amiro-os / unittests / periphery-lld / src / ut_alld_dw1000_v1.c @ 7b6ab4bf
History | View | Annotate | Download (11.6 KB)
1 |
/*
|
---|---|
2 |
AMiRo-OS is an operating system designed for the Autonomous Mini Robot (AMiRo) platform.
|
3 |
Copyright (C) 2016..2019 Thomas Schöpping et al.
|
4 |
|
5 |
This program is free software: you can redistribute it and/or modify
|
6 |
it under the terms of the GNU General Public License as published by
|
7 |
the Free Software Foundation, either version 3 of the License, or
|
8 |
(at your option) any later version.
|
9 |
|
10 |
This program is distributed in the hope that it will be useful,
|
11 |
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
13 |
GNU General Public License for more details.
|
14 |
|
15 |
You should have received a copy of the GNU General Public License
|
16 |
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
17 |
*/
|
18 |
|
19 |
#include <amiroos.h> |
20 |
|
21 |
#if ((AMIROOS_CFG_TESTS_ENABLE == true) && defined(AMIROLLD_CFG_DW1000) && (AMIROLLD_CFG_DW1000 == 1)) || defined(__DOXYGEN__) |
22 |
|
23 |
#include <aos_debug.h> |
24 |
#include <chprintf.h> |
25 |
#include <aos_thread.h> |
26 |
#include <math.h> |
27 |
#include <module.h> |
28 |
#include <alld_DW1000.h> |
29 |
#include <v1/deca_instance_v1.h> |
30 |
|
31 |
|
32 |
/******************************************************************************/
|
33 |
/* LOCAL DEFINITIONS */
|
34 |
/******************************************************************************/
|
35 |
|
36 |
//#define UNIT_TEST_SNIPPETS_DW1000 // switch between unit test and demo apps
|
37 |
|
38 |
#define SWS1_SHF_MODE 0x02 //short frame mode (6.81M) |
39 |
#define SWS1_CH5_MODE 0x04 //channel 5 mode |
40 |
#define SWS1_ANC_MODE 0x08 //anchor mode |
41 |
#define SWS1_A1A_MODE 0x10 //anchor/tag address A1 |
42 |
#define SWS1_A2A_MODE 0x20 //anchor/tag address A2 |
43 |
#define SWS1_A3A_MODE 0x40 //anchor/tag address A3 |
44 |
#define SWS1_USB2SPI_MODE 0x78 //USB to SPI mode |
45 |
|
46 |
#define S1_SWITCH_ON (1) |
47 |
#define S1_SWITCH_OFF (0) |
48 |
|
49 |
/******************************************************************************/
|
50 |
/* EXPORTED VARIABLES */
|
51 |
/******************************************************************************/
|
52 |
|
53 |
/******************************************************************************/
|
54 |
/* LOCAL TYPES */
|
55 |
/******************************************************************************/
|
56 |
|
57 |
/******************************************************************************/
|
58 |
/* LOCAL VARIABLES */
|
59 |
/******************************************************************************/
|
60 |
uint8_t s1switch = 0;
|
61 |
int instance_anchaddr = 0; |
62 |
int dr_mode = 0; |
63 |
int chan, tagaddr, ancaddr;
|
64 |
int instance_mode = ANCHOR;
|
65 |
|
66 |
|
67 |
/******************************************************************************/
|
68 |
/* LOCAL FUNCTIONS */
|
69 |
/******************************************************************************/
|
70 |
|
71 |
/*! @brief Change the SPI speed configuration on the fly */
|
72 |
void setHighSpeed_SPI(bool speedValue, DW1000Driver* drv){ |
73 |
|
74 |
spiStop(drv->spid); |
75 |
// spiAcquireBus(&MODULE_HAL_SPI_UWB);
|
76 |
|
77 |
if (speedValue == FALSE){
|
78 |
spiStart(drv->spid, &moduleHalSpiUwbLsConfig); // low speed spi configuration
|
79 |
} |
80 |
else{
|
81 |
