Revision 88449987 unittests/periphery-lld/src/ut_alld_DW1000_v1.c
| unittests/periphery-lld/src/ut_alld_DW1000_v1.c | ||
|---|---|---|
| 27 | 27 |
#include <module.h> |
| 28 | 28 |
#include <alld_DW1000.h> |
| 29 | 29 |
#include <v1/deca_instance_v1.h> |
| 30 |
#include <v1/alld_dw1000_regs_v1.h> |
|
| 31 |
#include <string.h> |
|
| 30 | 32 |
|
| 31 | 33 |
|
| 32 | 34 |
/******************************************************************************/ |
| ... | ... | |
| 69 | 71 |
|
| 70 | 72 |
/*! @brief Change the SPI speed configuration on the fly */ |
| 71 | 73 |
void setHighSpeed_SPI(bool speedValue, DW1000Driver* drv){
|
| 72 |
|
|
| 73 | 74 |
spiStop(drv->spid); |
| 74 |
|
|
| 75 | 75 |
if (speedValue == FALSE){
|
| 76 | 76 |
spiStart(drv->spid, &moduleHalSpiUwbLsConfig); // low speed spi configuration |
| 77 | 77 |
} |
| ... | ... | |
| 80 | 80 |
} |
| 81 | 81 |
} |
| 82 | 82 |
|
| 83 |
/*! @brief entry point to the IRQn event in DW1000 module |
|
| 84 |
* |
|
| 85 |
* */ |
|
| 83 |
/*! @brief entry point to the IRQn event in DW1000 module */ |
|
| 86 | 84 |
void process_deca_irq(void){
|
| 87 | 85 |
do{
|
| 88 | 86 |
dwt_isr(); |
| ... | ... | |
| 90 | 88 |
}while(port_CheckEXT_IRQ() == 1); |
| 91 | 89 |
} |
| 92 | 90 |
|
| 93 |
/*! @brief Check the current value of GPIO pin and return the value */ |
|
| 94 |
apalGpioState_t port_CheckEXT_IRQ(void) {
|
|
| 95 |
apalGpioState_t val; |
|
| 96 |
apalGpioRead(moduleGpioDw1000Irqn.gpio, &val); |
|
| 97 |
return val; |
|
| 98 |
} |
|
| 99 |
|
|
| 100 | 91 |
/*! @brief Manually set the chip select pin of the SPI */ |
| 101 | 92 |
void set_SPI_chip_select(void){
|
| 102 | 93 |
apalGpioWrite(moduleGpioSpiChipSelect.gpio, APAL_GPIO_HIGH); |
| ... | ... | |
| 109 | 100 |
|
| 110 | 101 |
/*! @brief Manually reset the DW1000 module */ |
| 111 | 102 |
void reset_DW1000(void){
|
| 112 |
|
|
| 113 | 103 |
// Set the pin as output |
| 114 | 104 |
palSetLineMode(moduleGpioDw1000Reset.gpio->line, APAL_GPIO_DIRECTION_OUTPUT); |
| 115 |
|
|
| 116 | 105 |
//drive the RSTn pin low |
| 117 | 106 |
apalGpioWrite(moduleGpioDw1000Reset.gpio, APAL_GPIO_LOW); |
| 118 |
|
|
| 119 | 107 |
//put the pin back to tri-state ... as input |
| 120 | 108 |
// palSetLineMode(moduleGpioDw1000Reset.gpio->line, APAL_GPIO_DIRECTION_INPUT); // TODO: |
| 109 |
aosThdMSleep(7); |
|
| 110 |
} |
|
| 121 | 111 |
|
| 122 |
aosThdMSleep(2); |
|
| 112 |
/*! @brief waking up the DW1000 module using Chip Select pin */ |
|
| 113 |
void wakeup_DW1000(void){
|
|
| 114 |
clear_SPI_chip_select(); |
|
| 115 |
aosThdMSleep(1); |
