amiro-os / devices / DiWheelDrive / userthread.cpp @ b4885314
History | View | Annotate | Download (14.781 KB)
| 1 |
#include "userthread.hpp" |
|---|---|
| 2 |
|
| 3 |
#include "global.hpp" |
| 4 |
|
| 5 |
using namespace amiro; |
| 6 |
|
| 7 |
extern Global global;
|
| 8 |
|
| 9 |
// State machine states
|
| 10 |
enum states : uint8_t {
|
| 11 |
IDLE, |
| 12 |
GO_RIGHT, |
| 13 |
GO_STRAIGHT, |
| 14 |
PARKING, |
| 15 |
PARKING_RIGHT, |
| 16 |
PARKING_LEFT, |
| 17 |
GO_LEFT, |
| 18 |
SPINNING_PARKING, |
| 19 |
SPINNING |
| 20 |
}; |
| 21 |
|
| 22 |
// Policy
|
| 23 |
states policy[] = {
|
| 24 |
GO_STRAIGHT, |
| 25 |
GO_RIGHT, |
| 26 |
GO_RIGHT, |
| 27 |
GO_STRAIGHT, |
| 28 |
GO_RIGHT, |
| 29 |
GO_STRAIGHT, |
| 30 |
GO_RIGHT, |
| 31 |
GO_STRAIGHT, |
| 32 |
GO_STRAIGHT, |
| 33 |
GO_RIGHT, |
| 34 |
GO_STRAIGHT, |
| 35 |
GO_RIGHT, |
| 36 |
GO_STRAIGHT |
| 37 |
}; |
| 38 |
|
| 39 |
// The different classes (or members) of color discrimination
|
| 40 |
// BLACK is the line itselfe
|
| 41 |
// GREY is the boarder between the line and the surface
|
| 42 |
// WHITE is the common surface
|
| 43 |
enum colorMember : uint8_t {
|
| 44 |
BLACK=0,
|
| 45 |
GREY=1,
|
| 46 |
WHITE=2
|
| 47 |
}; |
| 48 |
|
| 49 |
// a buffer for the z-value of the accelerometer
|
| 50 |
int16_t accel_z; |
| 51 |
bool running;
|
| 52 |
|
| 53 |
// Get some information about the policy
|
| 54 |
const int sizeOfPolicy = sizeof(policy) / sizeof(states); |
| 55 |
int policyCounter = 0; // Do not change this, it points to the beginning of the policy |
| 56 |
|
| 57 |
// Different speed settings (all values in "rounds per minute")
|
| 58 |
const int rpmForward[2] = {25,25}; |
| 59 |
const int rpmSoftLeft[2] = {15,25}; |
| 60 |
const int rpmHardLeft[2] = {10,25}; |
| 61 |
const int rpmSoftRight[2] = {rpmSoftLeft[1],rpmSoftLeft[0]}; |
| 62 |
const int rpmHardRight[2] = {rpmHardLeft[1],rpmHardLeft[0]}; |
| 63 |
const int rpmTurnLeft[2] = {-10, 10}; |
| 64 |
const int rpmTurnRight[2] = {rpmTurnLeft[1],rpmTurnLeft[0]}; |
| 65 |
const int rpmHalt[2] = {0, 0}; |
| 66 |
|
| 67 |
// Definition of the fuzzyfication function
|
| 68 |
// | Membership
|
| 69 |
// 1|_B__ G __W__
|
| 70 |
// | \ /\ /
|
| 71 |
// | \/ \/
|
| 72 |
// |_____/\__/\______ Sensor values
|
| 73 |
// SEE MATLAB SCRIPT "fuzzyRule.m" for adjusting the values
|
| 74 |
// All values are "raw sensor values"
|
| 75 |
/* Use these values for white ground surface (e.g. paper) */
|
| 76 |
|
| 77 |
const int blackStartFalling = 0x1000; // Where the black curve starts falling |
| 78 |
const int blackOff = 0x1800; // Where no more black is detected |
| 79 |
const int whiteStartRising = 0x2800; // Where the white curve starts rising |
| 80 |
const int whiteOn = 0x6000; // Where the white curve has reached the maximum value |
| 81 |
const int greyMax = (whiteOn + blackStartFalling) / 2; // Where grey has its maximum |
| 82 |
const int greyStartRising = blackStartFalling; // Where grey starts rising |
| 83 |
const int greyOff = whiteOn; // Where grey is completely off again |
| 84 |
|
| 85 |
/* Use these values for gray ground surfaces */
|
| 86 |
/*
|
| 87 |
const int blackStartFalling = 0x1000; // Where the black curve starts falling
|
| 88 |
const int blackOff = 0x2800; // Where no more black is detected
|
| 89 |
const int whiteStartRising = 0x4000; // Where the white curve starts rising
|
| 90 |
const int whiteOn = 0x5000; // Where the white curve starts rising
|
| 91 |
const int greyMax = (whiteOn + blackStartFalling) / 2; // Where grey has its maximum
|
| 92 |
const int greyStartRising = blackStartFalling; // Where grey starts rising
