amiro-os / periphery-lld / periphAL.h @ c7dcc892
History | View | Annotate | Download (20.536 KB)
1 |
/*
|
---|---|
2 |
AMiRo-OS is an operating system designed for the Autonomous Mini Robot (AMiRo) platform.
|
3 |
Copyright (C) 2016..2019 Thomas Schöpping et al.
|
4 |
|
5 |
This program is free software: you can redistribute it and/or modify
|
6 |
it under the terms of the GNU General Public License as published by
|
7 |
the Free Software Foundation, either version 3 of the License, or
|
8 |
(at your option) any later version.
|
9 |
|
10 |
This program is distributed in the hope that it will be useful,
|
11 |
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
12 |
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
13 |
GNU General Public License for more details.
|
14 |
|
15 |
You should have received a copy of the GNU General Public License
|
16 |
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
17 |
*/
|
18 |
|
19 |
#ifndef AMIROOS_PERIPHAL_H
|
20 |
#define AMIROOS_PERIPHAL_H
|
21 |
|
22 |
#include <amiro-lld.h> |
23 |
|
24 |
/*============================================================================*/
|
25 |
/* VERSION */
|
26 |
/*============================================================================*/
|
27 |
|
28 |
/**
|
29 |
* @brief The periphery abstraction layer interface major version.
|
30 |
* @note Changes of the major version imply incompatibilities.
|
31 |
*/
|
32 |
#define PERIPHAL_VERSION_MAJOR 1 |
33 |
|
34 |
/**
|
35 |
* @brief The periphery abstraction layer interface minor version.
|
36 |
* @note A higher minor version implies new functionalty, but all old interfaces are still available.
|
37 |
*/
|
38 |
#define PERIPHAL_VERSION_MINOR 1 |
39 |
|
40 |
/*============================================================================*/
|
41 |
/* DEPENDENCIES */
|
42 |
/*============================================================================*/
|
43 |
|
44 |
#include <aosconf.h> |
45 |
#include <hal.h> |
46 |
|
47 |
/*============================================================================*/
|
48 |
/* DEBUG */
|
49 |
/*============================================================================*/
|
50 |
|
51 |
#if (AMIROOS_CFG_DBG == true) || defined(__DOXYGEN__) |
52 |
|
53 |
#if defined(__cplusplus)
|
54 |
extern "C" { |
55 |
#endif /* defined(__cplusplus) */ |
56 |
void _apalDbgAssertMsg(const bool c, const char* fmt, ...); |
57 |
void apalDbgPrintf(const char* fmt, ...); |
58 |
#if defined(__cplusplus)
|
59 |
} |
60 |
#endif /* defined(__cplusplus) */ |
61 |
|
62 |
/**
|
63 |
* @brief Assert function to check a given condition.
|
64 |
*
|
65 |
* @param[in] c The condition to check.
|
66 |
*/
|
67 |
#define apalDbgAssert(c) \
|
68 |
_apalDbgAssertMsg(c, "%s(%u): apalDbgAssert failed", __FILE__, __LINE__);
|
69 |
|
70 |
#else /* (AMIROOS_CFG_DBG != true) */ |
71 |
|
72 |
#define apalDbgAssert(constition)
|
73 |
#define apalDbgAssertMsg(condition, fmt, ...)
|
74 |
#define apalDbgPrintf(fmt, ...)
|
75 |
|
76 |
#endif /* (AMIROOS_CFG_DBG == true) */ |
77 |
|
78 |
/*============================================================================*/
|
79 |
/* GENERAL */
|
80 |
/*============================================================================*/
|
81 |
|
82 |
/**
|
83 |
* @brief Delay execution by a specific number of microseconds.
|
84 |
*
|
85 |
* @param[in] us Time to sleep until execution continues in microseconds.