|
| 116 |
set_SPI_chip_select(); |
|
| 117 |
aosThdMSleep(7); // wait for XTAL to stabilize |
|
| 118 |
|
|
| 119 |
// set wakeup pin directly high |
|
| 120 |
// apalGpioWrite(moduleGpioDw1000WakeUp.gpio, APAL_GPIO_HIGH); |
|
| 121 |
aosThdMSleep(10); |
|
| 123 | 122 |
} |
| 124 | 123 |
|
| 125 | 124 |
/*! @brief Configure instance tag/anchor/etc... addresses */ |
| 126 | 125 |
void addressconfigure(uint8_t s1switch, uint8_t mode){
|
| 127 | 126 |
uint16_t instAddress ; |
| 128 |
|
|
| 129 | 127 |
instance_anchaddr = (((s1switch & SWS1_A1A_MODE) << 2) + (s1switch & SWS1_A2A_MODE) + ((s1switch & SWS1_A3A_MODE) >> 2)) >> 4; |
| 130 |
|
|
| 131 | 128 |
if(mode == ANCHOR) {
|
| 132 | 129 |
if(instance_anchaddr > 3) {
|
| 133 | 130 |
instAddress = GATEWAY_ANCHOR_ADDR | 0x4 ; //listener |
| ... | ... | |
| 139 | 136 |
else{
|
| 140 | 137 |
instAddress = (uint16_t)instance_anchaddr; |
| 141 | 138 |
} |
| 142 |
|
|
| 143 | 139 |
instancesetaddresses(instAddress); |
| 144 | 140 |
} |
| 145 | 141 |
|
| 146 | 142 |
/*! @brief returns the use case / operational mode */ |
| 147 | 143 |
int decarangingmode(uint8_t s1switch){
|
| 148 | 144 |
int mode = 0; |
| 149 |
|
|
| 150 | 145 |
if(s1switch & SWS1_SHF_MODE) {
|
| 151 | 146 |
mode = 1; |
| 152 | 147 |
} |
| 153 |
|
|
| 154 | 148 |
if(s1switch & SWS1_CH5_MODE) {
|
| 155 | 149 |
mode = mode + 2; |
| 156 | 150 |
} |
| 157 |
|
|
| 158 | 151 |
return mode; |
| 159 | 152 |
} |
| 160 | 153 |
|
| ... | ... | |
| 177 | 170 |
} |
| 178 | 171 |
dwt_softreset(); |
| 179 | 172 |
} |
| 180 |
|
|
| 181 | 173 |
reset_DW1000(); //reset the DW1000 by driving the RSTn line low |
| 182 |
|
|
| 183 | 174 |
if((s1switch & SWS1_ANC_MODE) == 0){
|
| 184 | 175 |
instance_mode = TAG; |
| 185 | 176 |
} |
| 186 | 177 |
else{
|
| 187 | 178 |
instance_mode = ANCHOR; |
| 188 | 179 |
} |
| 189 |
|
|
| 190 |
result = instance_init(drv) ; |
|
| 191 |
|
|
| 180 |
result = instance_init(drv); |
|
| 192 | 181 |
if (0 > result){
|
| 193 | 182 |
return(-1) ; |
| 194 | 183 |
} |
| 195 |
|
|
| 196 | 184 |
setHighSpeed_SPI(TRUE, drv); // high speed spi max. ~ 20M |
| 197 | 185 |
devID = instancereaddeviceid() ; |
| 198 |
|
|
| 199 | 186 |
if (DWT_DEVICE_ID != devID){
|
| 200 | 187 |
return(-1) ; |
| 201 | 188 |
} |
| 202 |
|
|
| 203 | 189 |
addressconfigure(s1switch, (uint8_t)instance_mode) ; |
| 204 |
|
|
| 205 | 190 |
if((instance_mode == ANCHOR) && (instance_anchaddr > 0x3)){
|
| 206 | 191 |
instance_mode = LISTENER; |
| 207 | 192 |
} |
| 208 |
|
|
| 209 | 193 |
instancesetrole(instance_mode) ; // Set this instance role |