|
| 93 |
const int greyOff = whiteOn; // Where grey is completely off again
|
| 94 |
*/
|
| 95 |
|
| 96 |
int vcnl4020AmbientLight[4] = {0}; |
| 97 |
int vcnl4020Proximity[4] = {0}; |
| 98 |
|
| 99 |
// Border for the discrimination between black and white
|
| 100 |
const int discrBlackWhite = 16000; // border in "raw sensor values" |
| 101 |
// Discrimination between black and white (returns BLACK or WHITE)
|
| 102 |
// The border was calculated by a MAP-decider
|
| 103 |
colorMember discrimination(int value) {
|
| 104 |
if (value < discrBlackWhite)
|
| 105 |
return BLACK;
|
| 106 |
else
|
| 107 |
return WHITE;
|
| 108 |
} |
| 109 |
|
| 110 |
// Copy the speed from the source to the target array
|
| 111 |
void copyRpmSpeed(const int (&source)[2], int (&target)[2]) { |
| 112 |
target[constants::DiWheelDrive::LEFT_WHEEL] = source[constants::DiWheelDrive::LEFT_WHEEL]; |
| 113 |
target[constants::DiWheelDrive::RIGHT_WHEEL] = source[constants::DiWheelDrive::RIGHT_WHEEL]; |
| 114 |
} |
| 115 |
|
| 116 |
// Fuzzyfication of the sensor values
|
| 117 |
void fuzzyfication(int sensorValue, float (&fuzziedValue)[3]) { |
| 118 |
if (sensorValue < blackStartFalling ) {
|
| 119 |
// Only black value
|
| 120 |
fuzziedValue[BLACK] = 1.0f; |
| 121 |
fuzziedValue[GREY] = 0.0f; |
| 122 |
fuzziedValue[WHITE] = 0.0f; |
| 123 |
} else if (sensorValue > whiteOn ) { |
| 124 |
// Only white value
|
| 125 |
fuzziedValue[BLACK] = 0.0f; |
| 126 |
fuzziedValue[GREY] = 0.0f; |
| 127 |
fuzziedValue[WHITE] = 1.0f; |
| 128 |
} else if ( sensorValue < greyMax) { |
| 129 |
// Some greyisch value between black and grey
|
| 130 |
|
| 131 |
// Black is going down
|
| 132 |
if ( sensorValue > blackOff) {
|
| 133 |
fuzziedValue[BLACK] = 0.0f; |
| 134 |
} else {
|
| 135 |
fuzziedValue[BLACK] = static_cast<float>(sensorValue-blackOff) / (blackStartFalling-blackOff); |
| 136 |
} |
| 137 |
|
| 138 |
// Grey is going up
|
| 139 |
if ( sensorValue < greyStartRising) {
|
| 140 |
fuzziedValue[GREY] = 0.0f; |
| 141 |
} else {
|
| 142 |
fuzziedValue[GREY] = static_cast<float>(sensorValue-greyStartRising) / (greyMax-greyStartRising); |
| 143 |
} |
| 144 |
|
| 145 |
// White is absent
|
| 146 |
fuzziedValue[WHITE] = 0.0f; |
| 147 |
|
| 148 |
} else if ( sensorValue >= greyMax) { |
| 149 |
// Some greyisch value between grey white
|
| 150 |
|
| 151 |
// Black is absent
|
| 152 |
fuzziedValue[BLACK] = 0.0f; |
| 153 |
|
| 154 |
// Grey is going down
|
| 155 |
if ( sensorValue < greyOff) {
|
| 156 |
fuzziedValue[GREY] = static_cast<float>(sensorValue-greyOff) / (greyMax-greyOff); |
| 157 |
} else {
|
| 158 |
fuzziedValue[GREY] = 0.0f; |
| 159 |
} |
| 160 |
|
| 161 |
// White is going up
|
| 162 |
if ( sensorValue < whiteStartRising) {
|
| 163 |
fuzziedValue[WHITE] = 0.0f; |
| 164 |
} else {
|
| 165 |
fuzziedValue[WHITE] = static_cast<float>(sensorValue-whiteStartRising) / (whiteOn-whiteStartRising); |
| 166 |
} |
| 167 |
} |
| 168 |
} |
| 169 |
|
| 170 |
// Return the color, which has the highest fuzzy value
|
| 171 |
colorMember getMember(float (&fuzzyValue)[3]) { |
| 172 |
colorMember member; |
| 173 |
|
| 174 |
if (fuzzyValue[BLACK] > fuzzyValue[GREY])
|
| 175 |
if (fuzzyValue[BLACK] > fuzzyValue[WHITE])
|
| 176 |
member = BLACK; |
| 177 |
else
|
| 178 |
member = WHITE; |
| 179 |
else
|
| 180 |
if (fuzzyValue[GREY] > fuzzyValue[WHITE])
|
| 181 |
member = GREY; |
| 182 |
else
|
| 183 |
member = WHITE; |
| 184 |
|
| 185 |
return member;
|
| 186 |
} |
| 187 |
|
| 188 |
// Get a crisp output for the steering commands
|
| 189 |
void defuzzyfication(colorMember (&member)[4], int (&rpmFuzzyCtrl)[2]) { |
