amiro-os / devices / DiWheelDrive / amiro_map.cpp @ a3c54343
History | View | Annotate | Download (5.357 KB)
| 1 |
#include "amiro_map.hpp" |
|---|---|
| 2 |
|
| 3 |
uint8_t AmiroMap::initialize(){
|
| 4 |
|
| 5 |
// Clear old values in case the map is initialized again
|
| 6 |
this->state.current = 0; |
| 7 |
this->state.next = 0; |
| 8 |
this->state.valid = false; |
| 9 |
this->nodeCount = 0; |
| 10 |
this->state.strategy = 0x1; |
| 11 |
|
| 12 |
// convert proto map to internal representation
|
| 13 |
for (int i=0; i<MAX_NODES; i++){ |
| 14 |
if(global->testmap[i][2] == 0xff && i != 0){ |
| 15 |
break;
|
| 16 |
} else if (global->testmap[i][2] == 0xff && i == 0) { |
| 17 |
this->state.valid = false; |
| 18 |
return 255; |
| 19 |
} |
| 20 |
|
| 21 |
//look for start node (default is Node 0)
|
| 22 |
if (global->testmap[i][2] == 1 ) { |
| 23 |
this->state.current = i;
|
| 24 |
} |
| 25 |
|
| 26 |
this->nodeList[i].id = i;
|
| 27 |
this->nodeList[i].left = global->testmap[i][0]; |
| 28 |
this->nodeList[i].right = global->testmap[i][1]; |
| 29 |
this->nodeList[i].flag = global->testmap[i][2]; |
| 30 |
this->nodeCount++;
|
| 31 |
} |
| 32 |
this->state.next = this->nodeList[this->state.current].right; |
| 33 |
|
| 34 |
// TODO make validity check
|
| 35 |
|
| 36 |
for (int j=0; j<nodeCount; j++) { |
| 37 |
this->nodeList[j].visited = 0; |
| 38 |
visitNode(j); |
| 39 |
for (int k = 0; k < nodeCount; k++) { |
| 40 |
if (this->nodeList[k].visited == 1) { |
| 41 |
this->nodeList[k].visited = 0; |
| 42 |
} else {
|
| 43 |
this->state.valid = false; |
| 44 |
return k;
|
| 45 |
} |
| 46 |
} |
| 47 |
} |
| 48 |
|
| 49 |
this->state.valid = true; |
| 50 |
return 42; |
| 51 |
} |
| 52 |
|
| 53 |
void AmiroMap::visitNode(uint8_t id){
|
| 54 |
if (this->nodeList[id].visited == 1){ |
| 55 |
return;
|
| 56 |
}else{
|
| 57 |
nodeList[id].visited = 1;
|
| 58 |
visitNode(this->nodeList[id].left);
|
| 59 |
visitNode(this->nodeList[id].right);
|
| 60 |
} |
| 61 |
} |
| 62 |
|
| 63 |
uint8_t AmiroMap::update(uint16_t WL, uint16_t WR, LineFollowStrategy strategy) {
|
| 64 |
// Called each time at the end of the user thread state machine
|
| 65 |
// The bottom sensors will be checked for black ground which is interpreted as
|
| 66 |
// filxpoint
|
| 67 |
|
| 68 |
// set the strategy directly, actually there is no need to store that variable in the class
|
| 69 |
// but we will go with it for now to initialize everything properly.
|
| 70 |
uint8_t flag = 0;
|
| 71 |
this->lfStrategy = strategy;
|
| 72 |
// uint16_t WL = global->vcnl4020[constants::DiWheelDrive::PROX_WHEEL_LEFT].getProximityScaledWoOffset();
|
| 73 |
// uint16_t WR = global->vcnl4020[constants::DiWheelDrive::PROX_WHEEL_RIGHT].getProximityScaledWoOffset();
|
| 74 |
|
| 75 |
// Check the wheel sensors
|
| 76 |
bool left = global->linePID.BThresh >= WL;
|
| 77 |
bool right = global->linePID.BThresh >= WR;
|
| 78 |
types::position currentPos = global->odometry.getPosition(); |
| 79 |
|
| 80 |
if (left && right) {
|
| 81 |
// TODO A dangerous case -> amiro could be lifted
|
| 82 |
flag |= 255;
|
| 83 |
} |
| 84 |
else if (left && !leftDetected) { |
| 85 |
// The sensor on the left side of the Amiro is driving on black
|
| 86 |
// To prevent continous fixpoint detection a point needs to be marked as currently detected
|
| 87 |
// and released.