| 210 | 194 |
dr_mode = decarangingmode(s1switch); |
| 211 | 195 |
chan = chConfig[dr_mode].channelNumber ; |
| ... | ... | |
| 227 | 211 |
| S1_SWITCH_OFF << 6 // (configure Tag or anchor ID no.) |
| 228 | 212 |
| S1_SWITCH_OFF << 7; // Not use in this demo |
| 229 | 213 |
|
| 230 |
|
|
| 231 | 214 |
port_DisableEXT_IRQ(); //disable ScenSor IRQ until we configure the device |
| 232 |
|
|
| 233 | 215 |
if(inittestapplication(s1switch, drv) == -1) {
|
| 234 | 216 |
return (-1); //error |
| 235 | 217 |
} |
| 236 |
|
|
| 237 | 218 |
aosThdMSleep(5); |
| 238 |
|
|
| 239 | 219 |
port_EnableEXT_IRQ(); //enable DW1000 IRQ before starting |
| 240 | 220 |
|
| 241 | 221 |
return 0; |
| ... | ... | |
| 245 | 225 |
/******************************************************************************/ |
| 246 | 226 |
/* EXPORTED FUNCTIONS */ |
| 247 | 227 |
/******************************************************************************/ |
| 248 |
|
|
| 249 |
|
|
| 250 | 228 |
aos_utresult_t utAlldDw1000Func(BaseSequentialStream* stream, aos_unittest_t* ut) {
|
| 251 | 229 |
|
| 252 | 230 |
aosDbgCheck(ut->data != NULL); |
| 253 |
|
|
| 254 | 231 |
aos_utresult_t result = {0, 0};
|
| 255 | 232 |
|
| 233 |
#if defined (AMIROLLD_CFG_MIC9404x) |
|
| 234 |
// Enable 3.3 and 1.8 supply voltages for powering up the DW1000 module in AMiRo Light Ring |
|
| 235 |
if ((ut->data != NULL) && (((ut_dw1000data_t*)(ut->data))->mic9404xd != NULL)){
|
|
| 236 |
mic9404x_lld_state_t state; |
|
| 237 |
uint32_t status = APAL_STATUS_OK; |
|
| 238 |
|
|
| 239 |
chprintf(stream, "reading current status of the Power..\n"); |
|
| 240 |
status = mic9404x_lld_get(((ut_dw1000data_t*)(ut->data))->mic9404xd, &state); |
|
| 241 |
if (status == APAL_STATUS_OK) {
|
|
| 242 |
aosUtPassedMsg(stream, &result, "power %s\n", (state == MIC9404x_LLD_STATE_ON) ? "enabled" : "disabled"); |
|
| 243 |
} else {
|
|
| 244 |
aosUtFailed(stream, &result); |
|
| 245 |
} |
|
| 246 |
if (state == MIC9404x_LLD_STATE_OFF) {
|
|
| 247 |
chprintf(stream, "enabling the power ...\n"); |
|
| 248 |
status = mic9404x_lld_set(((ut_dw1000data_t*)(ut->data))->mic9404xd, MIC9404x_LLD_STATE_ON); |
|
| 249 |
status |= mic9404x_lld_get(((ut_dw1000data_t*)(ut->data))->mic9404xd, &state); |
|
| 250 |
if (state == MIC9404x_LLD_STATE_ON) {
|
|
| 251 |
aosThdSSleep(2); |
|
| 252 |
status |= mic9404x_lld_get(((ut_dw1000data_t*)(ut->data))->mic9404xd, &state); |
|
| 253 |
} |
|
| 254 |
if ((status == APAL_STATUS_OK) && (state == MIC9404x_LLD_STATE_ON)) {
|
|
| 255 |
aosUtPassed(stream, &result); |
|