|
86 |
*/
|
87 |
static inline void usleep(apalTime_t us) |
88 |
{ |
89 |
// check if the specified time can be represented by the system
|
90 |
apalDbgAssert(us <= chTimeI2US(TIME_INFINITE)); |
91 |
|
92 |
const sysinterval_t interval = chTimeUS2I(us);
|
93 |
// TIME_IMMEDIATE makes no sense and would even cause system halt
|
94 |
if (interval != TIME_IMMEDIATE) {
|
95 |
chThdSleep(interval); |
96 |
} |
97 |
return;
|
98 |
} |
99 |
|
100 |
/*============================================================================*/
|
101 |
/* GPIO */
|
102 |
/*============================================================================*/
|
103 |
|
104 |
#if (HAL_USE_PAL == TRUE) || defined (__DOXYGEN__)
|
105 |
|
106 |
/**
|
107 |
* @brief GPIO driver type.
|
108 |
*/
|
109 |
struct apalGpio_t {
|
110 |
ioline_t line; |
111 |
} PACKED_VAR; |
112 |
|
113 |
/**
|
114 |
* @brief Read the current value of a GPIO pin.
|
115 |
*
|
116 |
* @param[in] gpio GPIO to read.
|
117 |
* @param[out] val Current value of the GPIO.
|
118 |
*
|
119 |
* @return The status indicates whether the function call was successful.
|
120 |
*/
|
121 |
static inline apalExitStatus_t apalGpioRead(apalGpio_t* gpio, apalGpioState_t* const val) |
122 |
{ |
123 |
apalDbgAssert(gpio != NULL);
|
124 |
apalDbgAssert(val != NULL);
|
125 |
|
126 |
*val = (palReadLine(gpio->line) == PAL_HIGH) ? APAL_GPIO_HIGH : APAL_GPIO_LOW; |
127 |
return APAL_STATUS_OK;
|
128 |
} |
129 |
|
130 |
/**
|
131 |
* @brief Set the value of a GPIO pin.
|
132 |
*
|
133 |
* @param[in] gpio GPIO to write.
|
134 |
* @param[in] val Value to set for the GPIO.
|
135 |
*
|
136 |
* @return The status indicates whether the function call was successful.
|
137 |
*/
|
138 |
static inline apalExitStatus_t apalGpioWrite(apalGpio_t* gpio, const apalGpioState_t val) |
139 |
{ |
140 |
apalDbgAssert(gpio != NULL);
|
141 |
|
142 |
// palWriteLine() is not guaranteed to be atomic, thus the scheduler is locked.
|
143 |
syssts_t sysstatus = chSysGetStatusAndLockX(); |
144 |
palWriteLine(gpio->line, (val == APAL_GPIO_HIGH) ? PAL_HIGH : PAL_LOW); |
145 |
chSysRestoreStatusX(sysstatus); |
146 |
return APAL_STATUS_OK;
|
147 |
} |
148 |
|
149 |
/**
|
150 |
* @brief Toggle the output of a GPIO.
|
151 |
*
|
152 |
* @param[in] gpio GPIO to toggle.
|
153 |
*
|
154 |
* @return The status indicates whether the function call was successful.
|
155 |
*/
|
156 |
static inline apalExitStatus_t apalGpioToggle(apalGpio_t* gpio) |
157 |
{ |
158 |
apalDbgAssert(gpio != NULL);
|
159 |
|
160 |
// palWriteLine() is not guaranteed to be atomic, thus the scheduler is locked.
|
161 |
syssts_t sysstatus = chSysGetStatusAndLockX(); |
162 |
palWriteLine(gpio->line, (palReadLine(gpio->line) == PAL_HIGH) ? PAL_LOW : PAL_HIGH); |
163 |
chSysRestoreStatusX(sysstatus); |
164 |
return APAL_STATUS_OK;
|
165 |
} |
166 |
|
167 |
/**
|
168 |
* @brief Get the current on/off state of a control GPIO.
|
169 |
*
|
170 |
* @param[in] gpio Control GPIO to read.
|
171 |
* @param[out] val Current activation status of the control GPIO.
|
172 |
*
|
173 |
* @return The status indicates whether the function call was successful.
