| 1 |
|
#include "global.hpp"
|
| 2 |
|
#include "linefollow2.hpp"
|
| 3 |
|
#include <cmath>
|
| 4 |
|
|
| 5 |
|
|
| 6 |
|
|
| 7 |
|
LineFollow::LineFollow(Global *global){
|
| 8 |
|
this->global = global;
|
| 9 |
|
}
|
| 10 |
|
LineFollow::LineFollow(Global *global, LineFollowStrategy strategy){
|
| 11 |
|
this->global = global;
|
| 12 |
|
this-> strategy = strategy;
|
| 13 |
|
}
|
| 14 |
|
|
| 15 |
|
/**
|
| 16 |
|
* Calculate the error from front proxi sensors and fixed threshold values for those sensors.
|
| 17 |
|
*/
|
| 18 |
|
int LineFollow::getError(){
|
| 19 |
|
// Get actual sensor data of both front sensors
|
| 20 |
|
int FL = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_LEFT].getProximityScaledWoOffset();
|
| 21 |
|
int FR = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_RIGHT].getProximityScaledWoOffset();
|
| 22 |
|
int targetL = global->threshProxyL;
|
| 23 |
|
int targetR = global->threshProxyR;
|
| 24 |
|
int error = 0;
|
| 25 |
|
switch (this->strategy)
|
| 26 |
|
{
|
| 27 |
|
case LineFollowStrategy::EDGE_RIGHT: case LineFollowStrategy::DOCKING:
|
| 28 |
|
error = -(FL -targetL + FR - targetR);
|
| 29 |
|
break;
|
| 30 |
|
case LineFollowStrategy::EDGE_LEFT:
|
| 31 |
|
error = (FL -targetL + FR - targetR);
|
| 32 |
|
break;
|
| 33 |
|
case LineFollowStrategy::MIDDLE:
|
| 34 |
|
// Assume that the smallest value means driving in the middle
|
| 35 |
|
targetL = targetR = !(targetL<targetR)?targetR:targetL;
|
| 36 |
|
error = (FL -targetL + FR - targetR);
|
| 37 |
|
break;
|
| 38 |
|
|
| 39 |
|
default:
|
| 40 |
|
break;
|
| 41 |
|
}
|
| 42 |
|
// Debugging stuff ------
|
| 43 |
|
if (global->enableRecord){
|
| 44 |
|
global->senseRec[global->sensSamples].error = error;
|
| 45 |
|
global->senseRec[global->sensSamples].FL = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_LEFT].getProximityScaledWoOffset();
|
| 46 |
|
global->senseRec[global->sensSamples].FR = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_RIGHT].getProximityScaledWoOffset();
|
| 47 |
|
global->sensSamples++;
|
| 48 |
|
}
|
| 49 |
|
// ----------------------
|
| 50 |
|
// Register white values
|
| 51 |
|
if (FL+FR > global->threshWhite){
|
| 52 |
|
whiteFlag = 1;
|
| 53 |
|
}else{
|
| 54 |
|
whiteFlag = 0;
|
| 55 |
|
}
|
| 56 |
|
return error;
|
| 57 |
|
}
|
| 58 |
|
|
| 59 |
|
int LineFollow::followLine(int (&rpmSpeed)[2]){
|
| 60 |
|
int correctionSpeed = 0;
|
| 61 |
|
switch (this->strategy)
|
| 62 |
|
{
|
| 63 |
|
case LineFollowStrategy::FUZZY:
|
| 64 |
|
for (int i = 0; i < 4; i++) {
|
| 65 |
|
vcnl4020AmbientLight[i] = global->vcnl4020[i].getAmbientLight();
|
| 66 |
|
vcnl4020Proximity[i] = global->vcnl4020[i].getProximityScaledWoOffset();
|
| 67 |
|
}
|
| 68 |
|
lineFollowing(vcnl4020Proximity, rpmSpeed);
|
| 69 |
|
break;
|
| 70 |
|
|
| 71 |
|
case LineFollowStrategy::DOCKING:
|
| 72 |
|
correctionSpeed = -getPidCorrectionSpeed();
|
| 73 |
|
rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] = -global->forwardSpeed;
|
| 74 |
|
|
| 75 |
|
rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] = -global->forwardSpeed;
|
| 76 |
|
|
| 77 |
|
break;
|
| 78 |
|
|
| 79 |
|
default:
|
| 80 |
|
correctionSpeed = getPidCorrectionSpeed();
|
| 81 |
|
// chprintf((BaseSequentialStream*) &SD1, "Correction: %d, thresh: %d\n",correctionSpeed, global->threshWhite);
|
| 82 |
|
|
| 83 |
|
rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] = global->forwardSpeed + correctionSpeed;
|
| 84 |
|
|
| 85 |
|
rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] = global->forwardSpeed - correctionSpeed;
|
| 86 |
|
break;
|
| 87 |
|
}
|
| 88 |
|
return whiteFlag;
|
| 89 |
|
}
|
| 90 |
|
|
| 91 |
|
|
| 92 |
|
/**
|
| 93 |
|
* Pid controller which returns a corrections speed.