| 256 |
} else {
|
|
| 257 |
aosUtFailed(stream, &result); |
|
| 258 |
} |
|
| 259 |
} |
|
| 260 |
aosThdSleep(1); |
|
| 261 |
return result; |
|
| 262 |
} |
|
| 263 |
#endif /* defined (AMIROLLD_CFG_MIC9404x) */ |
|
| 264 |
|
|
| 265 |
|
|
| 266 |
// Start the DW1000 module UT after powering up |
|
| 256 | 267 |
chprintf(stream, "init DW1000...\n"); |
| 257 |
dwt_initialise(DWT_LOADUCODE, (DW1000Driver*) ut->data); |
|
| 258 |
aosThdMSleep(5); |
|
| 268 |
aosThdSleep(1); |
|
| 269 |
ut_dw1000data_t* h_dw1000data = NULL; |
|
| 270 |
if((ut->data != NULL) && (((ut_dw1000data_t*)(ut->data))->dw1000d != NULL)){
|
|
| 271 |
h_dw1000data = ut->data; |
|
| 272 |
chprintf(stream, "assign handle for DW1000Driver struct \n"); |
|
| 273 |
} |
|
| 274 |
else {
|
|
| 275 |
chprintf(stream, "unsupported data type \n"); |
|
| 276 |
return result; |
|
| 277 |
} |
|
| 278 |
aosThdSleep(1); |
|
| 259 | 279 |
|
| 280 |
reset_DW1000(); // hard reset |
|
| 281 |
// wakeup_DW1000(); |
|
| 282 |
aosThdMSleep(5); |
|
| 283 |
int init = dwt_initialise(DWT_LOADUCODE, h_dw1000data->dw1000d); |
|
| 284 |
if (init == 0){
|
|
| 285 |
chprintf(stream, "DW1000 is initialized \n"); |
|
| 286 |
} |
|
| 287 |
else {
|
|
| 288 |
chprintf(stream, "init error with return value: %d \n", init); |
|
| 289 |
} |
|
| 290 |
aosThdMSleep(5); |
|
| 260 | 291 |
|
| 261 | 292 |
/*! Unit Test snippets for DW1000. |
| 262 | 293 |
* @Note: Event IRQ for DW1000 should be tested separately |
| 263 | 294 |
*/ |
| 264 | 295 |
#if defined(UNIT_TEST_SNIPPETS_DW1000) |
| 265 |
|
|
| 266 |
uint32_t actual_deviceId; |
|
| 267 |
|
|
| 296 |
uint32_t actual_devID; |
|
| 268 | 297 |
port_DisableEXT_IRQ(); |
| 269 | 298 |
|
| 270 |
setHighSpeed_SPI(false, (DW1000Driver*) ut->data); |
|
| 271 |
chprintf(stream, "expected device ID (LS SPI): 0xDECA0130 \n"); |
|
| 299 |
/*! UT1: Low speed SPI result */ |
|
| 300 |
setHighSpeed_SPI(false, h_dw1000data->dw1000d); |
|
| 301 |
chprintf(stream, "expected ID (LS SPI): 0xDECA0130 \n"); |
|
| 272 | 302 |
aosThdMSleep(5); |
| 273 |
actual_deviceId = instancereaddeviceid();
|
|
| 274 |
chprintf(stream, "actual read ID: 0x%x\n", actual_deviceId);
|
|
| 303 |
actual_devID = instancereaddeviceid();
|
|
| 304 |
chprintf(stream, "read ID (LS SPI): 0x%x\n", actual_devID);
|
|
| 275 | 305 |
aosThdMSleep(5); |
| 276 | 306 |
|
| 277 | 307 |
//if the read of device ID fails, the DW1000 could be asleep |
| 278 |
if(DWT_DEVICE_ID != actual_deviceId){
|
|
| 279 |
|
|
| 308 |
if(DWT_DEVICE_ID != actual_devID){
|
|
| 280 | 309 |
clear_SPI_chip_select(); |