|
174 |
*/
|
175 |
static inline apalExitStatus_t apalControlGpioGet(const apalControlGpio_t* const cgpio, apalControlGpioState_t* const val) |
176 |
{ |
177 |
apalDbgAssert(cgpio != NULL);
|
178 |
apalDbgAssert(cgpio->gpio != NULL);
|
179 |
apalDbgAssert(val != NULL);
|
180 |
|
181 |
*val = ((palReadLine(cgpio->gpio->line) == PAL_HIGH) ^ (cgpio->meta.active == APAL_GPIO_ACTIVE_HIGH)) ? APAL_GPIO_OFF : APAL_GPIO_ON; |
182 |
return APAL_STATUS_OK;
|
183 |
} |
184 |
|
185 |
/**
|
186 |
* @brief Turn a control GPIO 'on' or 'off' respectively.
|
187 |
*
|
188 |
* @param[in] gpio Control GPIO to set.
|
189 |
* @param[in] val Activation value to set for the control GPIO.
|
190 |
*
|
191 |
* @return The status indicates whether the function call was successful.
|
192 |
*/
|
193 |
static inline apalExitStatus_t apalControlGpioSet(const apalControlGpio_t* const cgpio, const apalControlGpioState_t val) |
194 |
{ |
195 |
apalDbgAssert(cgpio != NULL);
|
196 |
apalDbgAssert(cgpio->gpio != NULL);
|
197 |
apalDbgAssert(cgpio->meta.direction == APAL_GPIO_DIRECTION_OUTPUT || cgpio->meta.direction == APAL_GPIO_DIRECTION_BIDIRECTIONAL); |
198 |
|
199 |
// palWriteLine() is not guaranteed to be atomic, thus the scheduler is locked.
|
200 |
syssts_t sysstatus = chSysGetStatusAndLockX(); |
201 |
palWriteLine(cgpio->gpio->line, ((cgpio->meta.active == APAL_GPIO_ACTIVE_HIGH) ^ (val == APAL_GPIO_ON)) ? PAL_LOW : PAL_HIGH); |
202 |
chSysRestoreStatusX(sysstatus); |
203 |
return APAL_STATUS_OK;
|
204 |
} |
205 |
|
206 |
/**
|
207 |
* @brief Converts an apalGpioEdge_t to an ChibiOS PAL edge.
|
208 |
*/
|
209 |
#define APAL2CH_EDGE(edge) \
|
210 |
((edge == APAL_GPIO_EDGE_RISING) ? PAL_EVENT_MODE_RISING_EDGE : \ |
211 |
(edge == APAL_GPIO_EDGE_FALLING) ? PAL_EVENT_MODE_FALLING_EDGE : \ |
212 |
(edge == APAL_GPIO_EDGE_BOTH) ? PAL_EVENT_MODE_BOTH_EDGES : \ |
213 |
PAL_EVENT_MODE_DISABLED) |
214 |
|
215 |
#endif /* (HAL_USE_PAL == TRUE) */ |
216 |
|
217 |
/*============================================================================*/
|
218 |
/* PWM */
|
219 |
/*============================================================================*/
|
220 |
|
221 |
#if (HAL_USE_PWM == TRUE) || defined (__DOXYGEN__)
|
222 |
|
223 |
/**
|
224 |
* @brief PWM driver type.
|
225 |
*/
|
226 |
typedef PWMDriver apalPWMDriver_t;
|
227 |
|
228 |
/**
|
229 |
* @brief Set the PWM with given parameters.
|
230 |
*
|
231 |
* @param[in] pwm PWM driver to set.
|
232 |
* @param[in] channel Channel of the PWM driver to set.
|
233 |
* @param[in] width Width to set the channel to.
|
234 |
*
|
235 |
* @return The status indicates whether the function call was successful.
|
236 |
*/
|
237 |
static inline apalExitStatus_t apalPWMSet(apalPWMDriver_t* pwm, const apalPWMchannel_t channel, const apalPWMwidth_t width) |
238 |
{ |
239 |
apalDbgAssert(pwm != NULL);
|
240 |
|
241 |
pwmEnableChannel(pwm, (pwmchannel_t)channel, pwm->period * ((float)width / (float)APAL_PWM_WIDTH_MAX) + 0.5f); |
242 |
return APAL_STATUS_OK;
|
243 |
} |
244 |
|
245 |
/**
|
246 |
* @brief Retrieve the current frequency of the PWM.
