Statistics
| Branch: | Tag: | Revision:

amiro-os / devices / DiWheelDrive / linefollow2.cpp @ bfffb0bd

History | View | Annotate | Download (12.626 KB)

1 c76baf23 Georg Alberding
#include "global.hpp"
2
#include "linefollow2.hpp" 
3 2330e415 Georg Alberding
#include <cmath>
4 c76baf23 Georg Alberding
5
6 22b85da1 galberding
7 12463563 galberding
LineFollow::LineFollow(Global *global){
8
    this->global = global;
9
}
10 1b3adcdd galberding
LineFollow::LineFollow(Global *global, LineFollowStrategy strategy){
11
    this->global = global;
12
    this-> strategy = strategy;
13 c76baf23 Georg Alberding
}
14 25388c2f Georg Alberding
15 22b85da1 galberding
/**
16
 * Calculate the error from front proxi sensors and fixed threshold values for those sensors.
17
 */
18
int LineFollow::getError(){
19 1b3adcdd galberding
    // Get actual sensor data of both front sensors
20 88afb834 galberding
    int FL = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_LEFT].getProximityScaledWoOffset();
21
    int FR = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_RIGHT].getProximityScaledWoOffset();
22
    int targetL = global->threshProxyL;
23
    int targetR = global->threshProxyR;
24 1b3adcdd galberding
    int error = 0;
25
    switch (this->strategy)
26
    {
27 bfffb0bd galberding
    case LineFollowStrategy::EDGE_RIGHT: case LineFollowStrategy::DOCKING:
28 1b3adcdd galberding
        error = -(FL -targetL + FR - targetR);
29
        break;
30
    case LineFollowStrategy::EDGE_LEFT:
31
        error = (FL -targetL + FR - targetR);
32
        break;
33
    case LineFollowStrategy::MIDDLE:
34
        // Assume that the smallest value means driving in the middle
35
        targetL = targetR = !(targetL<targetR)?targetR:targetL;
36
        error = (FL -targetL + FR - targetR);
37
        break;
38
    
39
    default:
40
        break;
41
    }
42
    // Debugging stuff ------
43
    if (global->enableRecord){
44
        global->senseRec[global->sensSamples].error = error;
45
        global->senseRec[global->sensSamples].FL = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_LEFT].getProximityScaledWoOffset();
46
        global->senseRec[global->sensSamples].FR = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_RIGHT].getProximityScaledWoOffset();
47
        global->sensSamples++;
48
        }
49
    // ----------------------
50
    // Register white values
51 22b85da1 galberding
    if (FL+FR > global->threshWhite){
52
        whiteFlag = 1;
53
    }else{
54
        whiteFlag = 0;
55
    }
56
    return error;
57
}
58
59 1b3adcdd galberding
int LineFollow::followLine(int (&rpmSpeed)[2]){
60 bfffb0bd galberding
    int correctionSpeed = 0;
61 1b3adcdd galberding
    switch (this->strategy)
62
    {
63
    case LineFollowStrategy::FUZZY:
64 bfffb0bd galberding
      for (int i = 0; i < 4; i++) {
65
          vcnl4020AmbientLight[i] = global->vcnl4020[i].getAmbientLight();
66
          vcnl4020Proximity[i] = global->vcnl4020[i].getProximityScaledWoOffset();
67
      }
68
      lineFollowing(vcnl4020Proximity, rpmSpeed);
69
      break;
70
71
    case LineFollowStrategy::DOCKING:
72
      correctionSpeed = -getPidCorrectionSpeed();
73
      rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] = -global->forwardSpeed;
74
75
      rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] = -global->forwardSpeed;
76
      
77
      break;
78 22b85da1 galberding
79 1b3adcdd galberding
    default:
80 bfffb0bd galberding
      correctionSpeed = getPidCorrectionSpeed();
81
      // chprintf((BaseSequentialStream*) &SD1, "Correction: %d, thresh: %d\n",correctionSpeed,  global->threshWhite);
82 22b85da1 galberding
83 bfffb0bd galberding
      rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] =   global->forwardSpeed + correctionSpeed;
84 22b85da1 galberding
85 bfffb0bd galberding
      rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] = global->forwardSpeed - correctionSpeed;
86
      break;
87 1b3adcdd galberding
    }
88 bfffb0bd galberding
    return whiteFlag;
89 22b85da1 galberding
}
90
91 1b3adcdd galberding
92 22b85da1 galberding
/**
93
 * Pid controller which returns a corrections speed.