| 190 |
|
| 191 |
// all sensors are equal
|
| 192 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_LEFT] &&
|
| 193 |
member[constants::DiWheelDrive::PROX_FRONT_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_RIGHT] && |
| 194 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == member[constants::DiWheelDrive::PROX_WHEEL_RIGHT]) {
|
| 195 |
// something is wrong -> stop
|
| 196 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
| 197 |
// both front sensor detect a line
|
| 198 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK && |
| 199 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK) {
|
| 200 |
// straight
|
| 201 |
copyRpmSpeed(rpmForward, rpmFuzzyCtrl); |
| 202 |
// exact one front sensor detects a line
|
| 203 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK || |
| 204 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK) {
|
| 205 |
// soft correction
|
| 206 |
if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY) {
|
| 207 |
// soft right
|
| 208 |
copyRpmSpeed(rpmSoftRight, rpmFuzzyCtrl); |
| 209 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == WHITE) { |
| 210 |
// hard right
|
| 211 |
copyRpmSpeed(rpmHardRight, rpmFuzzyCtrl); |
| 212 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) { |
| 213 |
// soft left
|
| 214 |
copyRpmSpeed(rpmSoftLeft, rpmFuzzyCtrl); |
| 215 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == WHITE) { |
| 216 |
// hard left
|
| 217 |
copyRpmSpeed(rpmHardLeft, rpmFuzzyCtrl); |
| 218 |
} |
| 219 |
// both wheel sensors detect a line
|
| 220 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK && |
| 221 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) {
|
| 222 |
// something is wrong -> stop
|
| 223 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
| 224 |
// exactly one wheel sensor detects a line
|
| 225 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK || |
| 226 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) {
|
| 227 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK) {
|
| 228 |
// turn left
|
| 229 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
| 230 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) { |
| 231 |
// turn right
|
| 232 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
| 233 |
} |
| 234 |
// both front sensors may detect a line
|
| 235 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY && |
| 236 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) {
|
| 237 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY) {
|
| 238 |
// turn left
|
| 239 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
| 240 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) { |
| 241 |
// turn right
|
| 242 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
| 243 |
} |
| 244 |
// exactly one front sensor may detect a line
|
| 245 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY || |
| 246 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) {
|
| 247 |
if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY) {
|
| 248 |
// turn left
|
| 249 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
| 250 |
} else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) { |
| 251 |
// turn right
|
| 252 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
| 253 |
} |
| 254 |
// both wheel sensors may detect a line
|
| 255 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY && |
| 256 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) {
|
| 257 |
// something is wrong -> stop
|
| 258 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
| 259 |
// exactly one wheel sensor may detect a line
