues); |
||
143 | |||
144 | // visualize sensors via LEDs
|
||
145 | global->robot.setLightColor(constants::LightRing::LED_WNW, memberToLed(member[constants::DiWheelDrive::PROX_WHEEL_LEFT])); |
||
146 | global->robot.setLightColor(constants::LightRing::LED_NNW, memberToLed(member[constants::DiWheelDrive::PROX_FRONT_LEFT])); |
||
147 | global->robot.setLightColor(constants::LightRing::LED_NNE, memberToLed(member[constants::DiWheelDrive::PROX_FRONT_RIGHT])); |
||
148 | global->robot.setLightColor(constants::LightRing::LED_ENE, memberToLed(member[constants::DiWheelDrive::PROX_WHEEL_RIGHT])); |
||
149 | |||
150 | // chprintf((BaseSequentialStream*) &SD1, "Left: BLACK: %f, GREY: %f, WHITE: %f\r\n", leftWheelFuzzyMemberValues[BLACK], leftWheelFuzzyMemberValues[GREY], leftWheelFuzzyMemberValues[WHITE]);
|
||
151 | // chprintf((BaseSequentialStream*) &SD1, "Right: BLACK: %f, GREY: %f, WHITE: %f\r\n", rightFuzzyMemberValues[BLACK], rightFuzzyMemberValues[GREY], rightFuzzyMemberValues[WHITE]);
|
||
152 | |||
153 | // DEFUZZYFICATION
|
||
154 | defuzzyfication(member, rpmFuzzyCtrl); |
||
155 | // defuzz(member, rpmFuzzyCtrl);
|
||
156 | } |
||
157 | |||
158 | |||
159 | Color LineFollow::memberToLed(colorMember member) { |
||
160 | switch (member) {
|
||
161 | case BLACK:
|
||
162 | return Color(Color::GREEN);
|
||
163 | case GREY:
|
||
164 | return Color(Color::YELLOW);
|
||
165 | case WHITE:
|
||
166 | return Color(Color::RED);
|
||
167 | default:
|
||
168 | return Color(Color::WHITE);
|
||
169 | } |
||
170 | } |
||
171 | |||
172 | void LineFollow::defuzzyfication(colorMember (&member)[4], int (&rpmFuzzyCtrl)[2]) { |
||
173 | whiteFlag = 0;
|
||
174 | // all sensors are equal
|
||
175 | if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_LEFT] &&
|
||
176 | member[constants::DiWheelDrive::PROX_FRONT_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_RIGHT] && |
||
177 | member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == member[constants::DiWheelDrive::PROX_WHEEL_RIGHT]) { |
||
178 | // something is wrong -> stop
|
||
179 | copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
||
180 | // both front sensor detect a line
|
||
181 | } else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK && |
||
182 | member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK) { |
||
183 | // straight
|
||
184 | copyRpmSpeed(global->rpmForward, rpmFuzzyCtrl); |
||
185 | // exact one front sensor detects a line
|
||
186 | } else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK || |
||
187 | member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK) { |
||
188 | // soft correction
|
||
189 | if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY) {
|
||
190 | // soft right
|
||
191 | copyRpmSpeed(global->rpmSoftRight, rpmFuzzyCtrl); |
||
192 | } else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == WHITE) { |
||
193 | // hard right
|
||
194 | copyRpmSpeed(global->rpmHardRight, rpmFuzzyCtrl); |
||
195 | } else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) { |
||
196 | // soft left
|
||
197 | copyRpmSpeed(global->rpmSoftLeft, rpmFuzzyCtrl); |
||
198 | } else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == WHITE) { |
||
199 | // hard left
|
||
200 | copyRpmSpeed(global->rpmHardLeft, rpmFuzzyCtrl); |
||
201 | } |
||
202 | // both wheel sensors detect a line
|
||
203 | } else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK && |
||
204 | member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) { |
||
205 | // something is wrong -> stop
|
||
206 | copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
||
207 | // exactly one wheel sensor detects a line
|
||
208 | } else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK || |
||
209 | member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) { |
||
210 | if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK) {
|
||
211 | // turn left
|
||
212 | copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
||
213 | } else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) { |
||
214 | // turn right
|
||
215 | copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
||
216 | } |
||
217 | // both front sensors may detect a line
|
||
218 | } else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY && |
||
219 | member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) { |
||
220 | if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY) {
|
||
221 | // turn left
|
||
222 | copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
||
223 | } else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) { |
||
224 | // turn right
|
||
225 | copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
||