94
 */
95
int LineFollow::getPidCorrectionSpeed(){
96
    int error = getError();
97 1b3adcdd galberding
    int sloap = error - oldError;
98
    int correctionSpeed = (int) (Kp*error + Ki*accumHist + Kd*sloap);
99
    oldError = error;
100
    // accumHist += (int) (0.01 * error);
101 22b85da1 galberding
    if (abs(error) > global->maxDist.error){
102
        global->maxDist.error = error;
103
    }
104
    return correctionSpeed;
105 88afb834 galberding
}
106 12463563 galberding
107 1b3adcdd galberding
108
void LineFollow::setStrategy(LineFollowStrategy strategy){
109
    this->strategy = strategy;
110
}
111
112
LineFollowStrategy LineFollow::getStrategy(){
113
      return this->strategy;
114
}
115
void LineFollow::setGains(float Kp, float Ki, float Kd){
116
    this->Kp = Kp;
117
    this->Ki = Ki;
118
    this->Kd = Kd;
119
}
120
121
122
123
124
125
// Lagacy code, fuzzy following-----------------------------------------
126
// Line following by a fuzzy controler
127
void LineFollow::lineFollowing(int (&proximity)[4], int (&rpmFuzzyCtrl)[2]) {
128
  // FUZZYFICATION
129
  // First we need to get the fuzzy value for our 3 values {BLACK, GREY, WHITE}
130
  float leftWheelFuzzyMemberValues[3], leftFrontFuzzyMemberValues[3], rightFrontFuzzyMemberValues[3], rightWheelFuzzyMemberValues[3];
131
  fuzzyfication(proximity[constants::DiWheelDrive::PROX_WHEEL_LEFT], leftWheelFuzzyMemberValues);
132
  fuzzyfication(proximity[constants::DiWheelDrive::PROX_FRONT_LEFT], leftFrontFuzzyMemberValues);
133
  fuzzyfication(proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT], rightFrontFuzzyMemberValues);
134
  fuzzyfication(proximity[constants::DiWheelDrive::PROX_WHEEL_RIGHT], rightWheelFuzzyMemberValues);
135
136
  // INFERENCE RULE DEFINITION
137
  // Get the member for each sensor
138
  colorMember member[4];
139
  member[constants::DiWheelDrive::PROX_WHEEL_LEFT] = getMember(leftWheelFuzzyMemberValues);
140
  member[constants::DiWheelDrive::PROX_FRONT_LEFT] = getMember(leftFrontFuzzyMemberValues);
141
  member[constants::DiWheelDrive::PROX_FRONT_RIGHT] = getMember(rightFrontFuzzyMemberValues);
142
  member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] = getMember(rightWheelFuzzyMemberValues);
143
144
  // visualize sensors via LEDs
145
  global->robot.setLightColor(constants::LightRing::LED_WNW, memberToLed(member[constants::DiWheelDrive::PROX_WHEEL_LEFT]));
146
  global->robot.setLightColor(constants::LightRing::LED_NNW, memberToLed(member[constants::DiWheelDrive::PROX_FRONT_LEFT]));
147
  global->robot.setLightColor(constants::LightRing::LED_NNE, memberToLed(member[constants::DiWheelDrive::PROX_FRONT_RIGHT]));
148
  global->robot.setLightColor(constants::LightRing::LED_ENE, memberToLed(member[constants::DiWheelDrive::PROX_WHEEL_RIGHT]));
149
150
  // chprintf((BaseSequentialStream*) &SD1, "Left: BLACK: %f, GREY: %f, WHITE: %f\r\n", leftWheelFuzzyMemberValues[BLACK], leftWheelFuzzyMemberValues[GREY], leftWheelFuzzyMemberValues[WHITE]);
151
  // chprintf((BaseSequentialStream*) &SD1, "Right: BLACK: %f, GREY: %f, WHITE: %f\r\n", rightFuzzyMemberValues[BLACK], rightFuzzyMemberValues[GREY], rightFuzzyMemberValues[WHITE]);
152
153
  // DEFUZZYFICATION
154
  defuzzyfication(member, rpmFuzzyCtrl);
155
  // defuzz(member, rpmFuzzyCtrl);
156
}
157
158
159
Color LineFollow::memberToLed(colorMember member) {
160
  switch (member) {
161
    case BLACK:
162
      return Color(Color::GREEN);
163
    case GREY:
164
      return Color(Color::YELLOW);
165
    case WHITE:
166
      return Color(Color::RED);
167
    default:
168
      return Color(Color::WHITE);
169
  }
170
}
171
172