|
| 94 |
|
*/
|
| 95 |
|
int LineFollow::getPidCorrectionSpeed(){
|
| 96 |
|
int error = getError();
|
| 97 |
|
int sloap = error - oldError;
|
| 98 |
|
int correctionSpeed = (int) (Kp*error + Ki*accumHist + Kd*sloap);
|
| 99 |
|
oldError = error;
|
| 100 |
|
// accumHist += (int) (0.01 * error);
|
| 101 |
|
if (abs(error) > global->maxDist.error){
|
| 102 |
|
global->maxDist.error = error;
|
| 103 |
|
}
|
| 104 |
|
return correctionSpeed;
|
| 105 |
|
}
|
| 106 |
|
|
| 107 |
|
|
| 108 |
|
void LineFollow::setStrategy(LineFollowStrategy strategy){
|
| 109 |
|
this->strategy = strategy;
|
| 110 |
|
}
|
| 111 |
|
|
| 112 |
|
LineFollowStrategy LineFollow::getStrategy(){
|
| 113 |
|
return this->strategy;
|
| 114 |
|
}
|
| 115 |
|
void LineFollow::setGains(float Kp, float Ki, float Kd){
|
| 116 |
|
this->Kp = Kp;
|
| 117 |
|
this->Ki = Ki;
|
| 118 |
|
this->Kd = Kd;
|
| 119 |
|
}
|
| 120 |
|
|
| 121 |
|
|
| 122 |
|
|
| 123 |
|
|
| 124 |
|
|
| 125 |
|
// Lagacy code, fuzzy following-----------------------------------------
|
| 126 |
|
// Line following by a fuzzy controler
|
| 127 |
|
void LineFollow::lineFollowing(int (&proximity)[4], int (&rpmFuzzyCtrl)[2]) {
|
| 128 |
|
// FUZZYFICATION
|
| 129 |
|
// First we need to get the fuzzy value for our 3 values {BLACK, GREY, WHITE}
|
| 130 |
|
float leftWheelFuzzyMemberValues[3], leftFrontFuzzyMemberValues[3], rightFrontFuzzyMemberValues[3], rightWheelFuzzyMemberValues[3];
|
| 131 |
|
fuzzyfication(proximity[constants::DiWheelDrive::PROX_WHEEL_LEFT], leftWheelFuzzyMemberValues);
|
| 132 |
|
fuzzyfication(proximity[constants::DiWheelDrive::PROX_FRONT_LEFT], leftFrontFuzzyMemberValues);
|
| 133 |
|
fuzzyfication(proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT], rightFrontFuzzyMemberValues);
|
| 134 |
|
fuzzyfication(proximity[constants::DiWheelDrive::PROX_WHEEL_RIGHT], rightWheelFuzzyMemberValues);
|
| 135 |
|
|
| 136 |
|
// INFERENCE RULE DEFINITION
|
| 137 |
|
// Get the member for each sensor
|
| 138 |
|
colorMember member[4];
|
| 139 |
|
member[constants::DiWheelDrive::PROX_WHEEL_LEFT] = getMember(leftWheelFuzzyMemberValues);
|
| 140 |
|
member[constants::DiWheelDrive::PROX_FRONT_LEFT] = getMember(leftFrontFuzzyMemberValues);
|
| 141 |
|
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] = getMember(rightFrontFuzzyMemberValues);
|
| 142 |
|
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] = getMember(rightWheelFuzzyMemberValues);
|
| 143 |
|
|
| 144 |
|
// visualize sensors via LEDs
|
| 145 |
|
global->robot.setLightColor(constants::LightRing::LED_WNW, memberToLed(member[constants::DiWheelDrive::PROX_WHEEL_LEFT]));
|
| 146 |
|
global->robot.setLightColor(constants::LightRing::LED_NNW, memberToLed(member[constants::DiWheelDrive::PROX_FRONT_LEFT]));
|
| 147 |
|
global->robot.setLightColor(constants::LightRing::LED_NNE, memberToLed(member[constants::DiWheelDrive::PROX_FRONT_RIGHT]));
|
| 148 |
|
global->robot.setLightColor(constants::LightRing::LED_ENE, memberToLed(member[constants::DiWheelDrive::PROX_WHEEL_RIGHT]));