| 281 | 310 |
aosThdMSleep(1); |
| 282 | 311 |
set_SPI_chip_select(); |
| 283 | 312 |
aosThdMSleep(7); |
| 284 |
actual_deviceId = instancereaddeviceid() ; |
|
| 285 |
|
|
| 286 |
if(DWT_DEVICE_ID != actual_deviceId){
|
|
| 313 |
actual_devID = instancereaddeviceid() ; |
|
| 314 |
if(DWT_DEVICE_ID != actual_devID){
|
|
| 287 | 315 |
chprintf(stream, "SPI is not working or Unsupported Device ID\n"); |
| 288 |
chprintf(stream, "actual device ID is: 0x%x\n", actual_deviceId);
|
|
| 316 |
chprintf(stream, "actual device ID is: 0x%x\n", actual_devID);
|
|
| 289 | 317 |
chprintf(stream, "expected device ID: 0xDECA0130 \n"); |
| 290 | 318 |
aosThdMSleep(5); |
| 291 |
} |
|
| 292 |
|
|
| 293 |
//clear the sleep bit - so that after the hard reset below the DW does not go into sleep |
|
| 319 |
} |
|
| 294 | 320 |
dwt_softreset(); |
| 295 | 321 |
} |
| 296 | 322 |
|
| 297 |
/*! UT1: Low speed SPI result */ |
|
| 298 |
if (actual_deviceId == DWT_DEVICE_ID){
|
|
| 323 |
if (actual_devID == DWT_DEVICE_ID){
|
|
| 299 | 324 |
aosUtPassed(stream, &result); |
| 300 | 325 |
} else {
|
| 301 | 326 |
aosUtFailed(stream, &result); |
| 302 | 327 |
} |
| 303 | 328 |
|
| 304 |
reset_DW1000(); |
|
| 305 |
|
|
| 306 |
chprintf(stream, "initialise instance for DW1000 \n"); |
|
| 307 |
aosThdSleep(1); |
|
| 308 |
|
|
| 309 |
int x_init = instance_init((DW1000Driver*) ut->data) ; |
|
| 329 |
/*! Blinking TX and RX LED simultenously for 5 times */ |
|
| 330 |
chprintf(stream, "blinking TX and RX LEDs simultenously for 5 times \n"); |
|
| 331 |
for(int i =0; i< 5; i++){
|
|
| 332 |
uint8_t mode = 3; |
|
| 333 |
uint32_t reg ; |
|
| 334 |
|
|
| 335 |
// Set up for LED output. |
|
| 336 |
reg = dwt_read32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET); // Hardcoded = 0xDE001400 |
|
| 337 |
reg &= ~(GPIO_MSGP2_MASK | GPIO_MSGP3_MASK); |
|
| 338 |
reg |= (GPIO_PIN2_RXLED | GPIO_PIN3_TXLED); |
|
| 339 |
dwt_write32bitoffsetreg(GPIO_CTRL_ID, GPIO_MODE_OFFSET, reg); |
|
| 340 |
|
|
| 341 |
// Enable LP Oscillator to run from counter and turn on de-bounce clock. |
|
| 342 |
reg = dwt_read32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET); // hard-coded = 0xF0B40200 |
|
| 343 |
reg |= (PMSC_CTRL0_GPDCE | PMSC_CTRL0_KHZCLEN); |
|
| 344 |
dwt_write32bitoffsetreg(PMSC_ID, PMSC_CTRL0_OFFSET, reg); |
|
| 345 |
|
|
| 346 |
// Enable LEDs to blink and set default blink time. |
|
| 347 |
reg = PMSC_LEDC_BLNKEN | PMSC_LEDC_BLINK_TIME_DEF; |
|
| 348 |
// Make LEDs blink once if requested. |
|
| 349 |
if (mode & DWT_LEDS_INIT_BLINK) |
|
| 350 |
{
|
|