void LineFollow::defuzzyfication(colorMember (&member)[4], int (&rpmFuzzyCtrl)[2]) {
173
    whiteFlag = 0;
174
  // all sensors are equal
175
  if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_LEFT] &&
176
      member[constants::DiWheelDrive::PROX_FRONT_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_RIGHT] &&
177
      member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == member[constants::DiWheelDrive::PROX_WHEEL_RIGHT]) {
178
    // something is wrong -> stop
179
    copyRpmSpeed(rpmHalt, rpmFuzzyCtrl);
180
  // both front sensor detect a line
181
  } else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK &&
182
      member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK) {
183
    // straight
184
    copyRpmSpeed(global->rpmForward, rpmFuzzyCtrl);
185
  // exact one front sensor detects a line
186
  } else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK ||
187
             member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK) {
188
    // soft correction
189
    if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY) {
190
      // soft right
191
      copyRpmSpeed(global->rpmSoftRight, rpmFuzzyCtrl);
192
    } else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == WHITE) {
193
      // hard right
194
      copyRpmSpeed(global->rpmHardRight, rpmFuzzyCtrl);
195
    } else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) {
196
      // soft left
197
      copyRpmSpeed(global->rpmSoftLeft, rpmFuzzyCtrl);
198
    } else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == WHITE) {
199
      // hard left
200
      copyRpmSpeed(global->rpmHardLeft, rpmFuzzyCtrl);
201
    }
202
  // both wheel sensors detect a line
203
  } else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK &&
204
             member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) {
205
    // something is wrong -> stop
206
    copyRpmSpeed(rpmHalt, rpmFuzzyCtrl);
207
  // exactly one wheel sensor detects a line
208
  } else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK ||
209
             member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) {
210
    if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK) {
211
      // turn left
212
      copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl);
213
    } else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) {
214
      // turn right
215
      copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl);
216
    }
217
  // both front sensors may detect a line
218
  } else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY &&
219
             member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) {
220
    if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY) {
221
      // turn left
222
      copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl);
223
    } else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) {
224
      // turn right
225
      copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl);
226
    }
227
  // exactly one front sensor may detect a line
228
  } else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY ||
229
             member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) {
230
    if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY) {
231
      // turn left
232
      copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl);
233
    } else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) {
234
      // turn right
235
      copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl);
236
    }
237
  // both wheel sensors may detect a line
238
  } else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY &&