|
| 149 |
|
|
| 150 |
|
// chprintf((BaseSequentialStream*) &SD1, "Left: BLACK: %f, GREY: %f, WHITE: %f\r\n", leftWheelFuzzyMemberValues[BLACK], leftWheelFuzzyMemberValues[GREY], leftWheelFuzzyMemberValues[WHITE]);
|
| 151 |
|
// chprintf((BaseSequentialStream*) &SD1, "Right: BLACK: %f, GREY: %f, WHITE: %f\r\n", rightFuzzyMemberValues[BLACK], rightFuzzyMemberValues[GREY], rightFuzzyMemberValues[WHITE]);
|
| 152 |
|
|
| 153 |
|
// DEFUZZYFICATION
|
| 154 |
|
defuzzyfication(member, rpmFuzzyCtrl);
|
| 155 |
|
// defuzz(member, rpmFuzzyCtrl);
|
| 156 |
|
}
|
| 157 |
|
|
| 158 |
|
|
| 159 |
|
Color LineFollow::memberToLed(colorMember member) {
|
| 160 |
|
switch (member) {
|
| 161 |
|
case BLACK:
|
| 162 |
|
return Color(Color::GREEN);
|
| 163 |
|
case GREY:
|
| 164 |
|
return Color(Color::YELLOW);
|
| 165 |
|
case WHITE:
|
| 166 |
|
return Color(Color::RED);
|
| 167 |
|
default:
|
| 168 |
|
return Color(Color::WHITE);
|
| 169 |
|
}
|
| 170 |
|
}
|
| 171 |
|
|
| 172 |
|
void LineFollow::defuzzyfication(colorMember (&member)[4], int (&rpmFuzzyCtrl)[2]) {
|
| 173 |
|
whiteFlag = 0;
|
| 174 |
|
// all sensors are equal
|
| 175 |
|
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_LEFT] &&
|
| 176 |
|
member[constants::DiWheelDrive::PROX_FRONT_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_RIGHT] &&
|
| 177 |
|
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == member[constants::DiWheelDrive::PROX_WHEEL_RIGHT]) {
|
| 178 |
|
// something is wrong -> stop
|
| 179 |
|
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl);
|
| 180 |
|
// both front sensor detect a line
|
| 181 |
|
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK &&
|
| 182 |
|
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK) {
|
| 183 |
|
// straight
|
| 184 |
|
copyRpmSpeed(global->rpmForward, rpmFuzzyCtrl);
|
| 185 |
|
// exact one front sensor detects a line
|
| 186 |
|
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK ||
|
| 187 |
|
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK) {
|
| 188 |
|
// soft correction
|
| 189 |
|
if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY) {
|
| 190 |
|
// soft right
|
| 191 |
|
copyRpmSpeed(global->rpmSoftRight, rpmFuzzyCtrl);
|
| 192 |
|
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == WHITE) {
|
| 193 |
|
// hard right
|
| 194 |
|
copyRpmSpeed(global->rpmHardRight, rpmFuzzyCtrl);
|
| 195 |
|
} else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) {
|
| 196 |
|
// soft left
|
| 197 |
|
copyRpmSpeed(global->rpmSoftLeft, rpmFuzzyCtrl);
|
| 198 |
|
} else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == WHITE) {
|
| 199 |
|
// hard left
|
| 200 |
|
copyRpmSpeed(global->rpmHardLeft, rpmFuzzyCtrl);
|
| 201 |
|
}
|
| 202 |
|
// both wheel sensors detect a line
|
| 203 |
|
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK &&
|
| 204 |
|
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) {
|
| 205 |
