1 |
|
#include "global.hpp"
|
2 |
|
#include "linefollow2.hpp"
|
3 |
|
#include <cmath>
|
4 |
|
|
5 |
|
|
6 |
|
|
7 |
|
LineFollow::LineFollow(Global *global){
|
8 |
|
this->global = global;
|
9 |
|
}
|
10 |
|
LineFollow::LineFollow(Global *global, LineFollowStrategy strategy){
|
11 |
|
this->global = global;
|
12 |
|
this-> strategy = strategy;
|
13 |
|
}
|
14 |
|
|
15 |
|
/**
|
16 |
|
* Calculate the error from front proxi sensors and fixed threshold values for those sensors.
|
17 |
|
*/
|
18 |
|
int LineFollow::getError(){
|
19 |
|
// Get actual sensor data of both front sensors
|
20 |
|
int FL = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_LEFT].getProximityScaledWoOffset();
|
21 |
|
int FR = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_RIGHT].getProximityScaledWoOffset();
|
22 |
|
int targetL = global->threshProxyL;
|
23 |
|
int targetR = global->threshProxyR;
|
24 |
|
int error = 0;
|
25 |
|
switch (this->strategy)
|
26 |
|
{
|
27 |
|
case LineFollowStrategy::EDGE_RIGHT: case LineFollowStrategy::DOCKING:
|
28 |
|
error = -(FL -targetL + FR - targetR);
|
29 |
|
break;
|
30 |
|
case LineFollowStrategy::EDGE_LEFT:
|
31 |
|
error = (FL -targetL + FR - targetR);
|
32 |
|
break;
|
33 |
|
case LineFollowStrategy::MIDDLE:
|
34 |
|
// Assume that the smallest value means driving in the middle
|
35 |
|
targetL = targetR = !(targetL<targetR)?targetR:targetL;
|
36 |
|
error = (FL -targetL + FR - targetR);
|
37 |
|
break;
|
38 |
|
|
39 |
|
default:
|
40 |
|
break;
|
41 |
|
}
|
42 |
|
// Debugging stuff ------
|
43 |
|
if (global->enableRecord){
|
44 |
|
global->senseRec[global->sensSamples].error = error;
|
45 |
|
global->senseRec[global->sensSamples].FL = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_LEFT].getProximityScaledWoOffset();
|
46 |
|
global->senseRec[global->sensSamples].FR = global->vcnl4020[constants::DiWheelDrive::PROX_FRONT_RIGHT].getProximityScaledWoOffset();
|
47 |
|
global->sensSamples++;
|
48 |
|
}
|
49 |
|
// ----------------------
|
50 |
|
// Register white values
|
51 |
|
if (FL+FR > global->threshWhite){
|
52 |
|
whiteFlag = 1;
|
53 |
|
}else{
|
54 |
|
whiteFlag = 0;
|
55 |
|
}
|
56 |
|
return error;
|
57 |
|
}
|
58 |
|
|
59 |
|
int LineFollow::followLine(int (&rpmSpeed)[2]){
|
60 |
|
int correctionSpeed = 0;
|
61 |
|
switch (this->strategy)
|
62 |
|
{
|
63 |
|
case LineFollowStrategy::FUZZY:
|
64 |
|
for (int i = 0; i < 4; i++) {
|
65 |
|
vcnl4020AmbientLight[i] = global->vcnl4020[i].getAmbientLight();
|
66 |
|
vcnl4020Proximity[i] = global->vcnl4020[i].getProximityScaledWoOffset();
|
67 |
|
}
|
68 |
|
lineFollowing(vcnl4020Proximity, rpmSpeed);
|
69 |
|
break;
|
70 |
|
|
71 |
|
case LineFollowStrategy::DOCKING:
|
72 |
|
correctionSpeed = -getPidCorrectionSpeed();
|
73 |
|
rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] = -global->forwardSpeed;
|
74 |
|
|
75 |
|
rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] = -global->forwardSpeed;
|
76 |
|
|
77 |
|
break;
|
78 |
|
|
79 |
|
default:
|
80 |
|
correctionSpeed = getPidCorrectionSpeed();
|
81 |
|
// chprintf((BaseSequentialStream*) &SD1, "Correction: %d, thresh: %d\n",correctionSpeed, global->threshWhite);
|
82 |
|
|
83 |
|
rpmSpeed[constants::DiWheelDrive::LEFT_WHEEL] = global->forwardSpeed + correctionSpeed;
|
84 |
|
|
85 |
|
rpmSpeed[constants::DiWheelDrive::RIGHT_WHEEL] = global->forwardSpeed - correctionSpeed;
|
86 |
|
break;
|
87 |
|
}
|
88 |
|
return whiteFlag;
|
89 |
|
}
|
90 |
|
|
91 |
|
|
92 |
|
/**
|
93 |
|
* Pid controller which returns a corrections speed.