239
             member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) {
240
    // something is wrong -> stop
241
    copyRpmSpeed(rpmHalt, rpmFuzzyCtrl);
242
  // exactly one wheel sensor may detect a line
243
  } else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY ||
244
             member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) {
245
    if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY) {
246
      // turn left
247
      copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl);
248
    } else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) {
249
      // turn right
250
      copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl);
251
    }
252
  // no sensor detects anything 
253
  } else {
254
    // line is lost -> stop
255
    whiteFlag = 1;
256
    copyRpmSpeed(rpmHalt, rpmFuzzyCtrl);
257
  }
258
    chprintf((BaseSequentialStream*) &SD1, "Fuzzy Speed: Left: %d, Right: %d\n", rpmFuzzyCtrl[0], rpmFuzzyCtrl[1]);
259
  return;
260
}
261
262
colorMember LineFollow::getMember(float (&fuzzyValue)[3]) {
263
  colorMember member;
264
265
  if (fuzzyValue[BLACK] > fuzzyValue[GREY])
266
    if (fuzzyValue[BLACK] > fuzzyValue[WHITE])
267
      member = BLACK;
268
    else
269
      member = WHITE;
270
  else
271
    if (fuzzyValue[GREY] > fuzzyValue[WHITE])
272
      member = GREY;
273
    else
274
      member = WHITE;
275
276
  return member;
277
}
278
279
// Fuzzyfication of the sensor values
280
void LineFollow::fuzzyfication(int sensorValue, float (&fuzziedValue)[3]) {
281
  if (sensorValue < blackStartFalling ) {
282
    // Only black value
283
    fuzziedValue[BLACK] = 1.0f;
284
    fuzziedValue[GREY] = 0.0f;
285
    fuzziedValue[WHITE] = 0.0f;
286
  } else if (sensorValue > whiteOn ) {
287
    // Only white value
288
    fuzziedValue[BLACK] = 0.0f;
289
    fuzziedValue[GREY] = 0.0f;
290
    fuzziedValue[WHITE] = 1.0f;
291
  } else if ( sensorValue < greyMax) {
292
    // Some greyisch value between black and grey
293
294
    // Black is going down
295
    if ( sensorValue > blackOff) {
296
      fuzziedValue[BLACK] = 0.0f;
297
    } else {
298
      fuzziedValue[BLACK] = static_cast<float>(sensorValue-blackOff) / (blackStartFalling-blackOff);
299
    }
300
301
    // Grey is going up
302
    if ( sensorValue < greyStartRising) {
303
      fuzziedValue[GREY] = 0.0f;
304
    } else {
305
      fuzziedValue[GREY] = static_cast<float>(sensorValue-greyStartRising) / (greyMax-greyStartRising);
306
    }
307
308
    // White is absent
309
    fuzziedValue[WHITE] = 0.0f;
310
311
  } else if ( sensorValue >= greyMax) {
312
    // Some greyisch value between grey white
313
314
    // Black is absent
315
    fuzziedValue[BLACK] = 0.0f;
316
317
    // Grey is going down
318
    if ( sensorValue < greyOff) {
319
      fuzziedValue[GREY] = static_cast<float>(sensorValue-greyOff) / (greyMax-greyOff);
320
    } else {
321
      fuzziedValue[GREY] = 0.0f;
322
    }
323
324
    // White is going up
325
    if ( sensorValue < whiteStartRising) {
326
      fuzziedValue[WHITE] = 0.0f;
327
    } else {
328
      fuzziedValue[WHITE] = static_cast<float>(sensorValue-whiteStartRising) / (whiteOn-whiteStartRising);
329
    }
330
  }
331
}
332
333
void LineFollow::copyRpmSpeed(const int (&source)[2], int (&target)[2]) {
334
  target[constants::DiWheelDrive::LEFT_WHEEL] = source[constants::DiWheelDrive::LEFT_WHEEL];
335
  target[constants::DiWheelDrive::RIGHT_WHEEL] = source[constants::DiWheelDrive::RIGHT_WHEEL];
336
  // chprintf((BaseSequentialStream*) &SD1, "Speed left: %d, Speed right: %d\r\n", target[0], target[1]);
337
}