226 | } |
||
227 | // exactly one front sensor may detect a line
|
||
228 | } else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY || |
||
229 | member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) { |
||
230 | if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY) {
|
||
231 | // turn left
|
||
232 | copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
||
233 | } else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) { |
||
234 | // turn right
|
||
235 | copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
||
236 | } |
||
237 | // both wheel sensors may detect a line
|
||
238 | } else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY && |
||
239 | member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) { |
||
240 | // something is wrong -> stop
|
||
241 | copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
||
242 | // exactly one wheel sensor may detect a line
|
||
243 | } else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY || |
||
244 | member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) { |
||
245 | if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY) {
|
||
246 | // turn left
|
||
247 | copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
||
248 | } else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) { |
||
249 | // turn right
|
||
250 | copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
||
251 | } |
||
252 | // no sensor detects anything
|
||
253 | } else {
|
||
254 | // line is lost -> stop
|
||
255 | whiteFlag = 1;
|
||
256 | copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
||
257 | } |
||
258 | chprintf((BaseSequentialStream*) &SD1, "Fuzzy Speed: Left: %d, Right: %d\n", rpmFuzzyCtrl[0], rpmFuzzyCtrl[1]); |
||
259 | return;
|
||
260 | } |
||
261 | |||
262 | colorMember LineFollow::getMember(float (&fuzzyValue)[3]) { |
||
263 | colorMember member; |
||
264 | |||
265 | if (fuzzyValue[BLACK] > fuzzyValue[GREY])
|
||
266 | if (fuzzyValue[BLACK] > fuzzyValue[WHITE])
|
||
267 | member = BLACK; |
||
268 | else
|
||
269 | member = WHITE; |
||
270 | else
|
||
271 | if (fuzzyValue[GREY] > fuzzyValue[WHITE])
|
||
272 | member = GREY; |
||
273 | else
|
||
274 | member = WHITE; |
||
275 | |||
276 | return member;
|
||
277 | } |
||
278 | |||
279 | // Fuzzyfication of the sensor values
|
||
280 | void LineFollow::fuzzyfication(int sensorValue, float (&fuzziedValue)[3]) { |
||
281 | if (sensorValue < blackStartFalling ) {
|
||
282 | // Only black value
|
||
283 | fuzziedValue[BLACK] = 1.0f; |
||
284 | fuzziedValue[GREY] = 0.0f; |
||
285 | fuzziedValue[WHITE] = 0.0f; |
||
286 | } else if (sensorValue > whiteOn ) { |
||
287 | // Only white value
|
||
288 | fuzziedValue[BLACK] = 0.0f; |
||
289 | fuzziedValue[GREY] = 0.0f; |
||
290 | fuzziedValue[WHITE] = 1.0f; |
||
291 | } else if ( sensorValue < greyMax) { |
||
292 | // Some greyisch value between black and grey
|
||
293 | |||
294 | // Black is going down
|
||
295 | if ( sensorValue > blackOff) {
|
||
296 | fuzziedValue[BLACK] = 0.0f; |
||
297 | } else {
|
||
298 | fuzziedValue[BLACK] = static_cast<float>(sensorValue-blackOff) / (blackStartFalling-blackOff); |
||
299 | } |
||
300 | |||
301 | // Grey is going up
|
||
302 | if ( sensorValue < greyStartRising) {
|
||
303 | fuzziedValue[GREY] = 0.0f; |
||
304 | } else {
|
||
305 | fuzziedValue[GREY] = static_cast<float>(sensorValue-greyStartRising) / (greyMax-greyStartRising); |
||
306 | } |
||
307 | |||
308 | // White is absent
|
||
309 | fuzziedValue[WHITE] = 0.0f; |
||
310 | |||
311 | } else if ( sensorValue >= greyMax) { |
||
312 | // Some greyisch value between grey white
|
||
313 | |||
314 | // Black is absent
|
||
315 | fuzziedValue[BLACK] = 0.0f; |
||
316 | |||
317 | // Grey is going down
|
||
318 | if ( sensorValue < greyOff) {
|
||
319 | fuzziedValue[GREY] = static_cast<float>(sensorValue-greyOff) / (greyMax-greyOff); |
||
320 | } else {
|
||
321 | fuzziedValue[GREY] = 0.0f; |
||
322 | } |
||
323 | |||
324 | // White is going up
|
||
325 | if ( sensorValue < whiteStartRising) {
|
||
326 | fuzziedValue[WHITE] = 0.0f; |
||
327 | } else {
|
||
328 | fuzziedValue[WHITE] = static_cast<float>(sensorValue-whiteStartRising) / (whiteOn-whiteStartRising); |
||
329 | } |
||
330 | } |
||
331 | } |
||
332 | |||
333 | void LineFollow::copyRpmSpeed(const int (&source)[2], int (&target)[2]) { |
||
334 | target[constants::DiWheelDrive::LEFT_WHEEL] = source[constants::DiWheelDrive::LEFT_WHEEL]; |
||
335 | target[constants::DiWheelDrive::RIGHT_WHEEL] = source[constants::DiWheelDrive::RIGHT_WHEEL]; |
||
336 | // chprintf((BaseSequentialStream*) &SD1, "Speed left: %d, Speed right: %d\r\n", target[0], target[1]);
|
||
337 | } |