|
// something is wrong -> stop
|
| 206 |
|
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl);
|
| 207 |
|
// exactly one wheel sensor detects a line
|
| 208 |
|
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK ||
|
| 209 |
|
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) {
|
| 210 |
|
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK) {
|
| 211 |
|
// turn left
|
| 212 |
|
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl);
|
| 213 |
|
} else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) {
|
| 214 |
|
// turn right
|
| 215 |
|
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl);
|
| 216 |
|
}
|
| 217 |
|
// both front sensors may detect a line
|
| 218 |
|
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY &&
|
| 219 |
|
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) {
|
| 220 |
|
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY) {
|
| 221 |
|
// turn left
|
| 222 |
|
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl);
|
| 223 |
|
} else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) {
|
| 224 |
|
// turn right
|
| 225 |
|
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl);
|
| 226 |
|
}
|
| 227 |
|
// exactly one front sensor may detect a line
|
| 228 |
|
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY ||
|
| 229 |
|
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) {
|
| 230 |
|
if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY) {
|
| 231 |
|
// turn left
|
| 232 |
|
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl);
|
| 233 |
|
} else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) {
|
| 234 |
|
// turn right
|
| 235 |
|
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl);
|
| 236 |
|
}
|
| 237 |
|
// both wheel sensors may detect a line
|
| 238 |
|
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY &&
|
| 239 |
|
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) {
|
| 240 |
|
// something is wrong -> stop
|
| 241 |
|
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl);
|
| 242 |
|
// exactly one wheel sensor may detect a line
|
| 243 |
|
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY ||
|
| 244 |
|
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) {
|
| 245 |
|
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY) {
|
| 246 |
|
// turn left
|
| 247 |
|
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl);
|
| 248 |
|
} else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) {
|
| 249 |
|
// turn right
|
| 250 |
|
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl);
|
| 251 |
|
}
|
| 252 |
|
// no sensor detects anything
|
| 253 |
|
} else {
|
| 254 |
|
// line is lost -> stop
|
| 255 |
|
whiteFlag = 1;
|
| 256 |
|
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl);
|
| 257 |
|
}
|
| 258 |
|
chprintf((BaseSequentialStream*) &SD1, "Fuzzy Speed: Left: %d, Right: %d\n", rpmFuzzyCtrl[0], rpmFuzzyCtrl[1]);
|
| 259 |
|
return;
|
| 260 |
|
}
|
| 261 |
|
|
| 262 |
|