spiStart(drv->spid, &moduleHalSpiUwbHsConfig); // high speed spi configuration
|
82 |
} |
83 |
} |
84 |
|
85 |
/*! @brief Manually set the chip select pin of the SPI */
|
86 |
void set_SPI_chip_select(void){ |
87 |
apalGpioWrite(moduleGpioSpiChipSelect.gpio, APAL_GPIO_HIGH); |
88 |
} |
89 |
|
90 |
/*! @brief Manually reset the chip select pin of the SPI */
|
91 |
void clear_SPI_chip_select(void){ |
92 |
apalGpioWrite(moduleGpioSpiChipSelect.gpio, APAL_GPIO_LOW); |
93 |
} |
94 |
|
95 |
/*! @brief Manually reset the DW1000 module */
|
96 |
void reset_DW1000(void){ |
97 |
|
98 |
// Set the pin as output
|
99 |
palSetPadMode(moduleGpioDw1000Reset.gpio->port, moduleGpioDw1000Reset.gpio->pad, APAL_GPIO_DIRECTION_OUTPUT); |
100 |
|
101 |
//drive the RSTn pin low
|
102 |
apalGpioWrite(moduleGpioDw1000Reset.gpio, APAL_GPIO_LOW); |
103 |
|
104 |
//put the pin back to tri-state ... as input
|
105 |
// palSetPadMode(moduleGpioDw1000Reset.gpio->port, moduleGpioDw1000Reset.gpio->pad, APAL_GPIO_DIRECTION_INPUT); // TODO:
|
106 |
|
107 |
aosThdMSleep(2);
|
108 |
} |
109 |
|
110 |
|
111 |
/*! @brief Configure instance tag/anchor/etc... addresses */
|
112 |
void addressconfigure(uint8_t s1switch, uint8_t mode){
|
113 |
uint16_t instAddress ; |
114 |
|
115 |
instance_anchaddr = (((s1switch & SWS1_A1A_MODE) << 2) + (s1switch & SWS1_A2A_MODE) + ((s1switch & SWS1_A3A_MODE) >> 2)) >> 4; |
116 |
|
117 |
if(mode == ANCHOR) {
|
118 |
if(instance_anchaddr > 3) { |
119 |
instAddress = GATEWAY_ANCHOR_ADDR | 0x4 ; //listener |
120 |
} |
121 |
else {
|
122 |
instAddress = GATEWAY_ANCHOR_ADDR | (uint16_t)instance_anchaddr; |
123 |
} |
124 |
} |
125 |
else{
|
126 |
instAddress = (uint16_t)instance_anchaddr; |
127 |
} |
128 |
|
129 |
instancesetaddresses(instAddress); |
130 |
} |
131 |
|
132 |
|
133 |
/*! @brief returns the use case / operational mode */
|
134 |
int decarangingmode(uint8_t s1switch){
|
135 |
int mode = 0; |
136 |
|
137 |
if(s1switch & SWS1_SHF_MODE) {
|
138 |
mode = 1;
|
139 |
} |
140 |
|
141 |
if(s1switch & SWS1_CH5_MODE) {
|
142 |
mode = mode + 2;
|
143 |
} |
144 |
|
145 |
return mode;
|
146 |
} |
147 |
|
148 |
/*! @brief Check connection setting and initialize DW1000 module */
|
149 |
uint32_t inittestapplication(uint8_t s1switch, DW1000Driver* drv){ |
150 |
uint32_t devID ; |
151 |
int result;
|
152 |
|
153 |
setHighSpeed_SPI(FALSE, drv); //low speed spi max. ~4M
|
154 |
devID = instancereaddeviceid() ; |
155 |
|
156 |
if(DWT_DEVICE_ID != devID) {
|
157 |
clear_SPI_chip_select(); |
158 |
Sleep(1);
|
159 |
set_SPI_chip_select(); |
160 |
Sleep(7);
|
161 |
devID = instancereaddeviceid() ; |
162 |
if(DWT_DEVICE_ID != devID){
|
163 |
return(-1) ; |
164 |
} |
165 |
dwt_softreset(); |
166 |
} |
167 |
|
168 |
reset_DW1000(); //reset the DW1000 by driving the RSTn line low
|
169 |
|
170 |
if((s1switch & SWS1_ANC_MODE) == 0){ |
171 |
instance_mode = TAG; |
172 |
} |
173 |
else{
|
174 |
instance_mode = ANCHOR; |
175 |
} |
176 |
|
177 |
result = instance_init(drv) ; // TODO
|
178 |
// result = instance_init() ;
|
179 |
|
180 |
if (0 > result){ |
181 |
return(-1) ; |
182 |
} |
183 |
|
184 |
setHighSpeed_SPI(TRUE, drv); // high speed spi max. ~ 20M
|
185 |
devID = instancereaddeviceid() ; |
186 |
|
187 |
if (DWT_DEVICE_ID != devID){
|
188 |
return(-1) ; |
189 |
} |
190 |
|
191 |
addressconfigure(s1switch, (uint8_t)instance_mode) ; |
192 |
|
193 |
if((instance_mode == ANCHOR) && (instance_anchaddr > 0x3)){ |
194 |
instance_mode = LISTENER; |
195 |