| 351 |
reg |= PMSC_LEDC_BLINK_NOW_ALL; |
|
| 352 |
} |
|
| 353 |
dwt_write32bitoffsetreg(PMSC_ID, PMSC_LEDC_OFFSET, reg); |
|
| 354 |
// Clear force blink bits if needed. |
|
| 355 |
if(mode & DWT_LEDS_INIT_BLINK) |
|
| 356 |
{
|
|
| 357 |
reg &= ~PMSC_LEDC_BLINK_NOW_ALL; |
|
| 358 |
dwt_write32bitoffsetreg(PMSC_ID, PMSC_LEDC_OFFSET, reg); |
|
| 359 |
} |
|
| 360 |
aosThdMSleep(500); |
|
| 361 |
} |
|
| 310 | 362 |
|
| 311 |
if (0 != x_init){
|
|
| 363 |
/*! UT2: Initialization of the DW1000 module */ |
|
| 364 |
reset_DW1000(); |
|
| 365 |
chprintf(stream, "initialise the instance for DW1000 \n"); |
|
| 366 |
aosThdMSleep(100); |
|
| 367 |
int x_init = instance_init(h_dw1000data->dw1000d) ; |
|
| 368 |
if (x_init != 0){
|
|
| 312 | 369 |
chprintf(stream, "init error with return value: %d \n", x_init); |
| 313 |
aosThdSleep(1); |
|
| 314 | 370 |
} |
| 315 | 371 |
else {
|
| 316 |
chprintf(stream, "init success with return value: %d \n", x_init); |
|
| 317 |
aosThdSleep(1); |
|
| 372 |
chprintf(stream, "succeed init! \n"); |
|
| 318 | 373 |
} |
| 319 |
|
|
| 320 |
/*! UT2: Initialization result*/ |
|
| 374 |
aosThdMSleep(100); |
|
| 321 | 375 |
if (x_init == 0){
|
| 322 | 376 |
aosUtPassed(stream, &result); |
| 323 | 377 |
} else {
|
| 324 | 378 |
aosUtFailed(stream, &result); |
| 325 | 379 |
} |
| 326 | 380 |
|
| 327 |
setHighSpeed_SPI(true, (DW1000Driver*) ut->data); |
|
| 328 |
|
|
| 329 |
chprintf(stream, "expected device ID (HS SPI): 0xDECA0130\n"); |
|
| 330 |
actual_deviceId = instancereaddeviceid(); |
|
| 331 |
chprintf(stream, "actual read ID: 0x%x\n", actual_deviceId); |
|
| 332 |
aosThdMSleep(1); |
|
| 333 |
|
|
| 334 |
/*! UT3: High speed SPI result*/ |
|
| 335 |
if (actual_deviceId == DWT_DEVICE_ID){
|
|
| 381 |
/*! UT3: High speed SPI Testing */ |
|
| 382 |
setHighSpeed_SPI(true, h_dw1000data->dw1000d); |
|
| 383 |
chprintf(stream, "expected ID (HS SPI): 0xDECA0130\n"); |
|
| 384 |
actual_devID = instancereaddeviceid(); |
|
| 385 |
chprintf(stream, "Read ID (HS SPI): 0x%x\n", actual_devID); |
|
| 386 |
aosThdMSleep(100); |
|
| 387 |
if (actual_devID == DWT_DEVICE_ID){
|
|
| 336 | 388 |
aosUtPassed(stream, &result); |
| 337 | 389 |
} else {
|
| 338 | 390 |
aosUtFailed(stream, &result); |
| 339 | 391 |
} |
| 340 | 392 |
|
| 393 |
/*! UT4: Configuration of UWB module |
|
| 394 |
* If all the five unit tests are passed, the module is ready to run. |
|
| 395 |
* Note that the interrupt IRQn should be tested separately. |
|
| 396 |
*/ |
|
| 341 | 397 |
port_EnableEXT_IRQ(); |
| 342 | 398 |
reset_DW1000(); |
| 343 |