|
247 |
*
|
248 |
* @param[in] pwm PWM driver to read.
|
249 |
* @param[out] frequency The currently set frequency.
|
250 |
*
|
251 |
* @return The status indicates whether the function call was successful.
|
252 |
*/
|
253 |
static inline apalExitStatus_t apalPWMGetFrequency(apalPWMDriver_t* pwm, apalPWMfrequency_t* const frequency) |
254 |
{ |
255 |
apalDbgAssert(pwm != NULL);
|
256 |
apalDbgAssert(frequency != NULL);
|
257 |
|
258 |
*frequency = pwm->config->frequency; |
259 |
return APAL_STATUS_OK;
|
260 |
} |
261 |
|
262 |
/**
|
263 |
* @brief Retrieve the current period of the PWM.
|
264 |
*
|
265 |
* @param[in] pwm PWM driver to read.
|
266 |
* @param[out] period The currently set period.
|
267 |
*
|
268 |
* @return The status indicates whether the function call was successful.
|
269 |
*/
|
270 |
static inline apalExitStatus_t apalPWMGetPeriod(apalPWMDriver_t* pwm, apalPWMperiod_t* const period) |
271 |
{ |
272 |
apalDbgAssert(pwm != NULL);
|
273 |
apalDbgAssert(period != NULL);
|
274 |
|
275 |
*period = pwm->period; |
276 |
return APAL_STATUS_OK;
|
277 |
} |
278 |
|
279 |
#endif /* (HAL_USE_PWM == TRUE) */ |
280 |
|
281 |
/*============================================================================*/
|
282 |
/* QEI */
|
283 |
/*============================================================================*/
|
284 |
|
285 |
#if (HAL_USE_QEI == TRUE) || defined (__DOXYGEN__)
|
286 |
|
287 |
/**
|
288 |
* @brief QEI driver type.
|
289 |
*/
|
290 |
typedef QEIDriver apalQEIDriver_t;
|
291 |
|
292 |
/**
|
293 |
* @brief Gets the direction of the last transition.
|
294 |
*
|
295 |
* @param[in] qei The QEI driver to use.
|
296 |
* @param[out] direction The direction of the last transition.
|
297 |
*
|
298 |
* @return The status indicates whether the function call was successful.
|
299 |
*/
|
300 |
static inline apalExitStatus_t apalQEIGetDirection(apalQEIDriver_t* qei, apalQEIDirection_t* const direction) |
301 |
{ |
302 |
apalDbgAssert(qei != NULL);
|
303 |
apalDbgAssert(direction != NULL);
|
304 |
|
305 |
*direction = (qei_lld_get_direction(qei)) ? APAL_QEI_DIRECTION_DOWN : APAL_QEI_DIRECTION_UP; |
306 |
|
307 |
return APAL_STATUS_OK;
|
308 |
} |
309 |
|
310 |
/**
|
311 |
* @brief Gets the current position of the ecnoder.
|
312 |
*
|
313 |
* @param[in] qei The QEI driver to use.
|
314 |
* @param[out] position The current position of the encoder.
|
315 |
*
|
316 |
* @return The status indicates whether the function call was successful.
|
317 |
*/
|
318 |
static inline apalExitStatus_t apalQEIGetPosition(apalQEIDriver_t* qei, apalQEICount_t* const position) |
319 |
{ |
320 |
apalDbgAssert(qei != NULL);
|
321 |
apalDbgAssert(position != NULL);
|
322 |
|
323 |
*position = qei_lld_get_position(qei); |
324 |
|
325 |
return APAL_STATUS_OK;
|
326 |
} |
327 |
|
328 |
/**
|
329 |
* @brief Gets the value range of the encoder.
|
330 |
*
|
331 |
* @param[in] qei The QEI driver to use.
|
332 |
* @param[out] range The value range of the encoder.
|
333 |
*
|
334 |
* @return The status indicates whether the function call was successful.