|
| 260 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY || |
| 261 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) {
|
| 262 |
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY) {
|
| 263 |
// turn left
|
| 264 |
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl); |
| 265 |
} else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) { |
| 266 |
// turn right
|
| 267 |
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl); |
| 268 |
} |
| 269 |
// no sensor detects anything
|
| 270 |
} else {
|
| 271 |
// line is lost -> stop
|
| 272 |
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl); |
| 273 |
} |
| 274 |
|
| 275 |
return;
|
| 276 |
} |
| 277 |
|
| 278 |
Color memberToLed(colorMember member) {
|
| 279 |
switch (member) {
|
| 280 |
case BLACK:
|
| 281 |
return Color(Color::GREEN);
|
| 282 |
case GREY:
|
| 283 |
return Color(Color::YELLOW);
|
| 284 |
case WHITE:
|
| 285 |
return Color(Color::RED);
|
| 286 |
default:
|
| 287 |
return Color(Color::WHITE);
|
| 288 |
} |
| 289 |
} |
| 290 |
|
| 291 |
// Line following by a fuzzy controler
|
| 292 |
void lineFollowing(int (&proximity)[4], int (&rpmFuzzyCtrl)[2]) { |
| 293 |
// FUZZYFICATION
|
| 294 |
// First we need to get the fuzzy value for our 3 values {BLACK, GREY, WHITE}
|
| 295 |
float leftWheelFuzzyMemberValues[3], leftFrontFuzzyMemberValues[3], rightFrontFuzzyMemberValues[3], rightWheelFuzzyMemberValues[3]; |
| 296 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_WHEEL_LEFT], leftWheelFuzzyMemberValues); |
| 297 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_FRONT_LEFT], leftFrontFuzzyMemberValues); |
| 298 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT], rightFrontFuzzyMemberValues); |
| 299 |
fuzzyfication(proximity[constants::DiWheelDrive::PROX_WHEEL_RIGHT], rightWheelFuzzyMemberValues); |
| 300 |
|
| 301 |
// INFERENCE RULE DEFINITION
|
| 302 |
// Get the member for each sensor
|
| 303 |
colorMember member[4];
|
| 304 |
member[constants::DiWheelDrive::PROX_WHEEL_LEFT] = getMember(leftWheelFuzzyMemberValues); |
| 305 |
member[constants::DiWheelDrive::PROX_FRONT_LEFT] = getMember(leftFrontFuzzyMemberValues); |
| 306 |
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] = getMember(rightFrontFuzzyMemberValues); |
| 307 |
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] = getMember(rightWheelFuzzyMemberValues); |
| 308 |
|
| 309 |
// visualize sensors via LEDs
|
| 310 |
global.robot.setLightColor(constants::LightRing::LED_WNW, memberToLed(member[constants::DiWheelDrive::PROX_WHEEL_LEFT])); |
| 311 |
global.robot.setLightColor(constants::LightRing::LED_NNW, memberToLed(member[constants::DiWheelDrive::PROX_FRONT_LEFT])); |
| 312 |
global.robot.setLightColor(constants::LightRing::LED_NNE, memberToLed(member[constants::DiWheelDrive::PROX_FRONT_RIGHT])); |
| 313 |
global.robot.setLightColor(constants::LightRing::LED_ENE, memberToLed(member[constants::DiWheelDrive::PROX_WHEEL_RIGHT])); |
| 314 |
|
| 315 |
// chprintf((BaseSequentialStream*) &SD1, "Left: BLACK: %f, GREY: %f, WHITE: %f\r\n", leftFuzzyMemberValues[BLACK], leftFuzzyMemberValues[GREY], leftFuzzyMemberValues[WHITE]);
|
| 316 |
// chprintf((BaseSequentialStream*) &SD1, "Right: BLACK: %f, GREY: %f, WHITE: %f\r\n", rightFuzzyMemberValues[BLACK], rightFuzzyMemberValues[GREY], rightFuzzyMemberValues[WHITE]);
|
| 317 |
|
| 318 |
// DEFUZZYFICATION
|
| 319 |
defuzzyfication(member, rpmFuzzyCtrl); |
| 320 |
} |
| 321 |
|
| 322 |
// Set the speed by the array
|
| 323 |
void setRpmSpeed(const int (&rpmSpeed)[2]) { |
| 324 |