|
94 |
|
*/
|
95 |
|
int LineFollow::getPidCorrectionSpeed(){
|
96 |
|
int error = getError();
|
97 |
|
int sloap = error - oldError;
|
98 |
|
int correctionSpeed = (int) (Kp*error + Ki*accumHist + Kd*sloap);
|
99 |
|
oldError = error;
|
100 |
|
// accumHist += (int) (0.01 * error);
|
101 |
|
if (abs(error) > global->maxDist.error){
|
102 |
|
global->maxDist.error = error;
|
103 |
|
}
|
104 |
|
return correctionSpeed;
|
105 |
|
}
|
106 |
|
|
107 |
|
|
108 |
|
void LineFollow::setStrategy(LineFollowStrategy strategy){
|
109 |
|
this->strategy = strategy;
|
110 |
|
}
|
111 |
|
|
112 |
|
LineFollowStrategy LineFollow::getStrategy(){
|
113 |
|
return this->strategy;
|
114 |
|
}
|
115 |
|
void LineFollow::setGains(float Kp, float Ki, float Kd){
|
116 |
|
this->Kp = Kp;
|
117 |
|
this->Ki = Ki;
|
118 |
|
this->Kd = Kd;
|
119 |
|
}
|
120 |
|
|
121 |
|
|
122 |
|
|
123 |
|
|
124 |
|
|
125 |
|
// Lagacy code, fuzzy following-----------------------------------------
|
126 |
|
// Line following by a fuzzy controler
|
127 |
|
void LineFollow::lineFollowing(int (&proximity)[4], int (&rpmFuzzyCtrl)[2]) {
|
128 |
|
// FUZZYFICATION
|
129 |
|
// First we need to get the fuzzy value for our 3 values {BLACK, GREY, WHITE}
|
130 |
|
float leftWheelFuzzyMemberValues[3], leftFrontFuzzyMemberValues[3], rightFrontFuzzyMemberValues[3], rightWheelFuzzyMemberValues[3];
|
131 |
|
fuzzyfication(proximity[constants::DiWheelDrive::PROX_WHEEL_LEFT], leftWheelFuzzyMemberValues);
|
132 |
|
fuzzyfication(proximity[constants::DiWheelDrive::PROX_FRONT_LEFT], leftFrontFuzzyMemberValues);
|
133 |
|
fuzzyfication(proximity[constants::DiWheelDrive::PROX_FRONT_RIGHT], rightFrontFuzzyMemberValues);
|
134 |
|
fuzzyfication(proximity[constants::DiWheelDrive::PROX_WHEEL_RIGHT], rightWheelFuzzyMemberValues);
|
135 |
|
|
136 |
|
// INFERENCE RULE DEFINITION
|
137 |
|
// Get the member for each sensor
|
138 |
|
colorMember member[4];
|
139 |
|
member[constants::DiWheelDrive::PROX_WHEEL_LEFT] = getMember(leftWheelFuzzyMemberValues);
|
140 |
|
member[constants::DiWheelDrive::PROX_FRONT_LEFT] = getMember(leftFrontFuzzyMemberValues);
|
141 |
|
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] = getMember(rightFrontFuzzyMemberValues);
|
142 |
|
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] = getMember(rightWheelFuzzyMemberValues);
|
143 |
|
|
144 |
|
// visualize sensors via LEDs
|
145 |
|
global->robot.setLightColor(constants::LightRing::LED_WNW, memberToLed(member[constants::DiWheelDrive::PROX_WHEEL_LEFT]));
|
146 |
|
global->robot.setLightColor(constants::LightRing::LED_NNW, memberToLed(member[constants::DiWheelDrive::PROX_FRONT_LEFT]));
|
147 |
|
global->robot.setLightColor(constants::LightRing::LED_NNE, memberToLed(member[constants::DiWheelDrive::PROX_FRONT_RIGHT]));
|
148 |
|
global->robot.setLightColor(constants::LightRing::LED_ENE, memberToLed(member[constants::DiWheelDrive::PROX_WHEEL_RIGHT]));