|
|
| 344 | 399 |
chprintf(stream, "initialise the configuration for UWB application \n"); |
| 345 | 400 |
aosThdSleep(1); |
| 346 |
|
|
| 347 |
int uwb_init = UWB_Init((DW1000Driver*) ut->data); |
|
| 348 |
|
|
| 349 |
if (0 != uwb_init){
|
|
| 401 |
int uwb_init = UWB_Init(h_dw1000data->dw1000d); |
|
| 402 |
if (uwb_init != 0){
|
|
| 350 | 403 |
chprintf(stream, "UWB config error with return value: %d \n", uwb_init); |
| 351 |
aosThdSleep(1); |
|
| 352 | 404 |
} |
| 353 | 405 |
else {
|
| 354 |
chprintf(stream, "UWB config success with return value: %d \n", uwb_init); |
|
| 355 |
aosThdSleep(1); |
|
| 406 |
chprintf(stream, "succeed UWB config process \n", uwb_init); |
|
| 356 | 407 |
} |
| 357 |
|
|
| 358 |
/*! UT4: UWB configuration result |
|
| 359 |
* If all the four unit tests are passed, the module is ready to run. |
|
| 360 |
* Note that the interrupt IRQn should be tested separately. |
|
| 361 |
*/ |
|
| 362 | 408 |
if (uwb_init == 0){
|
| 363 | 409 |
aosUtPassed(stream, &result); |
| 364 | 410 |
} else {
|
| 365 | 411 |
aosUtFailed(stream, &result); |
| 366 | 412 |
} |
| 367 | 413 |
|
| 368 |
/************** End of UNIT_TEST_SNIPPETS_DW1000*****************/ |
|
| 414 |
/************** End of UNIT_TEST_SNIPPETS_DW1000 *****************/
|
|
| 369 | 415 |
|
| 370 | 416 |
#else /* defined(UNIT_TEST_SNIPPETS_DW1000) */ |
| 371 | 417 |
|
| 372 |
|
|
| 373 | 418 |
/*! RUN THE STATE MACHINE DEMO APP (RTLS) */ |
| 374 |
|
|
| 375 | 419 |
chprintf(stream, "initialise the State Machine \n"); |
| 376 | 420 |
aosThdSleep(2); |
| 377 | 421 |
|
| 378 | 422 |
/* Initialize UWB system with user defined configuration */ |
| 379 |
int uwb_init = UWB_Init((DW1000Driver*) ut->data);
|
|
| 423 |
int uwb_init = UWB_Init(h_dw1000data->dw1000d);
|
|
| 380 | 424 |
|
| 381 |
if (0 != uwb_init){
|
|
| 425 |
if (uwb_init != 0){
|
|
| 382 | 426 |
chprintf(stream, "error in UWB config with return value: %d \n", uwb_init); |
| 383 | 427 |
} |
| 384 | 428 |
else {
|
| 385 | 429 |
chprintf(stream, "succeed the init of UWB config \n"); |
| 386 | 430 |
} |
| 387 | 431 |
aosThdSleep(1); |
| 388 |
|
|
| 389 | 432 |
chprintf(stream, "running the RTLS demo application ... \n"); |
| 390 |
aosThdSleep(1); |
|
| 391 | 433 |
|
| 392 | 434 |
/*! Run the localization system demo app as a thread */ |
| 393 | 435 |
while(1){
|
| 394 | 436 |
instance_run(); |
| 395 | 437 |
// aosThdUSleep(10); |
| 438 |
// aosThdMSleep(1); |
|
| 396 | 439 |
} |
| 397 | 440 |
|
| 398 | 441 |
#endif /* defined(UNIT_TEST_SNIPPETS_DW1000) */ |
Also available in: Unified diff