amiro-os / components / DistControl.cpp @ bc91a128
History | View | Annotate | Download (5.899 KB)
1 | 58fe0e0b | Thomas Schöpping | #include <ch.hpp> |
---|---|---|---|
2 | #include <hal.h> |
||
3 | |||
4 | #include <qei.h> |
||
5 | |||
6 | #include <amiro/DistControl.h> |
||
7 | |||
8 | using namespace chibios_rt; |
||
9 | using namespace amiro; |
||
10 | using namespace types; |
||
11 | using namespace constants; |
||
12 | using namespace constants::DiWheelDrive; |
||
13 | |||
14 | DistControl::DistControl(MotorControl* mc, MotorIncrements* mi) |
||
15 | : BaseStaticThread<256>(),
|
||
16 | motorControl(mc), |
||
17 | motorIncrements(mi), |
||
18 | period(10)
|
||
19 | { |
||
20 | |||
21 | // initialize velocities
|
||
22 | this->maxVelocity.y = 0; |
||
23 | this->maxVelocity.z = 0; |
||
24 | this->maxVelocity.w_x = 0; |
||
25 | this->maxVelocity.w_y = 0; |
||
26 | this->targetVelocity.x = 0; |
||
27 | this->targetVelocity.y = 0; |
||
28 | this->targetVelocity.z = 0; |
||
29 | this->targetVelocity.w_x = 0; |
||
30 | this->targetVelocity.w_y = 0; |
||
31 | this->targetVelocity.w_z = 0; |
||
32 | this->minVelocity.y = 0; |
||
33 | this->minVelocity.z = 0; |
||
34 | this->minVelocity.w_x = 0; |
||
35 | this->minVelocity.w_y = 0; |
||
36 | this->minVelocity.w_z = 0; |
||
37 | |||
38 | // set max and min velocities
|
||
39 | this->maxVelocity.x = 0.15 * 1e6; // 15 cm/s |
||
40 | this->minVelocity.x = 0.02 * 1e6; // 2 cm/s |
||
41 | this->maxVelocity.w_z = 2*maxVelocity.x / MotorControl::actualWheelBaseDistanceSI; |
||
42 | this->minVelocity.w_z = 2*minVelocity.x / MotorControl::actualWheelBaseDistanceSI; |
||
43 | } |
||
44 | |||
45 | int DistControl::getCurrentTargetDist() {
|
||
46 | return (int)(targetDistance*1e6); |
||
47 | } |
||
48 | |||
49 | int DistControl::getCurrentTargetAngle() {
|
||
50 | return (int)(targetAngle*1e6); |
||
51 | } |
||
52 | |||
53 | void DistControl::setTargetPosition(int32_t distance, int32_t angle, uint16_t time) {
|
||
54 | chSysLock(); |
||
55 | targetDistance = distance; // um
|
||
56 | drivingForward = distance > 0;
|
||
57 | if (!drivingForward) {
|
||
58 | targetDistance *= -1;
|
||
59 | } |
||
60 | targetAngle = angle; // urad
|
||
61 | turningLeft = angle > 0;
|
||
62 | if (!turningLeft) {
|
||
63 | targetAngle *= -1;
|
||
64 | } |
||
65 | restTime = time * 1e3; // us |
||
66 | controllerActive = true;
|
||
67 | chSysUnlock(); |
||
68 | fullDistance[LEFT_WHEEL] = 0;
|
||
69 | fullDistance[RIGHT_WHEEL] = 0;
|
||
70 | motorControl->updateIncrements(motorIncrements, increment, incrementDifference); |
||
71 | } |
||
72 | |||
73 | bool DistControl::isActive(void) { |
||
74 | return controllerActive;
|
||
75 | } |
||
76 | |||
77 | void DistControl::deactivateController(void) { |
||
78 | chSysLock(); |
||
79 | controllerActive = false;
|
||
80 | targetDistance = 0;
|
||
81 | targetAngle = 0;
|
||
82 | restTime = 0;
|
||
83 | for (int idx=0; idx < 2; idx++) { |
||
84 | increment[idx] = 0;
|
||
85 | incrementDifference[idx] = 0;
|
||
86 | actualDistance[idx] = 0;
|
||
87 | fullDistance[idx] = 0;
|
||
88 | } |
||
89 | chSysUnlock(); |
||
90 | } |
||
91 | |||
92 | msg_t DistControl::main(void) {
|
||
93 | systime_t time = System::getTime(); |
||
94 | systime_t printTime = time; |
||
95 | this->setName("DistControl"); |
||
96 | |||
97 | DistControl::deactivateController(); |
||
98 | |||
99 | while (!this->shouldTerminate()) { |
||
100 | time += MS2ST(this->period);
|
||
101 | |||
102 | if (controllerActive) {
|
||
103 | // get increment differences for each wheel
|
||
104 | motorControl->updateIncrements(motorIncrements, increment, incrementDifference); // ticks
|
||
105 | |||
106 | // calculate driven distance difference for each wheel
|
||
107 | motorControl->updateDistance(incrementDifference, actualDistance); // m
|
||
108 | |||
109 | // calculate full driven distance for each wheel
|
||