global.motorcontrol.setTargetRPM(rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] * 1000000, rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] * 1000000); |
| 325 |
} |
| 326 |
|
| 327 |
// Get the next policy rule
|
| 328 |
states getNextPolicy() {
|
| 329 |
// If the policy is over, start again
|
| 330 |
if (policyCounter >= sizeOfPolicy)
|
| 331 |
policyCounter = 3;
|
| 332 |
|
| 333 |
return policy[policyCounter++];
|
| 334 |
} |
| 335 |
|
| 336 |
|
| 337 |
|
| 338 |
UserThread::UserThread() : |
| 339 |
chibios_rt::BaseStaticThread<USER_THREAD_STACK_SIZE>() |
| 340 |
{
|
| 341 |
} |
| 342 |
|
| 343 |
UserThread::~UserThread() |
| 344 |
{
|
| 345 |
} |
| 346 |
|
| 347 |
msg_t |
| 348 |
UserThread::main() |
| 349 |
{
|
| 350 |
/*
|
| 351 |
* SETUP
|
| 352 |
*/
|
| 353 |
int rpmFuzzyCtrl[2] = {0}; |
| 354 |
for (uint8_t led = 0; led < 8; ++led) { |
| 355 |
global.robot.setLightColor(led, Color(Color::BLACK)); |
| 356 |
} |
| 357 |
running = false;
|
| 358 |
|
| 359 |
/*
|
| 360 |
* LOOP
|
| 361 |
*/
|
| 362 |
while (!this->shouldTerminate()) |
| 363 |
{
|
| 364 |
/*
|
| 365 |
* read accelerometer z-value
|
| 366 |
*/
|
| 367 |
accel_z = global.lis331dlh.getAccelerationForce(LIS331DLH::AXIS_Z); |
| 368 |
|
| 369 |
/*
|
| 370 |
* evaluate the accelerometer
|
| 371 |
*/
|
| 372 |
if (accel_z < -900 /*-0.9g*/) { |
| 373 |
if (running) {
|
| 374 |
// stop the robot
|
| 375 |
running = false;
|
| 376 |
global.motorcontrol.setTargetRPM(0, 0); |
| 377 |
} else {
|
| 378 |
// start the robot
|
| 379 |
running = true;
|
| 380 |
} |
| 381 |
// set the front LEDs to blue for one second
|
| 382 |
global.robot.setLightColor(constants::LightRing::LED_SSW, Color(Color::BLACK)); |
| 383 |
global.robot.setLightColor(constants::LightRing::LED_WSW, Color(Color::BLACK)); |
| 384 |
global.robot.setLightColor(constants::LightRing::LED_WNW, Color(Color::WHITE)); |
| 385 |
global.robot.setLightColor(constants::LightRing::LED_NNW, Color(Color::WHITE)); |
| 386 |
global.robot.setLightColor(constants::LightRing::LED_NNE, Color(Color::WHITE)); |
| 387 |
global.robot.setLightColor(constants::LightRing::LED_ENE, Color(Color::WHITE)); |
| 388 |
global.robot.setLightColor(constants::LightRing::LED_ESE, Color(Color::BLACK)); |
| 389 |
global.robot.setLightColor(constants::LightRing::LED_SSE, Color(Color::BLACK)); |
| 390 |
this->sleep(MS2ST(1000)); |
| 391 |
global.robot.setLightColor(constants::LightRing::LED_WNW, Color(Color::BLACK)); |
| 392 |
global.robot.setLightColor(constants::LightRing::LED_NNW, Color(Color::BLACK)); |
| 393 |
global.robot.setLightColor(constants::LightRing::LED_NNE, Color(Color::BLACK)); |
| 394 |
global.robot.setLightColor(constants::LightRing::LED_ENE, Color(Color::BLACK)); |
| 395 |
} |
| 396 |
|
| 397 |
if (running) {
|
| 398 |
// Read the proximity values
|
| 399 |
for (int i = 0; i < 4; i++) { |
| 400 |
vcnl4020AmbientLight[i] = global.vcnl4020[i].getAmbientLight(); |
| 401 |
vcnl4020Proximity[i] = global.vcnl4020[i].getProximityScaledWoOffset(); |
| 402 |
} |
| 403 |
|
| 404 |
// chprintf((BaseSequentialStream*) &SD1, "0x%04X 0x%04X 0x%04X 0x%04X\n",
|
| 405 |
// vcnl4020Proximity[constants::DiWheelDrive::PROX_WHEEL_LEFT],
|
| 406 |
// vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_LEFT],
|
| 407 |
// vcnl4020Proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT],
|
| 408 |
// vcnl4020Proximity[constants::DiWheelDrive::PROX_WHEEL_RIGHT]);
|
| 409 |
|
| 410 |
lineFollowing(vcnl4020Proximity, rpmFuzzyCtrl); |
| 411 |
setRpmSpeed(rpmFuzzyCtrl); |
| 412 |
} |
| 413 |
|
| 414 |
this->sleep(MS2ST(10)); |
| 415 |
} |
| 416 |
|
| 417 |
return RDY_OK;
|
| 418 |
} |
| 419 |
|