|
| 88 |
leftDetected = true;
|
| 89 |
nodeList[state.next].pR.f_x = currentPos.f_x; |
| 90 |
nodeList[state.next].pR.f_y = currentPos.f_y; |
| 91 |
nodeList[state.next].pR.f_z = currentPos.f_z; |
| 92 |
nodeList[state.next].pR.x = currentPos.x; |
| 93 |
nodeList[state.next].pR.y = currentPos.y; |
| 94 |
nodeList[state.next].pR.z = currentPos.z; |
| 95 |
nodeList[state.next].visited |= 0x01;
|
| 96 |
state.current = state.next; |
| 97 |
state.next = nodeList[state.current].right; |
| 98 |
state.strategy = 0x01;
|
| 99 |
state.eLength = 0; // Reset length to get recalculated after fixpoint |
| 100 |
flag |= 0x1;
|
| 101 |
} |
| 102 |
else if (right && !rightDetected) { |
| 103 |
// Same as left only for the right sensor.
|
| 104 |
rightDetected = true;
|
| 105 |
nodeList[state.next].pL.f_x = currentPos.f_x; |
| 106 |
nodeList[state.next].pL.f_y = currentPos.f_y; |
| 107 |
nodeList[state.next].pL.f_z = currentPos.f_z; |
| 108 |
nodeList[state.next].pL.x = currentPos.x; |
| 109 |
nodeList[state.next].pL.y = currentPos.y; |
| 110 |
nodeList[state.next].pL.z = currentPos.z; |
| 111 |
nodeList[state.next].visited |= 0x02;
|
| 112 |
state.current = state.next; |
| 113 |
state.next = nodeList[state.current].left; |
| 114 |
state.strategy = 0x2;
|
| 115 |
state.eLength = 0; // Reset length to get recalculated after fixpoint |
| 116 |
flag |= 0x2;
|
| 117 |
} |
| 118 |
else if (!left && !right) { |
| 119 |
// in case the fixpoint is not detected anymore
|
| 120 |
leftDetected = false;
|
| 121 |
rightDetected = false;
|
| 122 |
flag |= 0x4;
|
| 123 |
} |
| 124 |
|
| 125 |
|
| 126 |
// update internal map_state
|
| 127 |
// Update travel distance
|
| 128 |
// check if the nodes of the specific strategy where visited
|
| 129 |
if (state.strategy
|
| 130 |
== nodeList[state.current].visited) {
|
| 131 |
flag |= 0x8;
|
| 132 |
// only update distance if both nodes were visited
|
| 133 |
// Calculate estimated length of the edge
|
| 134 |
if (state.strategy == 0x01) { |
| 135 |
// Amiro is driving on the right edge
|
| 136 |
// only calculate edge length if the node is already vivited
|
| 137 |
if ((state.eLength == 0) && (state.strategy == nodeList[state.current].visited)) { |
| 138 |
state.eLength = calculateDist(&nodeList[state.next].pR, |
| 139 |
&nodeList[state.current].pR); |
| 140 |
} |
| 141 |
state.dist = calculateDist(&nodeList[state.current].pR, ¤tPos); |
| 142 |
} else {
|
| 143 |
// Driving on the left edge
|
| 144 |
if ((state.eLength == 0) && |
| 145 |
(state.strategy == nodeList[state.current].visited)) {
|
| 146 |
state.eLength = calculateDist(&nodeList[state.next].pR, |
| 147 |
&nodeList[state.current].pR); |
| 148 |
} |
| 149 |
state.dist = calculateDist(&nodeList[state.current].pL, ¤tPos); |
| 150 |
|
| 151 |
} |
| 152 |
} |
| 153 |
return flag;
|
| 154 |
} |
| 155 |
|
| 156 |
uint32_t AmiroMap::calculateDist(types::position *p1, types::position *p2) {
|
| 157 |
return (uint32_t) sqrt(pow((p2->x - p1->x)/10000, 2) + |
| 158 |
pow((p2->y - p1->y)/10000, 2)); |
| 159 |
} |
| 160 |
|
| 161 |
uint8_t trackUpdate(uint16_t WL, uint16_t WR, LineFollowStrategy strategy, ut_states state){
|
| 162 |
|
| 163 |
} |