|
335 |
*/
|
336 |
static inline apalExitStatus_t apalQEIGetRange(apalQEIDriver_t* qei, apalQEICount_t* const range) |
337 |
{ |
338 |
apalDbgAssert(qei != NULL);
|
339 |
apalDbgAssert(range != NULL);
|
340 |
|
341 |
*range = qei_lld_get_range(qei); |
342 |
|
343 |
return APAL_STATUS_OK;
|
344 |
} |
345 |
|
346 |
#endif /* (HAL_USE_QEI == TRUE) */ |
347 |
|
348 |
/*============================================================================*/
|
349 |
/* I2C */
|
350 |
/*============================================================================*/
|
351 |
|
352 |
#if (HAL_USE_I2C == TRUE) || defined(__DOXYGEN__)
|
353 |
|
354 |
/**
|
355 |
* @brief I2C driver type.
|
356 |
*/
|
357 |
typedef I2CDriver apalI2CDriver_t;
|
358 |
|
359 |
/**
|
360 |
* @brief Transmit data and receive a response.
|
361 |
*
|
362 |
* @param[in] i2cd The I2C driver to use.
|
363 |
* @param[in] addr Address to write to.
|
364 |
* @param[in] txbuf Buffer containing data to send.
|
365 |
* @param[in] txbytes Number of bytes to send.
|
366 |
* @param[out] rxbuf Buffer to store a response to.
|
367 |
* @param[in] rxbytes Number of bytes to receive.
|
368 |
* @param[in] timeout Timeout for the function to return (in microseconds).
|
369 |
*
|
370 |
* @return The status indicates whether the function call was succesful or a timeout occurred.
|
371 |
*/
|
372 |
static inline apalExitStatus_t apalI2CMasterTransmit(apalI2CDriver_t* i2cd, const apalI2Caddr_t addr, const uint8_t* const txbuf, const size_t txbytes, uint8_t* const rxbuf, const size_t rxbytes, const apalTime_t timeout) |
373 |
{ |
374 |
apalDbgAssert(i2cd != NULL);
|
375 |
|
376 |
#if (I2C_USE_MUTUAL_EXCLUSION == TRUE)
|
377 |
// check whether the I2C driver was locked externally
|
378 |
const bool i2cd_locked_external = i2cd->mutex.owner == currp; |
379 |
if (!i2cd_locked_external) {
|
380 |
i2cAcquireBus(i2cd); |
381 |
} |
382 |
#endif /* (I2C_USE_MUTUAL_EXCLUSION == TRUE) */ |
383 |
|
384 |
#pragma GCC diagnostic push
|
385 |
#pragma GCC diagnostic ignored "-Wtype-limits" |
386 |
#if defined(STM32F1XX_I2C)
|
387 |
// Due to a hardware limitation, for STM32F1 platform the minimum number of bytes that can be received is two.
|
388 |
msg_t status = MSG_OK; |
389 |
if (rxbytes == 1) { |
390 |
uint8_t buffer[2];
|
391 |
status = i2cMasterTransmitTimeout(i2cd, addr, txbuf, txbytes, buffer, 2, ((timeout >= TIME_INFINITE) ? TIME_INFINITE : TIME_US2I(timeout)) );
|
392 |
rxbuf[0] = buffer[0]; |
393 |
} else {
|
394 |
status = i2cMasterTransmitTimeout(i2cd, addr, txbuf, txbytes, rxbuf, rxbytes, ((timeout >= TIME_INFINITE) ? TIME_INFINITE : TIME_US2I(timeout)) ); |
395 |
} |
396 |
#else /* defined(STM32F1XX_I2C) */ |
397 |
const msg_t status = i2cMasterTransmitTimeout(i2cd, addr, txbuf, txbytes, rxbuf, rxbytes, ((timeout >= TIME_INFINITE) ? TIME_INFINITE : TIME_US2I(timeout)) );
|
398 |
#endif /* defined(STM32F1XX_I2C) */ |
399 |
#pragma GCC diagnostic pop
|
400 |
|
401 |
#if (I2C_USE_MUTUAL_EXCLUSION == TRUE)
|
402 |
if (!i2cd_locked_external) {
|
403 |
i2cReleaseBus(i2cd); |
404 |
} |
405 |
#endif /* (I2C_USE_MUTUAL_EXCLUSION == TRUE) */ |
406 |
|
407 |
switch (status)
|
408 |
{ |
409 |
case MSG_OK:
|
410 |
#if defined(STM32F1XX_I2C)
|
411 |
return (rxbytes != 1) ? APAL_STATUS_OK : APAL_STATUS_WARNING; |
412 |
#else /* defined(STM32F1XX_I2C) */ |
413 |
return APAL_STATUS_OK;
|
414 |
#endif /* defined(STM32F1XX_I2C) */ |
415 |
case MSG_TIMEOUT:
|
416 |
return APAL_STATUS_TIMEOUT;
|
417 |
case MSG_RESET:
|
418 |
default:
|
419 |
return APAL_STATUS_ERROR;
|
420 |
} |
421 |
} |
422 |
|
423 |
/**
|
424 |
* @brief Read data from a specific address.