|
149 |
|
|
150 |
|
// chprintf((BaseSequentialStream*) &SD1, "Left: BLACK: %f, GREY: %f, WHITE: %f\r\n", leftWheelFuzzyMemberValues[BLACK], leftWheelFuzzyMemberValues[GREY], leftWheelFuzzyMemberValues[WHITE]);
|
151 |
|
// chprintf((BaseSequentialStream*) &SD1, "Right: BLACK: %f, GREY: %f, WHITE: %f\r\n", rightFuzzyMemberValues[BLACK], rightFuzzyMemberValues[GREY], rightFuzzyMemberValues[WHITE]);
|
152 |
|
|
153 |
|
// DEFUZZYFICATION
|
154 |
|
defuzzyfication(member, rpmFuzzyCtrl);
|
155 |
|
// defuzz(member, rpmFuzzyCtrl);
|
156 |
|
}
|
157 |
|
|
158 |
|
|
159 |
|
Color LineFollow::memberToLed(colorMember member) {
|
160 |
|
switch (member) {
|
161 |
|
case BLACK:
|
162 |
|
return Color(Color::GREEN);
|
163 |
|
case GREY:
|
164 |
|
return Color(Color::YELLOW);
|
165 |
|
case WHITE:
|
166 |
|
return Color(Color::RED);
|
167 |
|
default:
|
168 |
|
return Color(Color::WHITE);
|
169 |
|
}
|
170 |
|
}
|
171 |
|
|
172 |
|
void LineFollow::defuzzyfication(colorMember (&member)[4], int (&rpmFuzzyCtrl)[2]) {
|
173 |
|
whiteFlag = 0;
|
174 |
|
// all sensors are equal
|
175 |
|
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_LEFT] &&
|
176 |
|
member[constants::DiWheelDrive::PROX_FRONT_LEFT] == member[constants::DiWheelDrive::PROX_FRONT_RIGHT] &&
|
177 |
|
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == member[constants::DiWheelDrive::PROX_WHEEL_RIGHT]) {
|
178 |
|
// something is wrong -> stop
|
179 |
|
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl);
|
180 |
|
// both front sensor detect a line
|
181 |
|
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK &&
|
182 |
|
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK) {
|
183 |
|
// straight
|
184 |
|
copyRpmSpeed(global->rpmForward, rpmFuzzyCtrl);
|
185 |
|
// exact one front sensor detects a line
|
186 |
|
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == BLACK ||
|
187 |
|
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == BLACK) {
|
188 |
|
// soft correction
|
189 |
|
if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY) {
|
190 |
|
// soft right
|
191 |
|
copyRpmSpeed(global->rpmSoftRight, rpmFuzzyCtrl);
|
192 |
|
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == WHITE) {
|
193 |
|
// hard right
|
194 |
|
copyRpmSpeed(global->rpmHardRight, rpmFuzzyCtrl);
|
195 |
|
} else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) {
|
196 |
|
// soft left
|
197 |
|
copyRpmSpeed(global->rpmSoftLeft, rpmFuzzyCtrl);
|
198 |
|
} else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == WHITE) {
|
199 |
|
// hard left
|
200 |
|
copyRpmSpeed(global->rpmHardLeft, rpmFuzzyCtrl);
|
201 |
|
}
|
202 |
|
// both wheel sensors detect a line
|
203 |
|
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK &&
|
204 |
|
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) {