110 | for (int idxWheel = 0; idxWheel < 2; idxWheel++) { |
||
111 | fullDistance[idxWheel] += (int32_t)(actualDistance[idxWheel]*1e6);
|
||
112 | } |
||
113 | |||
114 | // calculate whole driven distance and angle
|
||
115 | realDistance = (fullDistance[LEFT_WHEEL] + fullDistance[RIGHT_WHEEL]) / 2.0; // um |
||
116 | if (!drivingForward) {
|
||
117 | realDistance *= -1;
|
||
118 | } |
||
119 | realAngle = (fullDistance[RIGHT_WHEEL] - fullDistance[LEFT_WHEEL]) / MotorControl::actualWheelBaseDistanceSI; // urad
|
||
120 | if (!turningLeft) {
|
||
121 | realAngle *= -1;
|
||
122 | } |
||
123 | |||
124 | // calculate distance and angle to drive
|
||
125 | errorDistance = targetDistance - realDistance; // um
|
||
126 | if (errorDistance < 0) { |
||
127 | errorDistance = 0;
|
||
128 | } |
||
129 | errorAngle = targetAngle - realAngle; // urad
|
||
130 | if (errorAngle < 0) { |
||
131 | errorAngle = 0;
|
||
132 | } |
||
133 | |||
134 | // calculate velocities for motor control
|
||
135 | DistControl::calcVelocities(); |
||
136 | |||
137 | if (controllerActive && newVelocities) {
|
||
138 | // set target velocities
|
||
139 | this->motorControl->setTargetSpeed(targetVelocity);
|
||
140 | newVelocities = false;
|
||
141 | } |
||
142 | |||
143 | /*
|
||
144 | if (time-printTime > MS2ST(100)) {
|
||
145 | chprintf((BaseSequentialStream*) &SD1, "dist = %i um, angle = %i urad, ed = %i um, ea = %i, v = %i um/s, w = %i urad/s\n", realDistance, realAngle, errorDistance, errorAngle, targetVelocity.x, targetVelocity.w_z);
|
||
146 | printTime = time;
|
||
147 | }
|
||
148 | */
|
||
149 | |||
150 | // reduce rest time (us)
|
||
151 | restTime -= period*1e3;
|
||
152 | if (restTime < 1) { |
||
153 | restTime = 1;
|
||
154 | } |
||
155 | |||
156 | // deactivate controller if necessary
|
||
157 | if (errorDistance == 0 && errorAngle == 0) { |
||
158 | deactivateController(); |
||
159 | } |
||
160 | |||
161 | } |
||
162 | |||
163 | chThdSleepUntil(time); |
||
164 | } |
||
165 | |||
166 | return true; |
||
167 | } |
||
168 | |||
169 | void DistControl::calcVelocities(void) { |
||
170 | // TODO calculate target velocities better
|
||
171 | |||
172 | // set intuitive velocities
|
||
173 | int32_t forwardSpeed = (int32_t) (errorDistance * 1e6 / (1.0f*restTime)); // um/s |
||
174 | int32_t angleSpeed = (int32_t) (errorAngle * 1e6 / (1.0f*restTime)); // urad/s |
||
175 | |||
176 | int32_t maxForward = maxVelocity.x; |
||
177 | if (maxForward > errorDistance) {
|
||
178 | maxForward = errorDistance; |
||
179 | } |
||
180 | |||
181 | int32_t maxTurn = maxVelocity.w_z; |
||
182 | if (maxTurn > errorAngle) {
|
||
183 | maxTurn = errorAngle; |
||
184 | } |
||
185 | |||
186 | // check max forward speed
|
||
187 | if (forwardSpeed > maxForward) {
|
||
188 | forwardSpeed = maxForward; |
||
189 | angleSpeed = (int32_t) (forwardSpeed * ((1.0f*errorAngle) / (1.0f*errorDistance))); |
||
190 | } |
||
191 | |||
192 | // check max angle speed
|
||
193 | if (angleSpeed > maxTurn) {
|
||
194 | angleSpeed = maxTurn; |
||
195 | forwardSpeed = (int32_t) (angleSpeed * ((1.0f*errorDistance) / (1.0f*errorAngle))); |
||
196 | } |
||
197 | |||
198 | // check for too small speeds
|
||
199 | if (errorDistance > 0 && forwardSpeed < minVelocity.x) { |
||
200 | forwardSpeed = minVelocity.x; |
||
201 | } |
||
202 | if (errorAngle > 0 && errorDistance == 0 && angleSpeed < minVelocity.w_z) { |
||
203 | angleSpeed = minVelocity.w_z; |
||
204 | } |
||
205 | |||
206 | // set velocity directions
|
||
207 | if (!drivingForward) {
|
||
208 | forwardSpeed *= -1;
|
||
209 | } |
||
210 | if (!turningLeft) {
|
||
211 | angleSpeed *= -1;
|
||
212 | } |
||
213 | |||
214 | // if nessecary set new target velocities
|
||
215 | if (forwardSpeed != targetVelocity.x || angleSpeed != targetVelocity.w_z) {
|
||
216 | newVelocities = true;
|
||
217 | targetVelocity.x = forwardSpeed; |
||
218 | targetVelocity.w_z = angleSpeed; |
||
219 | } |
||
220 | } |