|
425 |
*
|
426 |
* @param[in] i2cd The I2C driver to use.
|
427 |
* @param[in] addr Address to read.
|
428 |
* @param[out] rxbuf Buffer to store the response to.
|
429 |
* @param[in] rxbytes Number of bytes to receive.
|
430 |
* @param[in] timeout Timeout for the function to return (in microseconds).
|
431 |
*
|
432 |
* @return The status indicates whether the function call was succesful or a timeout occurred.
|
433 |
*/
|
434 |
static inline apalExitStatus_t apalI2CMasterReceive(apalI2CDriver_t* i2cd, const apalI2Caddr_t addr, uint8_t* const rxbuf, const size_t rxbytes, const apalTime_t timeout) |
435 |
{ |
436 |
apalDbgAssert(i2cd != NULL);
|
437 |
|
438 |
#if (I2C_USE_MUTUAL_EXCLUSION == TRUE)
|
439 |
// check whether the I2C driver was locked externally
|
440 |
const bool i2cd_locked_external = i2cd->mutex.owner == currp; |
441 |
if (!i2cd_locked_external) {
|
442 |
i2cAcquireBus(i2cd); |
443 |
} |
444 |
#endif /* (I2C_USE_MUTUAL_EXCLUSION == TRUE) */ |
445 |
|
446 |
#pragma GCC diagnostic push
|
447 |
#pragma GCC diagnostic ignored "-Wtype-limits" |
448 |
#if defined(STM32F1XX_I2C)
|
449 |
// Due to a hardware limitation, for STM32F1 platform the minimum number of bytes that can be received is two.
|
450 |
msg_t status = MSG_OK; |
451 |
if (rxbytes == 1) { |
452 |
uint8_t buffer[2];
|
453 |
status = i2cMasterReceiveTimeout(i2cd, addr, buffer, 2, ((timeout >= TIME_INFINITE) ? TIME_INFINITE : TIME_US2I(timeout)) );
|
454 |
rxbuf[0] = buffer[0]; |
455 |
} else {
|
456 |
status = i2cMasterReceiveTimeout(i2cd, addr, rxbuf, rxbytes, ((timeout >= TIME_INFINITE) ? TIME_INFINITE : TIME_US2I(timeout)) ); |
457 |
} |
458 |
#else /* defined(STM32F1XX_I2C) */ |
459 |
const msg_t status = i2cMasterReceiveTimeout(i2cd, addr, rxbuf, rxbytes, ((timeout >= TIME_INFINITE) ? TIME_INFINITE : TIME_US2I(timeout)) );
|
460 |
#endif /* defined(STM32F1XX_I2C) */ |
461 |
#pragma GCC diagnostic pop
|
462 |
|
463 |
#if (I2C_USE_MUTUAL_EXCLUSION == TRUE)
|
464 |
if (!i2cd_locked_external) {
|
465 |
i2cReleaseBus(i2cd); |
466 |
} |
467 |
#endif /* (I2C_USE_MUTUAL_EXCLUSION == TRUE) */ |
468 |
|
469 |
switch (status)
|
470 |
{ |
471 |
case MSG_OK:
|
472 |
#if defined(STM32F1XX_I2C)
|
473 |
return (rxbytes != 1) ? APAL_STATUS_OK : APAL_STATUS_WARNING; |
474 |
#else /* defined(STM32F1XX_I2C) */ |
475 |
return APAL_STATUS_OK;
|
476 |
#endif /* defined(STM32F1XX_I2C) */ |
477 |
case MSG_TIMEOUT:
|
478 |
return APAL_STATUS_TIMEOUT;
|
479 |
case MSG_RESET:
|
480 |
default:
|
481 |
return APAL_STATUS_ERROR;
|
482 |
} |
483 |
} |
484 |
|
485 |
#endif /* (HAL_USE_I2C == TRUE) */ |
486 |
|
487 |
/*============================================================================*/
|
488 |
/* SPI */
|
489 |
/*============================================================================*/
|
490 |
|
491 |
#if (HAL_USE_SPI == TRUE) || defined(__DOXYGEN__)
|
492 |
|
493 |
/**
|
494 |
* @brief SPI driver type.