} |
196 |
|
197 |
instancesetrole(instance_mode) ; // Set this instance role
|
198 |
dr_mode = decarangingmode(s1switch); |
199 |
chan = chConfig[dr_mode].channelNumber ; |
200 |
instance_config(&chConfig[dr_mode], &sfConfig[dr_mode], drv) ; |
201 |
|
202 |
return devID;
|
203 |
} |
204 |
|
205 |
|
206 |
/*! @brief Main Entry point to Initialization of UWB DW1000 configuration */
|
207 |
#pragma GCC optimize ("O3") |
208 |
int UWB_Init(DW1000Driver* drv){
|
209 |
|
210 |
/*! Software defined Configurartion for TAG, ANC, and other settings as needed */
|
211 |
s1switch = S1_SWITCH_OFF << 1 // (on = 6.8 Mbps, off = 110 kbps) |
212 |
| S1_SWITCH_OFF << 2 // (on = CH5, off = CH2) |
213 |
| S1_SWITCH_OFF << 3 // (on = Anchor, off = TAG) |
214 |
| S1_SWITCH_OFF << 4 // (configure Tag or anchor ID no.) |
215 |
| S1_SWITCH_OFF << 5 // (configure Tag or anchor ID no.) |
216 |
| S1_SWITCH_OFF << 6 // (configure Tag or anchor ID no.) |
217 |
| S1_SWITCH_OFF << 7; // Not use in this demo |
218 |
|
219 |
|
220 |
port_DisableEXT_IRQ(); //disable ScenSor IRQ until we configure the device
|
221 |
|
222 |
if((s1switch & SWS1_USB2SPI_MODE) == SWS1_USB2SPI_MODE){
|
223 |
return 1; |
224 |
} |
225 |
else{
|
226 |
//run RTLS application
|
227 |
if(inittestapplication(s1switch, drv) == (uint32_t)-1) { |
228 |
return 0; //error |
229 |
} |
230 |
|
231 |
aosThdMSleep(5);
|
232 |
} |
233 |
|
234 |
port_EnableEXT_IRQ(); //enable ScenSor IRQ before starting
|
235 |
|
236 |
return 0; |
237 |
} |
238 |
|
239 |
|
240 |
/******************************************************************************/
|
241 |
/* EXPORTED FUNCTIONS */
|
242 |
/******************************************************************************/
|
243 |
|
244 |
|
245 |
aos_utresult_t utAlldDw1000Func(BaseSequentialStream* stream, aos_unittest_t* ut) { |
246 |
|
247 |
aosDbgCheck(ut->data != NULL);
|
248 |
|
249 |
aos_utresult_t result = {0, 0}; |
250 |
|
251 |
chprintf(stream, "init DW1000...\n");
|
252 |
dwt_initialise(DWT_LOADUCODE, (DW1000Driver*) ut->data); |
253 |
aosThdMSleep(5);
|
254 |
|
255 |
|
256 |
/*! Unit Test snippets for DW1000.
|
257 |
* @Note: Passed all 4 unit tests. Event IRQ should be tested separately
|
258 |
*/
|
259 |
#ifdef UNIT_TEST_SNIPPETS_DW1000
|
260 |
|
261 |
uint32_t actual_deviceId; |
262 |
|
263 |
port_DisableEXT_IRQ(); |
264 |
|
265 |
setHighSpeed_SPI(false, (DW1000Driver*) ut->data);
|
266 |
chprintf(stream, "expected device ID (LS SPI): 0xDECA0130 \n");
|
267 |
aosThdMSleep(5);
|
268 |
actual_deviceId = instancereaddeviceid(); |
269 |
chprintf(stream, "actual read ID: 0x%x\n", actual_deviceId);
|
270 |
aosThdMSleep(5);
|
271 |
|
272 |
if(DWT_DEVICE_ID != actual_deviceId) //if the read of device ID fails, the DW1000 could be asleep |
273 |
{ |
274 |
port_SPIx_clear_chip_select(); //CS low
|
275 |
aosThdMSleep(1); //200 us to wake up then waits 5ms for DW1000 XTAL to stabilise |
276 |
port_SPIx_set_chip_select(); //CS high
|
277 |
aosThdMSleep(7);
|
278 |
actual_deviceId = instancereaddeviceid() ; |
279 |
|
280 |
// SPI not working or Unsupported Device ID
|
281 |
if(DWT_DEVICE_ID != actual_deviceId){
|
282 |
chprintf(stream, "SPI not working or Unsupported Device ID\n");
|
283 |
chprintf(stream, "actual device ID is: 0x%x\n", actual_deviceId);
|
284 |
chprintf(stream, "expected device ID: 0xDECA0130 \n");
|
285 |
aosThdMSleep(5);
|
286 |
// return(-1) ;
|
287 |
} |
288 |
|
289 |
//clear the sleep bit - so that after the hard reset below the DW does not go into sleep