colorMember LineFollow::getMember(float (&fuzzyValue)[3]) {
|
| 263 |
|
colorMember member;
|
| 264 |
|
|
| 265 |
|
if (fuzzyValue[BLACK] > fuzzyValue[GREY])
|
| 266 |
|
if (fuzzyValue[BLACK] > fuzzyValue[WHITE])
|
| 267 |
|
member = BLACK;
|
| 268 |
|
else
|
| 269 |
|
member = WHITE;
|
| 270 |
|
else
|
| 271 |
|
if (fuzzyValue[GREY] > fuzzyValue[WHITE])
|
| 272 |
|
member = GREY;
|
| 273 |
|
else
|
| 274 |
|
member = WHITE;
|
| 275 |
|
|
| 276 |
|
return member;
|
| 277 |
|
}
|
| 278 |
|
|
| 279 |
|
// Fuzzyfication of the sensor values
|
| 280 |
|
void LineFollow::fuzzyfication(int sensorValue, float (&fuzziedValue)[3]) {
|
| 281 |
|
if (sensorValue < blackStartFalling ) {
|
| 282 |
|
// Only black value
|
| 283 |
|
fuzziedValue[BLACK] = 1.0f;
|
| 284 |
|
fuzziedValue[GREY] = 0.0f;
|
| 285 |
|
fuzziedValue[WHITE] = 0.0f;
|
| 286 |
|
} else if (sensorValue > whiteOn ) {
|
| 287 |
|
// Only white value
|
| 288 |
|
fuzziedValue[BLACK] = 0.0f;
|
| 289 |
|
fuzziedValue[GREY] = 0.0f;
|
| 290 |
|
fuzziedValue[WHITE] = 1.0f;
|
| 291 |
|
} else if ( sensorValue < greyMax) {
|
| 292 |
|
// Some greyisch value between black and grey
|
| 293 |
|
|
| 294 |
|
// Black is going down
|
| 295 |
|
if ( sensorValue > blackOff) {
|
| 296 |
|
fuzziedValue[BLACK] = 0.0f;
|
| 297 |
|
} else {
|
| 298 |
|
fuzziedValue[BLACK] = static_cast<float>(sensorValue-blackOff) / (blackStartFalling-blackOff);
|
| 299 |
|
}
|
| 300 |
|
|
| 301 |
|
// Grey is going up
|
| 302 |
|
if ( sensorValue < greyStartRising) {
|
| 303 |
|
fuzziedValue[GREY] = 0.0f;
|
| 304 |
|
} else {
|
| 305 |
|
fuzziedValue[GREY] = static_cast<float>(sensorValue-greyStartRising) / (greyMax-greyStartRising);
|
| 306 |
|
}
|
| 307 |
|
|
| 308 |
|
// White is absent
|
| 309 |
|
fuzziedValue[WHITE] = 0.0f;
|
| 310 |
|
|
| 311 |
|
} else if ( sensorValue >= greyMax) {
|
| 312 |
|
// Some greyisch value between grey white
|
| 313 |
|
|
| 314 |
|
// Black is absent
|
| 315 |
|
fuzziedValue[BLACK] = 0.0f;
|
| 316 |
|
|
| 317 |
|
// Grey is going down
|
| 318 |
|
if ( sensorValue < greyOff) {
|
| 319 |
|
fuzziedValue[GREY] = static_cast<float>(sensorValue-greyOff) / (greyMax-greyOff);
|
| 320 |
|
} else {
|
| 321 |
|
fuzziedValue[GREY] = 0.0f;
|
| 322 |
|
}
|
| 323 |
|
|
| 324 |
|
// White is going up
|
| 325 |
|
if ( sensorValue < whiteStartRising) {
|
| 326 |
|
fuzziedValue[WHITE] = 0.0f;
|
| 327 |
|
} else {
|
| 328 |
|
fuzziedValue[WHITE] = static_cast<float>(sensorValue-whiteStartRising) / (whiteOn-whiteStartRising);
|
| 329 |
|
}
|
| 330 |
|
}
|
| 331 |
|
}
|
| 332 |
|
|
| 333 |
|
void LineFollow::copyRpmSpeed(const int (&source)[2], int (&target)[2]) {
|
| 334 |
|
target[constants::DiWheelDrive::LEFT_WHEEL] = source[constants::DiWheelDrive::LEFT_WHEEL];
|
| 335 |
|
target[constants::DiWheelDrive::RIGHT_WHEEL] = source[constants::DiWheelDrive::RIGHT_WHEEL];
|
| 336 |
|
// chprintf((BaseSequentialStream*) &SD1, "Speed left: %d, Speed right: %d\r\n", target[0], target[1]);
|
| 337 |
|
}
|