|
495 |
*/
|
496 |
typedef SPIDriver apalSPIDriver_t;
|
497 |
|
498 |
/**
|
499 |
* @brief Transmit and receive data from SPI
|
500 |
*
|
501 |
* @param[in] spid The SPI driver to use.
|
502 |
* @param[in] txData Buffer containing data to send.
|
503 |
* @param[out] rxData Buffer to store.
|
504 |
* @param[in] length Number of bytes to send.
|
505 |
*
|
506 |
* @return The status indicates whether the function call was succesful.
|
507 |
*/
|
508 |
static inline apalExitStatus_t apalSPIExchange(apalSPIDriver_t* spid, const uint8_t* const txData , uint8_t* const rxData, const size_t length) |
509 |
{ |
510 |
apalDbgAssert(spid != NULL);
|
511 |
|
512 |
#if (SPI_USE_MUTUAL_EXCLUSION == TRUE)
|
513 |
// check whether the SPI driver was locked externally
|
514 |
const bool spid_locked_external = spid->mutex.owner == currp; |
515 |
if (!spid_locked_external) {
|
516 |
spiAcquireBus(spid); |
517 |
} |
518 |
#endif /* (SPI_USE_MUTUAL_EXCLUSION == TRUE) */ |
519 |
|
520 |
spiSelect(spid); |
521 |
spiExchange(spid, length, txData, rxData); |
522 |
spiUnselect(spid); |
523 |
|
524 |
#if (SPI_USE_MUTUAL_EXCLUSION == TRUE)
|
525 |
if (!spid_locked_external) {
|
526 |
spiReleaseBus(spid); |
527 |
} |
528 |
#endif /* (SPI_USE_MUTUAL_EXCLUSION == TRUE) */ |
529 |
|
530 |
return APAL_STATUS_OK;
|
531 |
} |
532 |
|
533 |
/**
|
534 |
* @brief Receive data from SPI
|
535 |
*
|
536 |
* @param[in] spid The SPI driver to use.
|
537 |
* @param[out] data Buffer to store.
|
538 |
* @param[in] length Number of bytes to send.
|
539 |
*
|
540 |
* @return The status indicates whether the function call was succesful.
|
541 |
*/
|
542 |
static inline apalExitStatus_t apalSPIReceive(apalSPIDriver_t* spid, uint8_t* const data, const size_t length) |
543 |
{ |
544 |
apalDbgAssert(spid != NULL);
|
545 |
|
546 |
#if (SPI_USE_MUTUAL_EXCLUSION == TRUE)
|
547 |
// check whether the SPI driver was locked externally
|
548 |
const bool spid_locked_external = spid->mutex.owner == currp; |
549 |
if (!spid_locked_external) {
|
550 |
spiAcquireBus(spid); |
551 |
} |
552 |
#endif /* (SPI_USE_MUTUAL_EXCLUSION == TRUE) */ |
553 |
|
554 |
spiSelect(spid); |
555 |
spiReceive(spid, length, data); |
556 |
spiUnselect(spid); |
557 |
|
558 |
#if (SPI_USE_MUTUAL_EXCLUSION == TRUE)
|
559 |
if (!spid_locked_external) {
|
560 |
spiReleaseBus(spid); |
561 |
} |
562 |
#endif /* (SPI_USE_MUTUAL_EXCLUSION == TRUE) */ |
563 |
|
564 |
return APAL_STATUS_OK;
|
565 |
} |
566 |
|
567 |
/**
|
568 |
* @brief Transmit data to SPI
|
569 |
*
|
570 |
* @param[in] spid The SPI driver to use.