|
205 |
|
// something is wrong -> stop
|
206 |
|
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl);
|
207 |
|
// exactly one wheel sensor detects a line
|
208 |
|
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK ||
|
209 |
|
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) {
|
210 |
|
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == BLACK) {
|
211 |
|
// turn left
|
212 |
|
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl);
|
213 |
|
} else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == BLACK) {
|
214 |
|
// turn right
|
215 |
|
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl);
|
216 |
|
}
|
217 |
|
// both front sensors may detect a line
|
218 |
|
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY &&
|
219 |
|
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) {
|
220 |
|
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY) {
|
221 |
|
// turn left
|
222 |
|
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl);
|
223 |
|
} else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) {
|
224 |
|
// turn right
|
225 |
|
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl);
|
226 |
|
}
|
227 |
|
// exactly one front sensor may detect a line
|
228 |
|
} else if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY ||
|
229 |
|
member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) {
|
230 |
|
if (member[constants::DiWheelDrive::PROX_FRONT_LEFT] == GREY) {
|
231 |
|
// turn left
|
232 |
|
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl);
|
233 |
|
} else if (member[constants::DiWheelDrive::PROX_FRONT_RIGHT] == GREY) {
|
234 |
|
// turn right
|
235 |
|
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl);
|
236 |
|
}
|
237 |
|
// both wheel sensors may detect a line
|
238 |
|
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY &&
|
239 |
|
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) {
|
240 |
|
// something is wrong -> stop
|
241 |
|
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl);
|
242 |
|
// exactly one wheel sensor may detect a line
|
243 |
|
} else if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY ||
|
244 |
|
member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) {
|
245 |
|
if (member[constants::DiWheelDrive::PROX_WHEEL_LEFT] == GREY) {
|
246 |
|
// turn left
|
247 |
|
copyRpmSpeed(rpmTurnLeft, rpmFuzzyCtrl);
|
248 |
|
} else if (member[constants::DiWheelDrive::PROX_WHEEL_RIGHT] == GREY) {
|
249 |
|
// turn right
|
250 |
|
copyRpmSpeed(rpmTurnRight, rpmFuzzyCtrl);
|
251 |
|
}
|
252 |
|
// no sensor detects anything
|
253 |
|
} else {
|
254 |
|
// line is lost -> stop
|
255 |
|
whiteFlag = 1;
|
256 |
|
copyRpmSpeed(rpmHalt, rpmFuzzyCtrl);
|
257 |
|
}
|
258 |
|
chprintf((BaseSequentialStream*) &SD1, "Fuzzy Speed: Left: %d, Right: %d\n", rpmFuzzyCtrl[0], rpmFuzzyCtrl[1]);
|
259 |
|
return;
|