|
290 |
dwt_softreset(); |
291 |
} |
292 |
|
293 |
/*! UT1: Low speed SPI result */
|
294 |
if (actual_deviceId == DWT_DEVICE_ID){
|
295 |
aosUtPassed(stream, &result); |
296 |
} else {
|
297 |
aosUtFailed(stream, &result); |
298 |
} |
299 |
reset_DW1000(); |
300 |
|
301 |
|
302 |
chprintf(stream, " Initialise instance for DW1000 \n");
|
303 |
aosThdSleep(5);
|
304 |
|
305 |
int x_init = instance_init((DW1000Driver*) ut->data) ; // TODO |
306 |
// int x_init = instance_init() ;
|
307 |
|
308 |
if (0 != x_init){ |
309 |
chprintf(stream, "Init error with return value: %d \n", x_init);
|
310 |
aosThdSleep(5);
|
311 |
} |
312 |
else {
|
313 |
chprintf(stream, "Init success with return value: %d \n", x_init);
|
314 |
aosThdSleep(5);
|
315 |
} |
316 |
|
317 |
|
318 |
/*! UT2: Initialization result*/
|
319 |
if (x_init == 0){ |
320 |
aosUtPassed(stream, &result); |
321 |
} else {
|
322 |
aosUtFailed(stream, &result); |
323 |
} |
324 |
|
325 |
|
326 |
setHighSpeed_SPI(true, (DW1000Driver*) ut->data);
|
327 |
|
328 |
chprintf(stream, "expected device ID (HS SPI): 0xDECA0130\n");
|
329 |
actual_deviceId = instancereaddeviceid(); |
330 |
chprintf(stream, "actual read ID: 0x%x\n", actual_deviceId);
|
331 |
aosThdMSleep(5);
|
332 |
|
333 |
/*! UT3: High speed SPI result*/
|
334 |
if (actual_deviceId == DWT_DEVICE_ID){
|
335 |
aosUtPassed(stream, &result); |
336 |
} else {
|
337 |
aosUtFailed(stream, &result); |
338 |
} |
339 |
|
340 |
port_EnableEXT_IRQ(); |
341 |
reset_DW1000(); |
342 |
|
343 |
|
344 |
chprintf(stream, " Initialise the configuration for UWB application \n");
|
345 |
aosThdSleep(5);
|
346 |
|
347 |
int uwb_init = UWB_Init((DW1000Driver*) ut->data);
|
348 |
|
349 |
if (0 != uwb_init){ |
350 |
chprintf(stream, "UWB config error with return value: %d \n", uwb_init);
|
351 |
aosThdSleep(5);
|
352 |
} |
353 |
else {
|
354 |
chprintf(stream, "UWB config success with return value: %d \n", uwb_init);
|
355 |
aosThdSleep(5);
|
356 |
} |
357 |
|
358 |
/*! UT4: UWB configuration result
|
359 |
* If all the four unit tests are passed, the module is ready to run.
|
360 |
* Note that the interrupt IRQn should be tested separately.
|
361 |
*/
|
362 |
if (uwb_init == 0){ |
363 |
aosUtPassed(stream, &result); |
364 |
} else {
|
365 |
aosUtFailed(stream, &result); |
366 |
} |
367 |
|
368 |
/************** End of UNIT_TEST_SNIPPETS_DW1000*****************/
|
369 |
|
370 |
#else
|
371 |
|
372 |
// RUN THE STATE MACHINE DEMO APP
|
373 |
|
374 |
chprintf(stream, " Initialise the State Machine \n");
|
375 |
aosThdSleep(2);
|
376 |
|
377 |
/* Initialize UWB system with user defined configuration */
|
378 |
int uwb_init = UWB_Init((DW1000Driver*) ut->data);
|
379 |
|
380 |
if (0 != uwb_init){ |
381 |
chprintf(stream, "UWB config error with return value: %d \n", uwb_init);
|
382 |
} |
383 |
else {
|
384 |
chprintf(stream, "UWB config success with return value: %d \n", uwb_init);
|
385 |
} |
386 |
aosThdSleep(1);
|
387 |
|
388 |
chprintf(stream, " Running the RTLS demo application \n");
|
389 |
aosThdSleep(1);
|
390 |
|
391 |
|
392 |
/* Run the localization system demo app as a thread */
|
393 |
while(1){ |
394 |
instance_run(); |
395 |
// aosThdUSleep(10);
|
396 |
} |
397 |
|
398 |
#endif /* UNIT_TEST_SNIPPETS_DW1000 */ |
399 |
|
400 |
return result;
|
401 |
} |
402 |
|
403 |
|
404 |
#endif /* (AMIROOS_CFG_TESTS_ENABLE == true) && defined(AMIROLLD_CFG_DW1000) && (AMIROLLD_CFG_DW1000 == 1) */ |