|
571 |
* @param[in] data Buffer containing data to send.
|
572 |
* @param[in] length Number of bytes to send.
|
573 |
*
|
574 |
* @return The status indicates whether the function call was succesful.
|
575 |
*/
|
576 |
static inline apalExitStatus_t apalSPITransmit(apalSPIDriver_t* spid, const uint8_t* const data, const size_t length) |
577 |
{ |
578 |
apalDbgAssert(spid != NULL);
|
579 |
|
580 |
#if (SPI_USE_MUTUAL_EXCLUSION == TRUE)
|
581 |
// check whether the SPI driver was locked externally
|
582 |
const bool spid_locked_external = spid->mutex.owner == currp; |
583 |
if (!spid_locked_external) {
|
584 |
spiAcquireBus(spid); |
585 |
} |
586 |
#endif /* (SPI_USE_MUTUAL_EXCLUSION == TRUE) */ |
587 |
|
588 |
spiSelect(spid); |
589 |
spiSend(spid, length, data); |
590 |
spiUnselect(spid); |
591 |
|
592 |
#if (SPI_USE_MUTUAL_EXCLUSION == TRUE)
|
593 |
if (!spid_locked_external) {
|
594 |
spiReleaseBus(spid); |
595 |
} |
596 |
#endif /* (SPI_USE_MUTUAL_EXCLUSION == TRUE) */ |
597 |
|
598 |
return APAL_STATUS_OK;
|
599 |
} |
600 |
|
601 |
/**
|
602 |
* @brief Transmit data to SPI and receive data afterwards without releasing the bus in between.
|
603 |
*
|
604 |
* @param spid The SPI driver to use.
|
605 |
* @param txData Transmit data buffer.
|
606 |
* @param rxData Receive data buffer.
|
607 |
* @param txLength Number of bytes to send.
|
608 |
* @param rxLength Number of bytes to receive.
|
609 |
*
|
610 |
* @return The status indicates whether the function call was succesful.
|
611 |
*/
|
612 |
static inline apalExitStatus_t apalSPITransmitAndReceive(apalSPIDriver_t* spid, const uint8_t* const txData , uint8_t* const rxData, const size_t txLength, const size_t rxLength) |
613 |
{ |
614 |
apalDbgAssert(spid != NULL);
|
615 |
|
616 |
#if (SPI_USE_MUTUAL_EXCLUSION == TRUE)
|
617 |
// check whether the SPI driver was locked externally
|
618 |
const bool spid_locked_external = spid->mutex.owner == currp; |
619 |
if (!spid_locked_external) {
|
620 |
spiAcquireBus(spid); |
621 |
} |
622 |
#endif /* (SPI_USE_MUTUAL_EXCLUSION == TRUE) */ |
623 |
|
624 |
spiSelect(spid); |
625 |
spiSend(spid, txLength, txData); |
626 |
spiReceive(spid, rxLength, rxData); |
627 |
spiUnselect(spid); |
628 |
|
629 |
#if (SPI_USE_MUTUAL_EXCLUSION == TRUE)
|
630 |
if (!spid_locked_external) {
|
631 |
spiReleaseBus(spid); |
632 |
} |
633 |
#endif /* (SPI_USE_MUTUAL_EXCLUSION == TRUE) */ |
634 |
|
635 |
return APAL_STATUS_OK;
|
636 |
} |
637 |
|
638 |
#endif /* (HAL_USE_SPI == TRUE) */ |
639 |
|
640 |
#endif /* AMIROOS_PERIPHAL_H */ |