260 |
|
}
|
261 |
|
|
262 |
|
colorMember LineFollow::getMember(float (&fuzzyValue)[3]) {
|
263 |
|
colorMember member;
|
264 |
|
|
265 |
|
if (fuzzyValue[BLACK] > fuzzyValue[GREY])
|
266 |
|
if (fuzzyValue[BLACK] > fuzzyValue[WHITE])
|
267 |
|
member = BLACK;
|
268 |
|
else
|
269 |
|
member = WHITE;
|
270 |
|
else
|
271 |
|
if (fuzzyValue[GREY] > fuzzyValue[WHITE])
|
272 |
|
member = GREY;
|
273 |
|
else
|
274 |
|
member = WHITE;
|
275 |
|
|
276 |
|
return member;
|
277 |
|
}
|
278 |
|
|
279 |
|
// Fuzzyfication of the sensor values
|
280 |
|
void LineFollow::fuzzyfication(int sensorValue, float (&fuzziedValue)[3]) {
|
281 |
|
if (sensorValue < blackStartFalling ) {
|
282 |
|
// Only black value
|
283 |
|
fuzziedValue[BLACK] = 1.0f;
|
284 |
|
fuzziedValue[GREY] = 0.0f;
|
285 |
|
fuzziedValue[WHITE] = 0.0f;
|
286 |
|
} else if (sensorValue > whiteOn ) {
|
287 |
|
// Only white value
|
288 |
|
fuzziedValue[BLACK] = 0.0f;
|
289 |
|
fuzziedValue[GREY] = 0.0f;
|
290 |
|
fuzziedValue[WHITE] = 1.0f;
|
291 |
|
} else if ( sensorValue < greyMax) {
|
292 |
|
// Some greyisch value between black and grey
|
293 |
|
|
294 |
|
// Black is going down
|
295 |
|
if ( sensorValue > blackOff) {
|
296 |
|
fuzziedValue[BLACK] = 0.0f;
|
297 |
|
} else {
|
298 |
|
fuzziedValue[BLACK] = static_cast<float>(sensorValue-blackOff) / (blackStartFalling-blackOff);
|
299 |
|
}
|
300 |
|
|
301 |
|
// Grey is going up
|
302 |
|
if ( sensorValue < greyStartRising) {
|
303 |
|
fuzziedValue[GREY] = 0.0f;
|
304 |
|
} else {
|
305 |
|
fuzziedValue[GREY] = static_cast<float>(sensorValue-greyStartRising) / (greyMax-greyStartRising);
|
306 |
|
}
|
307 |
|
|
308 |
|
// White is absent
|
309 |
|
fuzziedValue[WHITE] = 0.0f;
|
310 |
|
|
311 |
|
} else if ( sensorValue >= greyMax) {
|
312 |
|
// Some greyisch value between grey white
|
313 |
|
|
314 |
|
// Black is absent
|
315 |
|
fuzziedValue[BLACK] = 0.0f;
|
316 |
|
|
317 |
|
// Grey is going down
|
318 |
|
if ( sensorValue < greyOff) {
|
319 |
|
fuzziedValue[GREY] = static_cast<float>(sensorValue-greyOff) / (greyMax-greyOff);
|
320 |
|
} else {
|
321 |
|
fuzziedValue[GREY] = 0.0f;
|
322 |
|
}
|
323 |
|
|
324 |
|
// White is going up
|
325 |
|
if ( sensorValue < whiteStartRising) {
|
326 |
|
fuzziedValue[WHITE] = 0.0f;
|
327 |
|
} else {
|
328 |
|
fuzziedValue[WHITE] = static_cast<float>(sensorValue-whiteStartRising) / (whiteOn-whiteStartRising);
|
329 |
|
}
|
330 |
|
}
|
331 |
|
}
|
332 |
|
|
333 |
|
void LineFollow::copyRpmSpeed(const int (&source)[2], int (&target)[2]) {
|
334 |
|
target[constants::DiWheelDrive::LEFT_WHEEL] = source[constants::DiWheelDrive::LEFT_WHEEL];
|
335 |
|
target[constants::DiWheelDrive::RIGHT_WHEEL] = source[constants::DiWheelDrive::RIGHT_WHEEL];
|
336 |
|
// chprintf((BaseSequentialStream*) &SD1, "Speed left: %d, Speed right: %d\r\n", target[0], target[1]);
|
337 |
|
}
|